
Available online at www.sciencedirect.com

International Journal of Mechanical Sciences 45 (2003) 831–849

More general expression for the torsional warping of a
thin-walled open-section beam

Wen Yi Lina ;∗, Kuo Mo Hsiaob

aDepartment of Mechanical Engineering, De Lin Institute of Technology, 1 Alley 380, Ching Yun Road,
Tucheng, Taiwan, ROC

bDepartment of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu, Taiwan, ROC

Received 10 October 2002; received in revised form 28 May 2003; accepted 17 July 2003

Abstract

In this study, an analytical formulation for the torsional warping function of a thin-walled open-section
beam is built based on the combination of the Vlasov assumption and the Kirchho2 assumption of plate/shell
theory, essentially due to Goodier and Gjelsvik. Vlasov, Timoshenko and many authors (follow Vlasov) only
consider the contour warping function as the real warping function. Goodier and Gjelsvik (follow Goodier) not
only consider the contour warping but also the thickness warping. For some cross-sectional constants related
to the warping function such as the torsional constant, the adoption of the warping function based on Vlasov’s
theory or Timoshenko’s theory may cause them incorrectness. On the other hand, the torsional constant based
on the Goodier’s theory is consistent with the one based on the membrane analogy. Thus, Goodier’s theory is
a good approximation for the torsional warping of a thin-walled open-section beam. To the authors’ limited
knowledge, the analytical expression for the complete torsional warping of a thin-walled open-section beam
has not been found in the literature. In this study, a more general expression for the torsional warping of
a thin-walled open-section beam is presented. The position formulas to determine the twist center are also
given.
? 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The torsional warping function for a thin-walled open-section beam may contain two parts: the
contour warping function (the primary warping) and the thickness warping function (the secondary
warping) [1–3]. Vlasov [4], Timoshenko and Gere [5], and many authors only consider the contour
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warping function as the real warping function. Gjelsvik [3] followed Goodier [1] to have the warping
function of a thin-walled open-section beam composed of the warping of the contour and the warping
of the wall relative to the contour. Due to some thin sections where the contour warping is much
larger than the thickness warping and the contribution of the thickness warping to the warping
constant [2] may be small, the vast majority of researchers only consider the contour warping
function as the warping function. However, this terminology can be misleading, since occasionally
the thickness warping function is the dominant [2,3]. In this study, all the cross-sectional constants,
related to the warping function, arising from a second-order linearization of the fully geometrically
nonlinear beam theory [6–8] will show the di2erences between Vlasov’s theory and the Goodier’s
theory. It can been seen that for some cross-sectional constants related to the warping function
such as the warping constant, the adoption of the warping function based on Vlasov’s theory or
Timoshenko’s theory or Goodier’s theory might make only a few di2erences. On the other hand,
for some cross-sectional constants related to the warping function such as the torsional constant,
the adoption of the warping function based on Vlasov’s theory or Timoshenko’s theory may cause
them incorrectness, rather than only a few di2erence. Moreover, the torsional constant based on the
Goodier’s theory is consistent with the one based on the membrane analogy [9]. Therefore, Goodier’s
theory is a good approximation for the warping of a thin-walled open-section beam and then the
thickness warping function should be considered in theory. To the authors’ limited knowledge, the
analytical expression for the complete torsional warping of a thin-walled open-section beam has not
been found in the literature. The examples of open thin sections in Ref. [3] only include bisymmetric
and limited monosymmetric ones.
The object of this paper is to obtain a more general expression for the torsional warping function

of a thin-walled open-section beam. In this study, an analytical formulation for the warping function
is built based on the combination of the Vlasov assumption [4] and the Kirchho2 assumption of
plate/shell theory [10], essentially due to Goodier [1] and Gjelsvik [3]. The position formulas to
determine the twist center are also given. Note that the previous derivations of the position formulas
whether for Vlasov [4] or for Gjelsvik [3] did not consider the thickness warping. The present
derivation of the position formulas of the twist center will use the complete expression for the
torsional warping obtained in this study.
Goodier’s theory cannot be applied to the warping of a thick-walled open-section beam. The

warping of a thick-walled open-section beam is worth investigating, but that is beyond the scope of
this paper.

