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We propose to measure the superradiance effect by observing the current through a semiconductor
double-dot system. An electron and a hole are injected separately into one of the quantum dots to form
an exciton and then recombine radiatively. We find that the stationary current shows oscillatory behavior
as one varies the interdot distance. The amplitude of oscillation can be increased by incorporating the
system into a microcavity. Furthermore, the current is suppressed if the dot distance is small compared
to the wavelength of the emitted photon. This photon trapping phenomenon generates the entangled
state and may be used to control the emission of single photons at predetermined times.

DOI: 10.1103/PhysRevLett.90.166802 PACS numbers: 73.21.La, 03.67.Mn, 42.50.Fx, 71.35.–y
FIG. 1 (color online). Proposed device structure. Two InAs
quantum dots are embedded in a p-i-n junction. Above dot 2 is
a metal gate, which controls the energy gap and orientation of
spatially separated quantum dots. The novel feature here the dipole.
Since Dicke proposed the phenomenon of superradi-
ance [1], the coherent radiation phenomena for atomic
systems were intensively investigated. In semiconductor
systems, the electron-hole pair is naturally a candidate for
examining the spontaneous emission. The decay rate of
the exciton is superradiantly enhanced by a factor of
��=d�2 for a 2D exciton-polariton system [2], where � is
the wavelength of the emitted photon and d is the lattice
constant of the thin film. In the past decades, the super-
radiance of excitons in these quantum well structures has
been investigated intensively [3]. For lower dimensional
systems, the decay rate of the exciton is enhanced by a
factor of �=d in a quantum wire [4]. In the quantum dots,
although the decay rate is shown to be proportional to R2:1

[5] which confirms the theoretical prediction [6], accept-
able experimental data on quantum dot superradiance are
still not plentiful owing to the difficulty of techniques in
observing the enhanced spontaneous emission optically.

In recent years, great attention has been focused on the
entanglement issue since generation of highly entangled
states is one of the fundamental requirements for quan-
tum information processing [7]. Many papers have been
associated with quantum-optic and atomic systems [8].
However, due to the scalability of the quantum processor,
solid-state realizations of such phenomena are the favored
choices [9]. In fact, the superradiance effect can also
generate entanglement by spontaneous emission. There-
fore, a different way is proposed to observe the super-
radiant effect and generate the entangled states in this
work. By injecting electrons and holes into one of the
quantum dots of a double-dot system and controlling the
gate voltage of one of the dots, a photon is then generated
by the coherent recombination of the exciton. This pro-
cess not only allows one to determine the superradiant
effect by measuring the stationary current, but also in-
duces the entangled states in this double-dot system.

In our model, we consider a p-i-n junction, similar to
the device proposed by Benson et al. [10], but with two
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is the dissipative creation of entanglement over relatively
large distances, and its readout via the stationary current.
The device structure is shown in Fig. 1.

One of the obstacles in measuring superradiance be-
tween the quantum dots comes from the random size of
the dots which result in a random distribution of energy
gap and thus diminishes the coherent radiation. This
can be overcome by constructing a gate voltage over
one of the quantum dots. The energy gap and the orienta-
tion of the dipole moments of one of the quantum dots
thus can be controlled well. Both the hole and electron
reservoirs are assumed to be in thermal equilibrium. For
the physical phenomena we are interested in, the current
is conducted through dot 1 only, and the Fermi level of
the p�n�-side hole (electron) is slightly lower (higher)
than the hole (electron) subband in the dot. After a
hole is injected into the hole subband in the quantum
dot, the n-side electron can tunnel into the exciton level
because of the Coulomb interaction between the elec-
tron and the hole. In our calculation, we also neglect the
Forster process which may have some influence on the
results if the two dots are close to each other. The va-
lidity of this assumption will be discussed later. Thus, we
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may assume four dot states: j0i � j0; h; 0; 0i, jU1i�
je;h;0;0i, jU2i � j0; 0; e; hi, and jDi � j0; 0; 0; 0i,
where j0; h; 0; 0i means there is one hole in dot 1 and
j0; 0; 0; 0i represents the ground state with no hole and
electron in the quantum dots. The exciton states je; h; 0; 0i
(in dot 1) can be converted to j0; 0; e; hi (in dot 2)
through the exciton-photon interactions. One might
argue that one cannot neglect the state je; 0; 0; 0i for
real device since the tunable variable is the applied volt-
age. However, this can be resolved by fabricating a thicker
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barrier on the electron side so that there is little chance
for an electron to tunnel in advance. By transform-
ing jU1i and jU2i into Dicke states: jS0i � �1=

���
2

p
� �

�jU1i � jU2i� and jT0i � �1=
���
2

p
��jU1i 	 jU2i�, we can

now define the dot operators n̂nS 
 jS0ihS0j, n̂nT 

jT0ihT0j, n̂nD 
 jDihDj, p̂ps 
 jS0ihDj, p̂pT 
 jT0ihDj,
ŝsU1


 �1=
���
2

p
��j0ihS0j 	 j0ihT0j�, and ŝsD 
 j0ihDj. The

total Hamiltonian H of the system consists of
three parts: H0 [dot, photon bath Hp, electron (hole)
reservoirs Hres], HT(dot-photon coupling), and the dot-
reservoir coupling HV :
H � H0 	HT 	HV; H0 � "Un̂nS 	 "Un̂nT 	 "Dn̂nD 	Hp 	Hres;

HT �
X
k

1���
2

p gfDkbk
p̂pS�1	 eik�r� 	 p̂pT�1� eik�r�� 	 c:c:g � g�p̂pSXS 	 p̂pS
yXy

S 	 p̂pT XT 	p̂pT
ypXT
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Hp �
X
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�Vqc
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	Wqd
y
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X
q

"Uq c
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qcq 	

X
q
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y
qdq:

(1)

In the above equation, bk is the photon operator, gDk is the dipole coupling strength, r is the position vector between
two quantum dots, XS �

P
k�1	 eik�r�Dkbk, XT �

P
k�1� eik�r�Dkbk, and cq and dq denote the electron operators in

the left and right reservoirs, respectively. The dipole approximation is not used in our calculation since we keep the full
eik�r terms in the operators XS and XT . Here, g is a constant with a unit of the tunneling rate. The couplings to the
electron and hole reservoirs are given by the standard tunnel Hamiltonian HV , where Vq and Wq couple the channels q
of the electron and the hole reservoirs. If the couplings to the electron and the hole reservoirs are weak, then it is
reasonable to assume that the standard Born-Markov approximation with respect to these couplings is valid. In this
case, one can derive a master equation from the exact time evolution of the system. The equations of motion can be
expressed as (cf. [12])

hn̂n�it � hn̂n�i0 � �ig
Z t

0
dt0fhp̂p�it0 � hp̂py

�it0 g 	 
U
Z t

0
dt0�1� hn̂nSit0 � hn̂nTit0 � hn̂nDit0 �;

hn̂nDit � hn̂nDi0 � �ig
Z t

0
dt0fhp̂pSit0 � hp̂py

S it0 	 hp̂pTit0 � hp̂py
Tit0 g � 2
D

Z t

0
dt0hn̂nDit0 ;

hp̂pSit � hp̂pSi0t � �
D
Z t

0
dt0 ei"�t�t

0�hXtX
y
t0 ~ppS�t

0�it0 � ig
Z t

0
dt0 ei"�t�t

0�fhn̂nSXtX
y
t0 it0 � hn̂nDX

y
t0Xtit0 g;

hp̂pTit � hp̂pTi0t � �
D
Z t

0
dt0 ei"�t�t

0�hXtX
y
t0 ~ppT�t

0�it0 � ig
Z t

0
dt0 ei"�t�t

0�fhn̂nTXtX
y
t0 it0 � hn̂nDX

y
t0Xtit0 g;

(2)
where the index � � S or T, 
U � �
P

qV
2
q��"U � "Uq �,


D � �
P

qW
2
q��"D � "Dq �, and " � "U � "D is the en-

ergy gap of the quantum dot exciton. Here, ~ppS�t0� �
pSei"tXt0 , ~ppT�t0� � pTei"tXt0 , and Xt0 (Xt0) denotes the
time evolution of X (X) with Hp. The expectation value
hp̂py
�i0t describes the decay of an initial polarization of the

system and plays no role for the stationary current.
Therefore, we shall assume the initial expectation value
of p̂p��y� vanishes at time t � 0.