2. Analytical formulation for the torsional warping

Based on the Vlasov assumption [4] and the Kirchho2 assumption of plate/shell [10], the analytical
formulation for the warping function of a thin-walled open-section beam subjected to a pure torque
is built. First of all, the terminology used by Gjelsvik [3] is introduced as follows.
The surface midway through the walls of the beams is known as the middle surface. The inter-

section of the middle surface with the cross section is referred to as the contour of the cross section.
Sharp corners and junctions in the contour are permissible and are collectively called junctions. The
section of the contour lying between two junctions or between a junction and an end point is termed
a branch of the contour. The corresponding part of the beam is called an element.
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Fig. 1. Branches and local coordinate systems for the torsional warping.

The four assumptions are made: (1) small deformations, (2) the contour does not deform in its
own plane, (3) the shear strain of the middle surface is zero in each element, and (4) each element
behaves as a thin plate, that is, the Kirchho2 hypothesis is valid. Note that the Kirchho2 hypothesis
contains the following: (a) an arbitrary lineal element extending through the plate thickness remains
perpendicular to the mid surface of the plate (assumption (4a)), and (b) the lineal element is rigid
(assumption (4b)), that is, the lineal element through the plate thickness does not elongate or contract
and remains straight upon the application of load [10].
Consider the contour of any thin-walled open cross section as shown in Fig. 1. In Fig. 1, Cxyz

is the principal centroidal (right-handed Cartesian) coordinate system with its origin located at the
centroid C of the cross section. Determine branches of the cross section and the corresponding
elements. DeIne local coordinates of branches as shown in Fig. 1.
Choose point A∗

1 as the reference point of the axial displacement deIned on the unwarping cross
section. In this study, the superscript * denotes an end point or a junction. Assume yp and zp are
the coordinates of the twist center P in the y- and z-axis, respectively. For the branch A∗

1A
∗
2 and

the corresponding element, the position vector of point KQ1, an arbitrary point on the branch A∗
1A

∗
2 ,

relative to the twist point P in the undeformed conIguration (see Fig. 1) may be expressed in the
local coordinates A∗

1	1
1 as

r KQ1=P = Kr n
1 e

n
1 + Kr t

1e
t
1; (1)

where en1 and e
t
1 represent the unit vectors of 	1 and 
1 axes, respectively. From assumptions (1)

and (2), we may have the displacement of point KQ1 due to the small counterclockwise rotation of
the cross section as follows:

�1e1 × r KQ1=P =− Kr t
1�1e

n
1 + Kr n

1 �1e
t
1; (2)

where �1 is the twist angle of the cross section and e1 represents the unit vector of x-axis. The
individual component of the displacement of point KQ1 in the directions of 	1- and 
1-axis may be
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expressed as

v KQ1 =− Kr t
1�1; (3)

w KQ1 = Kr n
1 �1: (4)

From assumption (3), we have

�x
1 =
@u KQ1
@
1

+
@w KQ1

@x
= 0; (5)

where �x
1 is the shear strain of the middle surface and u KQ1 is the displacement component of point
KQ1 in the x-axis. Using Eq. (4) in Eq. (5), we obtain

@u KQ1
@
1

=− Kr n
1 �

′
1: (6)

In this study, the symbol ()′ denotes the derivative with respect to x. From Eq. (6), we may get the
warping displacement of point KQ1 as follows:

u KQ1 = �′1!
c
A∗
1
( KQ1) + uA∗

1
; (7)

!c
A∗
1
( KQ1) =−

∫ 
1

0
Kr n
1 d
1; (8)

where uA∗
1
is the warping displacement of the reference point A∗

1 , and !c
A∗
1
( KQ1) is the contour warping

function of point KQ1 with the reference point A∗
1 . The superscript c is for the contour warping. From

Eq. (7), we have

uA∗
2
= �′1!

c
A∗
1
(A∗
2) + uA∗

1
; (9)

!c
A∗
1
(A∗
2) =−

∫ b1

0
Kr n
1 d
1; (10)

where b1 is the length of the branch A∗
1A

∗
2 .