As can be seen from Eq. (2), there are terms such as
hn̂n�XtX

y
t0 it0 which contain products of dot operators and

photon operators. If we are interested in small coupling
parameters here, a decoupling of the reduced density
matrix ~����t0� can be used: ~����t0� � �0

phTrph ~����t
0�.

Products of these operators can then be obtained. For
spontaneous emission, the photon bath is assumed to
be in equilibrium. The expectation values hXtX

y
t0 i0 


C�t� t0� and hXtX
y
t0 i0 
 C�t� t0� are functions of the

time difference only. We can now define the Laplace
transformation for real z,
C"�z� 

Z 1

0
dt e�ztei"tC�t�;

n��z� 

Z 1

0
dt e�zthn̂n�it etc:; z > 0;

(3)

and transform the whole equations of motion into z space.
The tunnel current ÎI can be defined as the change of the
occupation of n̂nD and is given by ÎI 
 ig

P
��p̂p� � p̂p�y�,

where we have set the electron charge e � 1 for conven-
ience. The time dependence of the expectation value hÎIit
can be obtained by performing the inverse Laplace trans-
formation. For time t! 1, the result is

hÎIit!1 �
4g2$	$�

$� 	 $	
1	 2$��g2=
D 	 g2=
U 	 
D��
;

(4)

where g2$	 and g2$� are the superradiant and subra-
diant decay rate of the exciton, respectively [11]. The
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derivation of the current equation is closely analogous to
the spontaneous emission of phonons in double dots [12],
in which the correlation functions hXtX

y
t0 i0 are given by

the electron-phonon interaction.
The corresponding decay rate for superradiant and the

subradiant channels is given by

g2$� � $0

�
1�

sin�2�d=�0�
2�d=�0

�
; (5)

where d is the interdot distance and $0 is the exciton
decay rate in a quantum dot. To display the dependence of
the stationary current through the quantum dot on the dot
distance d, we present the results of two identical quan-
tum dots in Fig. 2. In plotting the figure, the current is in
terms of 100 pA. Furthermore, the tunneling rates, 
U
and 
D, are assumed to be equal to 0:2$0 and $0, respec-
tively. Here, a value of 1=1:3 ns for the free-space quan-
tum dot decay rate $0 is used in our calculations [13]. As
shown in Fig. 2, the current is suppressed as the dot
distance d is much smaller than the wavelength (�0) of
the emitted photon. This corresponds to the trapping state
in the two-ion system. As long as we choose only one of
the dots to be coupled to reservoirs, the generated photon
is reabsorbed immediately by the other dot and vice versa.
The current is then blocked by this exchange process. For
small rates limit (g2$�), one can approximate Eq. (4) by
I � 4
1=g2$� 	 1=g2$	�

�1. The rates 
U;D drop out
completely and the current is determined only by the
(smaller) radiative decay rates. In this approximate
form, the current looks identical to the expression for
the conductance G / 
1=
L 	 1=
R�

�1 from a left lead
through a single level to a right lead with tunnel rates

L;R. This implies that the superradiant and the subra-
diant channel are in series (and not in parallel) in this
limit. This is because, once the exciton is formed in dot 1,
time evolution of this state is proportional to e�g

2$	t 	
e�g

2$�t not e�g
2�$		$��t [14]. It means the two decay

channels in our system are not in parallel. For long time
behavior t! 1 and $	 � $�, the function e�g

2$	t 	
e�g

2$�t approaches the limit of e�g
2$�t, which is identi-
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FIG. 2. Stationary tunnel current, Eq. (4), as a function of dot
distance d. The interference effect is seen clearly (inset) by
incorporating the system inside a rectangular microcavity. The
vertical and horizontal units are 100 pA and �0, respectively.
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cal to the same limit of the function e�
�g2$	$��=�$		$���t

(in series).
Similar to the two-ion superradiance [11], the current

also exhibits oscillatory behavior as a function of dot
distance. To observe the interference effect clearly, one
may incorporate the system inside a microcavity since
semiconductor cavities with strong electron-photon cou-
pling have been realized experimentally by, e.g., Gérard
et al. [15]. Reduction of the allowed k state is expected to
increase the magnitude of the oscillation. For example, if
the system is placed inside a rectangular microcavity
with length �0, the decay rate for the two channels can
be worked out straightforwardly:

g2$cav;� �
$0

�
j1� ei2�d=�

��
2

p
�0�j2: (6)

The stationary current is plotted in the inset of Fig. 2,
where a perfect (lossless) cavity is assumed. As we men-
tioned above, the amplitude of oscillation is larger than
that in free space. However, the oscillation period is not
half of the wavelength, but �0=

���
2

p
. This is because the

interference term is influenced only by the wave vector in
the unconfined direction. Excluding the contributions
from fundamental cavity modes, the effective wave vec-
tor can be expressed as

keff �

������������������������������������������
2�
�0

�
2
�2�

�
�
�0

�
2

s
�
k0���
2

p : (7)

The oscillation period of the decay rate and the current is
therefore increased by a factor of

���
2

p
.

In Fig. 3, we plot the expectation value of nS (nT) as a
function of the dot distance. The maximum entangled
state (jS0i) is reached as d� �0. This is remarkable as
the steady state is independent of the initial state. The
entanglement is induced by the cooperative decoherence
in the system. In a recent paper by Schneider et al. [16],
the authors consider the behavior of an ion trap with all
ions driven simultaneously and coupled collectively to a
heat bath. They also found that the steady state of the ion
trap can exhibit quantum entanglement. However, the
concurrence of their system is below the value of unity
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FIG. 3. Occupation probability of the entangled states nS
(solid line) and nT (dashed line). The inset shows the results
inside a rectangular microcavity.
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(maximum entanglement). On the contrary, in our system
the maximum entangled state can be generated by tuning
the band gap of dot 2 (linear stark effect), i.e., control the
on/off of the superradiance. Another advantage of our
scheme is shown in the inset of Fig. 3. If the double-dot
system is incorporated inside a rectangular microcavity,
the maximum entangled states repeat as a function of
interdot distance. This means, even for remote separation,
the entanglement can still be achieved. The reason can be
attributed to the fact that the creation of entanglement in
our model is governed by the interaction with a common
heat bath, while conventional creation of entanglement
depends on the direct interaction between two subsystems
[17]. When two dots are coupled to the common photon
fields, the collective decay process drives the system into
the entangled states. The novel feature of the effect pre-
dicted here is that entanglement in fact can be controlled
electrically (without applying a laser field) and readout in
the form of a transport property, i.e., the electron current
(as a function of the dot distance or, alternatively, the
cavity length).

Another possible application of this effect is that, by
tuning the coherence of the dots, one can control the
emission of single photon at predetermined times, which
is important for the field of quantum information tech-
nology. However, one should note that the biexciton effect
is not included in our present model. Therefore, a low
injection limit is required in the experiment [18]. One
might argue that for small interdot distance the Forster
process may play some role in our system [19]; never-
theless, this causes only small energy splitting between
state jS0i and jT0i. Comparing to the large energy differ-
ence in the III-V semiconductor material, its effect on the
decay rate g2$� is negligible. As for the problem of
dissipation, decoherence due to interaction with other
bosonic excitations (phonons and electron-hole pairs in
the leads) is inevitable but can in principle be (partly)
controlled by variation of the dot energies, or control of
the mechanical degree of freedom [20]. In addition, scat-
tering due to impurities is negligible since there is no
interdot transport in our system.

In conclusion, we have proposed a method of detecting
the superradiant effect in a semiconductor double-dot
system. By incorporating the InAs quantum dots between
a p-i-n junction, the superradiant effect on the stationary
tunnel current can be examined by tuning the band gap of
the quantum dot. Moreover, the interference effects be-
tween two dots can be seen more clearly by incorporating
the system inside a microcavity. The oscillation period of
the decay rate and current is also increased because of the
microcavity. Besides, the maximum entangled state is
induced as the interdot distance is much smaller than
the wavelength of the emitted photon. Our model pro-
vides a new way to generate the entanglement in solid-
state systems.
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