Following the above procedures for the branch A∗
2A

∗
3 and the corresponding element, we may

have, with the aid of Eq. (9),

u KQ2 =−�′1

∫ 
2

0
Kr n
2 d
2 + uA∗

2
= �′1!

c
A∗
1
( KQ2) + uA∗

1
; (11)

!c
A∗
1
( KQ2) = !c

A∗
1
(A∗
2)−

∫ 
2

0
Kr n
2 d
2: (12)

Similarly, for an arbitrary branch A∗
nA

∗
n+1 and the corresponding element, the warping displacement

of point KQn, an arbitrary point on the branch A∗
nA

∗
n+1, may be given by

u KQn
= �′1!

c
A∗
1
( KQn) + uA∗

1
; (13)
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where

!c
A∗
1
( KQn) = !c

A∗
1
(A∗

n)−
∫ 
n

0
Kr n
n d
n: (14)

For the branch A∗
1A

∗
2 and the corresponding element, the displacement vector of the point

Q1(x; 	1; 
1) relative to the point KQ1(x; 0; 
1) may be obtained by means of assumptions (1) and
(4b) as follows:

uQ1 − u KQ1 = (�1e1 +  et1)× 	1en1; (15)

where  may be considered as the small counterclockwise rotation of rigid lineal element (lying on
the unwarping cross section perpendicular to the middle surface) about the 
-axis. From Eq. (15),
we have

uQ1 = u KQ1 − 	1 ; (16)

vQ1 = v KQ1 : (17)

Assumption (4a) gives us the shear strain of the x	1 plane with the rigid lineal element equal to
zero, i.e.

�x	1 =
@uQ1

@	1
+

@vQ1
@x

= 0: (18)

By Eqs. (16) – (18), we may obtain  and then we have

uQ1 = u KQ1 − 	1
@v KQ1
@x

: (19)

Substituting Eqs. (3) and (7) into Eq. (19) yields

uQ1 = �′1!A∗
1
(Q1) + uA∗

1
; (20)

!A∗
1
(Q1) = !c

A∗
1
( KQ1) + !t(Q1); (21)

!t(Q1) = Kr t
1	1; (22)

where !c
A∗
1
( KQ1) is given in Eq. (8) and !t(Q1) is the thickness warping function of point Q1 relative

to the point KQ1. The superscript t is for the thickness warping.
Following the above procedures for the general branch A∗

nA
∗
n+1 and the corresponding element, we

may obtain the warping displacement of point Qn(x; 	n; 
n) as follows:

uQn = �′1!A∗
1
(Qn) + uA∗

1
; (23)

!A∗
1
(Qn) = !c

A∗
1
( KQn) + !t(Qn); (24)

!t(Qn) = Kr t
n	n; (25)

where !c
A∗
1
( KQn) is given in Eq. (14).
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The form of the warping displacement may be essentially similar to the one according to the
Saint-Venant torsion theory because of no consideration of the warping shear strain. Besides, because
the warping should be independent of the choice of the reference point of the axial displacement,
the warping displacement of an arbitrary point Qn(x; 	n; 
n) may be expressed as follows:

uQn = �′1!(Qn); (26)

!(Qn) = !c( KQn) + !t(Qn); (27)

!c( KQn) = !c
A∗
1
( KQn)− S; (28)

where S is a constant to be determined.
Using Eq. (26) and the assumptions of small deformations, we have

�x = �′′1!; (29)

�x = E�′′1!; (30)

where E is Young’s modulus. Due to the beam only subjected to a torque, we may have∫
�x dA= 0; (31)

∫
�xy dA= 0; (32)

∫
�xz dA= 0; (33)

where A is the cross-sectional area. Substituting Eq. (30) into Eq. (31), we have, in light of Eqs.
(25) and (27),∫

! dA=
∫

!c dA= 0: (34)

Substituting Eq. (28) into Eq. (34) yields

S =

∫
!c

A∗
1
dA

A
: (35)

The resulting warping displacements should be identical whether the reference point of the axial
displacement locating at any end point or at any junction, because they all satisfy Eq. (34).
When a second-order linearization of the fully geometrically nonlinear beam theory is adopted for

the nonlinear analysis of thin-walled open-section beams, there arise the following cross-sectional
constants related to the warping function [6–8]:

I! =
∫

!2 dA;  ! =
∫

!3 dA;  y! =
∫

z2! dA;  z! =
∫

y2! dA;
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 !y =
∫

!2z dA;  !z =
∫

!2y dA;  !yz =
∫

!yz dA;

J =
∫

{[− (z − zp) + !;y]2 + [(y − yp) + !;z]2} dA;

Jy =
∫
[(y − yp)(z!;z − !)− z(z − zp)!;y + z(!2;y + !2; z) + !!;z] dA;

Jz =
∫
[(z − zp)(y!;y − !)− y(y − yp)!;z − y(!2;y + !2; z) + !!y] dA;

J! =
∫
[(y − yp)!!;z − (z − zp)!!;y + !(!2;y + !2; z)] dA; (36)

where the symbols ();y and (); z denote @()=@y and @()=@z, respectively, and J and I! are the so-called
the torsional constant and the warping constant [2], respectively. For bisymmetric cross sections, the
values of yp, zp,  !,  y!,  z!,  !y,  !z, Jy, Jz and J! are zero. For monosymmetric cross sections
with zp = 0, the values of  !,  y!,  z!,  !y, Jy, and J! are zero [6,7]. The associated details for
these cross-sectional constants can be found in Refs. [6–8]. All the cross-sectional constants will
show the di2erences between the present theory and Vlasov’s theory in this study.
Substituting Eq. (30) into Eqs. (32) and (33), we have∫

y! dA= 0; (37)

∫
z! dA= 0: (38)

With the aid of Eqs. (37) and (38), we may determine the position of the center of twist. According
to the Betti reciprocal theorem, we may verify that the twist center coincides with the shear center
[11].

3. Position formulas to determine the twist center

In practice, we may determine the position of the center of twist as follows. If we do not know
the position of the twist center P, we may take an arbitrary point P̃ as a Ictitious twist center, so
that the Ictitious warping function !̃ arising from the Ictitious twist center is as simple as possible.
Then the position of the twist center P may be obtained with the aid of the Ictitious twist center P̃
and the Ictitious warping function !̃.
The line connecting point KQ and point Q is perpendicular to the branch. Point KQ in the coordinate

systems x	
 and xyz may be expressed as KQ(x; 0; 
) and KQ(x; Ky; Kz), respectively, where

Ky = Ky(
);

Kz = Kz(
): (39)
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An arbitrary Point Q in the coordinate systems x	
 and xyz, as shown in Fig. 2, may be expressed
as Q(x; 	; 
) and Q(x; y; z), respectively, where

y = Ky + 	 cos  ;

z = Kz + 	 sin  (40)

with

sin  =−d Ky
d


;

cos  =
d Kz
d


: (41)

From Fig. 2, we have

sin " =
zp − zp̃
PP̃

;

cos " =
yp − yp̃

PP̃
: (42)

Let PB= dn; P̃B= dt . Using the geometrical relations (see Fig. 2) and Eq. (42), we have

dn=PP̃ cos( − ") = PP̃(cos  cos " + sin  sin ")

= (yp − yp̃)cos  + (zp − zp̃)sin  ;

dt =PP̃ sin( − ") = PP̃(sin  cos " − sin " cos  )
= (yp − yp̃)sin  − (zp − zp̃)cos  : (43)

From Fig. 2, we have

r̃ n = Kr n + dn;

r̃ t = Kr t − dt: (44)
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The warping function ! may be expressed by

!(Qn) =!c( KQn) + !t(Qn) = !c
A∗
1
( KQn)− S + !t(Qn)

=!c
A∗
1
(A∗

n)−
∫ 
n

0
Kr n
n d
n − S + Kr t

n	n

=C0 −
∫ 
n

0
Kr n
n d
n + Kr t

n	n; (45)

where C0 = !c
A∗
1
(A∗

n)− S is a constant.
Alternatively,

!= C0 −
∫ 


0
Kr n d
+ Kr t	: (46)

The Ictitious warping function !̃ may be expressed by

!̃= C̃0 −
∫ 


0
r̃ n d
+ r̃ t	

= C̃0 −
∫ 


0
( Kr n + dn) d
+ (Kr t − dt)	

=C1 + !−
∫ 


0
[(yp − yp̃)cos  + (zp − zp̃)sin  ] d
− [(yp − yp̃)sin  − (zp − zp̃)cos  ]	;

=C1 + !− [(yp − yp̃)( Kz − Kz0)− (zp − zp̃)( Ky − Ky 0)]− [(yp − yp̃)sin  − (zp − zp̃)cos  ]	

=C1 + !− (yp − yp̃)( Kz + 	 sin  − Kz0) + (zp − zp̃)( Ky + 	 cos  − Ky 0)

=C1 + !− (yp − yp̃)(z − Kz0) + (zp − zp̃)(y − Ky 0); (47)

where

C1 = C̃0 − C0; Ky 0 = Ky(0); Kz0 = Kz(0): (48)

The process of derivation of Eq. (47) has used Eqs. (39) – (41), (43), (44) and (46).
Thus, we have∫

y!̃ dA=C1

∫
y dA+

∫
y! dA− (yp − yp̃)

∫
yz dA+ (yp − yp̃) Kz0

∫
y dA

+(zp − zp̃)
∫

y2 dA− (zp − zp̃) Ky 0

∫
y dA;

∫
z!̃ dA=C1

∫
z dA+

∫
z! dA− (yp − yp̃)

∫
z2 dA+ (yp − yp̃) Kz0

∫
z dA

+(zp − zp̃)
∫

yz dA− (zp − zp̃) Ky 0

∫
z dA: (49)
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Rearranging the above equation, we yield the position formulas of the twist center P, with the aid
of Eqs. (37) and (38) and the principal centroidal coordinates Cxyz

yp = yp̃ − I!̃y

Iy
;

zp = zp̃ +
I!̃z

Iz
; (50)

where

I!̃y =
∫

!̃z dA; I!̃z =
∫

!̃y dA: (51)

4. Illustrative examples

The application of the analytical expression for the warping function is straightforward. Thus, only
one example will show the detailed process, and the other examples will directly give the results.

4.1. Warping function of a monosymmetric channel section

Choose the point A∗
1 as the reference point and determine Kr

n and Kr t for each branch as shown in
Fig. 3. top Qange (branch 1): −tf=26 	16 tf=2, 06 
16 b.
From Fig. 3, we have

Kr n
1 = h=2;

Kr t
1 =−(e + b− 
1);

then

!c
A∗
1
(
1) =−

∫ 
1

0
Kr n
1 d
1 = (−h=2)
1;

!t
A∗
1
(	1; 
1) = Kr t

1	1 = 	1(
1 − e − b):

Thus,

!c
A∗
1
(A∗
2) =−bh=2:

Web (branch 2): −tw=26 	26 tw=2, 06 
26 h.
From Fig. 3, we have

Kr n
2 =−e;

Kr t
2 =

{−(h=2− 
2); 06 
26 h=2;


2 − h=2; h=26 
26 h;

= 
2 − h=2; 06 
26 h;
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then

!c
A∗
1
(
2) = !c

A∗
1
(A∗
2)−

∫ 
2

0
Kr n
2 d
2 = (−bh=2) + e
2;

!t
A∗
1
(	2; 
2) = Kr t

2	2 = 	2(
2 − h=2):

Thus,

!c
A∗
1
(A∗
3) = (−bh=2) + eh:

Bottom Qange (branch 3): −tf=26 	36 tf=2, 06 
36 b.
From Fig. 3, we have

Kr n
3 = h=2;

Kr t
3 = 
3 + e;
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then

!c
A∗
1
(
3) = !c

A∗
1
(A∗
3)−

∫ 
3

0
Kr n
3 d
3 = (−bh=2) + eh− (h=2)
3;

!t
A∗
1
(	3; 
3) = Kr t

3	3 = 	3(
3 + e):

From Eq. (35), we have

S =−h(b− e)=2:

Therefore, the warping function of a monosymmetric channel section shown in Fig. 3 is given as
follows:
Top 9ange: −tf=26 	16 tf=2, 06 
16 b.
Warping function:

!(	1; 
1) = 	1
1 − (b+ e)	1 − (h=2)
1 + h(b− e)=2:

Web: −tw=26 	26 tw=2, 06 
26 h.
Warping function:

!(	2; 
2) = 	2
2 − (h=2)	2 + e
2 − he=2:

Bottom 9ange: −tf=26 	36 tf=2, 06 
36 b.
Warping function:

!(	3; 
3) = 	3
3 + e	3 − (h=2)
3 + he=2:

The warping constant and the torsional constant according to the present theory are

I! =
h2tf[(b− e)3 + e3]

6
+

h3e2tw
12

+
t3f[(b+ e)3 − e3]

18
+

h3t3w
144

;

J = 2
3 bt

3
f +

1
3 ht

3
w:

Note that the torsional constant based on the present theory is consistent with the one based on
the membrane analogy. The warping constant and the torsional constant according to Vlasov’s theory
are

I! =
h2tf[(b− e)3 + e3]

6
+

h3e2tw
12

;

J = 2
3 b

3tf + 1
6 bt

3
f +

1
12 (h

3tw + ht3w) + 2betf(b+ e):

For a monosymmetric channel section with b = 6 mm, h = 12 mm, and tf = tw = 0:8 mm, the
results for the cross-sectional constants related to the warping function based on Vlasov’s theory
(or Timoshenko’s theory) and the present (Goodier’s) theory are tabulated in Table 1. As can been
seen from Table 1, the values of some cross-sectional constants I!,  !,  y!,  z!,  !y,  !z,  !yz, Jy
and J! almost make no di2erence between Vlasov’s theory and the present theory. However, the
torsional constant obtained by the present theory is 4:096 mm4 consistent with the one based on
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Table 1
Cross-sectional constants based on Vlasov’s theory and Goodier’s theory for a monosymmetric channel section

Cross-sectional Vlasov’s theory Present
constants (Goodier’s theory)

I! (mm6) 1:814× 103 1:836× 103

 y! (mm6) 0 0
 z! (mm6) 0 0
 !yz (mm6) 1:814× 103 1:817× 103

 !y (mm7) 0 0
 !z (mm7) 2:539× 103 2:563× 103

 ! (mm8) 0 0
J (mm4) 409.6 4.096
Jy (mm5) 0 0
Jz (mm5) 260.4 7.668
J! (mm6) 0 0

Monosymmetric channel section with b= 6 mm, h= 12 mm, and tf = tw = 0:8 mm
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Fig. 4. Geometry of an unsymmetric Z-section.

the membrane analogy, as against 409:6 mm4 according to Vlasov’s theory. Moreover, the di2erence
of the constant Jz between Vlasov’s theory and the present theory is remarkable.

4.2. Warping function of an unsymmetric Z-section

The warping function of an unsymmetric Z-section shown in Fig. 4 is given as follows:
Top 9ange: −tf=26 	16 tf=2, 06 
16 b.
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Warping function:

!(	1; 
1) = 	1
1 − b	1 + (h=2)
1 − S;

where

S =
bh(btf + htw)
2(2btf + htw)

:

Web: −tw=26 	26 tw=2, 06 
26 h.
Warping function:

!(	2; 
2) = 	2
2 − (h=2)	2 + bh=2− S:

Bottom 9ange: −tf=26 	36 tf=2, 06 
36 b.
Warping function:

!(	3; 
3) = 	3
3 − (h=2)
3 + bh=2− S:

The warping constant and the torsional constant according to the present theory are

I! =
b3h2tf(btf + 2htw)
12(2btf + htw)

+
b3t3f
18

+
h3t3w
144

;

J = 2
3 bt

3
f +

1
3 ht

3
w:

Note that the torsional constant based on the present theory is consistent with the one based on the
membrane analogy. The warping constant and the torsional constant according to Vlasov’s theory
are

I! =
b3h2tf(btf + 2htw)
12(2btf + htw)

;

J = 2
3 b

3tf + 1
6 bt

3
f +

1
12 (h

3tw + ht3w):

For an unsymmetric Z-section with b = 85:73 mm, h = 142:88 mm, and tf = tw = 12:7 mm, the
results for the cross-sectional constants related to the warping function based on Vlasov’s theory
(or Timoshenko’s theory) and the present (Goodier’s) theory are tabulated in Table 2. As can been
seen from Table 2, the values of some cross-sectional constants I!,  !,  y!,  z!,  !y,  !z,  !yz,
and Jz almost make no di2erence between Vlasov’s theory and the present theory. However, the
torsional constant obtained by the present theory is 2:146× 105 mm4 consistent with the one based
on the membrane analogy, as against 8:475× 106 mm4 according to Vlasov’s theory. Moreover, the
di2erences of the constants Jy and J! between Vlasov’s theory and the present theory are remarkable.

4.3. Warping function of an unsymmetric angle section

The warping function of an unsymmetric angle section shown in Fig. 5 is given as follows:
Horizontal leg (9ange): −tf=26 	16 tf=2, 06 
16 b.



W.Y. Lin, K.M. Hsiao / International Journal of Mechanical Sciences 45 (2003) 831–849 845

Table 2
Cross-sectional constants based on Vlasov’s theory and Goodier’s theory for an unsymmetric Z-section

Cross-sectional Vlasov’s theory Present
constants (Goodier’s theory)

I! (mm6) 1:609× 1010 1:620× 1010

 y! (mm6) −2:491× 1010 −2:474× 1010

 z! (mm6) −9:973× 108 −9:824× 108

 !yz (mm6) 1:107× 1010 1:113× 1010

 !y (mm7) 0 0
 !z (mm7) 0 0
 ! (mm8) −2:584× 1013 −2:626× 1013

J (mm4) 8:475× 106 2:146× 105

Jy (mm5) 4:302× 107 0
Jz (mm5) 0 0
J! (mm6) 0 −1:793× 108

Unsymmetric Z-section with b= 85:73 mm, h= 142:88 mm, and tf = tw = 12:7 mm
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Fig. 5. Geometry of an unsymmetric angle section.

Warping function:

!(	1; 
1) = 	1
1 + (e2 − b)	1 − e1
1 − S;
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Table 3
Cross-sectional constants based on Vlasov’s theory and Goodier’s theory for an unsymmetric angle section

Cross-sectional Vlasov’s theory Present
constants (Goodier’s theory)

I! (mm6) 0 3:742× 106

 y! (mm6) 0 2:780× 105

 z! (mm6) 0 1:347× 106

 !yz (mm6) 0 −2:520× 106

 !y (mm7) 0 2:682× 107

 !z (mm7) 0 7:112× 107

 ! (mm8) 0 1:772× 107

J (mm4) 0 1:103× 104

Jy (mm5) 0 −9:665× 104

Jz (mm5) 0 8:658× 104

J! (mm6) 0 3:762× 104

Unsymmetric angle section with b1 = 47:75 mm, h= 72:75 mm, and tf = tw = 6:5 mm

where

S =−b2tfe1 + h2twe2 + 2bhtwe1
2(btf + htw)

:

Vertical leg (web): −tw=26 	26 tw=2, 06 
26 h.
Warping function:

!(	2; 
2) = 	2
2 − e1	2 − e2
2 − be1 − S:

For an unsymmetric angle section with b= 47:75 mm, h= 72:75 mm, and tf = tw = 6:5 mm, the
results for the cross-sectional constants related to the warping function based on Vlasov’s theory
and the present (Goodier’s) theory are tabulated in Table 3. The warping constant obtained by
the present theory is 3:742 × 106 mm6. The torsional constant obtained by the present theory is
1:103× 104 mm4 consistent with the value based on the membrane analogy. According to Vlasov’s
theory or Timoshenko’s theory, the angle section twists without warping.

4.4. Warping function of an unsymmetrical channel section

The warping function of an unsymmetrical channel section shown in Fig. 6 is given as follows:
Top 9ange: −t1=26 	16 t1=2, 06 
16 b1.
Warping function:

!(	1; 
1) = 	1
1 − (b1 + e1)	1 + (c2 + e2)
1 − S;

where

S =
(c2 + e2)( 12 b

2
1t1 − 1

2 b
2
2t2 + b1htw + b1b2t2) + 1

2 b
2
2ht2 − 1

2 h
2twe1 − e1hb2t2

b1t1 + htw + b2t2
:
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Fig. 6. Geometry of an unsymmetric channel section.

Web: −tw=26 	26 tw=2, 06 
26 h.
Warping function:

!(	2; 
2) = 	2
2 − (c2 + e2)	2 − e1
2 + (c2 + e2)b1 − S:

Bottom 9ange: −t2=26 	36 t2=2, 06 
36 b2.
Warping function:

!(	3; 
3) = 	3
3 + e1	3 + (h− c2 − e2)
3 + b1(c2 + e2)− e1h− S:

For an unsymmetric channel section with b1=2:0 mm, h=10:0 mm, b2=4:0 mm, and t1= t2= tw=
0:5 mm, the results for the cross-sectional constants related to the warping function based on Vlasov’s
theory and the present (Goodier’s) theory are tabulated in Table 4. The warping constants I! are
71:033 mm6 and 73:348 mm6 according to Vlasov’s theory and the present theory, respectively. The
di2erence between them is about 3%. The constants  z! are −1:813 mm6 and −2:175 mm6 according
to Vlasov’s theory and the present theory, respectively. The di2erence between them reaches about
20%. Moreover, the torsional constant J obtained by the present theory is 0:667 mm4 as against
312:989 mm4 according to Vlasov’s theory. Obviously, the former is consistent with the value based
on the membrane analogy and the latter is not correct. The di2erences of the constants J , Jy, Jz,
and J! between Vlasov’s theory and the present theory are remarkable.

5. Conclusions

The torsional warping function for a thin-walled open-section beam may contain two parts: the
contour warping function and the thickness warping function. For some cross-sectional constants
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Table 4
Cross-sectional constants based on Vlasov’s theory and Goodier’s theory for an unsymmetric channel section

Cross-sectional Vlasov’s theory Present
constants (Goodier’s theory)

I! (mm6) 71.03 73.35
 y! (mm6) −28:81 −32.64
 z! (mm6) −1:813 −2.175
 !yz (mm6) 78.16 78.01
 !y (mm7) 221.0 237.3
 !z (mm7) −70:86 −69.77
 ! (mm8) −306:0 −304.5
J (mm4) 313.0 0.6667
Jy (mm5) −736:4 −0.8242
Jz (mm5) 121.7 −0.5288
J! (mm6) 122.4 0.2706

Unsymmetric channel section with b1 = 2:0 mm, h= 10:0 mm, b2 = 4:0 mm, and t1 = t2 = tw = 0:5 mm

such as the warping constant I!,  !,  y!,  z!,  !y,  !z, and  !yz, the adoption of the warping
function based on Vlasov’s theory or Timoshenko’s theory or Goodier’s theory might make only a
few di2erence. On the other hand, for some cross-sectional constants such as the torsional constant J ,
Jy, Jz and J!, the adoption of the warping function based on Vlasov’s theory or Timoshenko’s theory
might cause them incorrectness. Thus, the thickness warping should be considered, especially in the
nonlinear analysis of thin-walled open-section beams. The torsional constant based on Goodier’s
theory is consistent with the one based on the membrane analogy. Thus, Goodier’s theory is a good
approximation for the warping of a thin-walled open-section beam. In this study, a more general
analytical expression for the torsional warping function of a thin-walled beam with generic open
sections is built based on the Vlasov assumption and the Kirchho2 assumption of plate/shell theory.
A practical procedure to determine the twist center is also given
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