

Available at www.ComputerScienceWeb.com

Theoretical Computer Science 299 (2003) 107-121

Theoretical Computer Science

www.elsevier.com/locate/tcs

A survey on multi-loop networks

F.K. Hwang¹

Department of Applied Mathematics, National Chiao Tung University, Hsin-Chu 300 50, Taiwan, ROC

Received May 2001; received in revised form June 2001; accepted July 2001 Communicated by D.-Z. Du

Abstract

Bermond, Comellas and Hsu gave an excellent survey on multi-loop networks, directed and undirected, in 1995, but only one and half page is on loop networks other than the directed double-loop. Hwang recently gave a substantial survey, but only on the directed double-loop. This survey is a companion of the latter survey by focusing on the other loop networks. © 2002 Published by Elsevier Science B.V.

1. Introduction

Multi-loop networks were first proposed by Wong and Coppersmith [28] for organizing multimodule memory services. Fiol et al. [17] slightly extended its definition in their study of the data alignment problem in SIMD processors. Nowadays, it is used for both local area computer networks [23, 25] and large area communication networks like SONET [13, 26].

A multi-loop network, denoted by $L(N; s_1, ..., s_l)$, can be represented by a digraph on N nodes, 0, 1, ..., N - 1 and lN links of l types: $i \rightarrow i + s_1, i \rightarrow i + s_2, ..., i \rightarrow i + s_l$ (mod N), i = 0, 1, ..., N - 1. When l is specified, we can also call it an *l-loop network*. A symmetric 2*l*-loop network, $L(N; s_1, ..., s_l, -s_1, ..., -s_l)$ can be represented by a graph on N vertices with edges of l types: $(i, i + s_1), (i, i + s_2), ..., (i, i + s_l) \pmod{N}$ for i = 0, 1, ..., N - 1. Such a multi-loop network will be called an *undirected l-loop network*, and denoted by $L(N; \pm s_1, ..., \pm s_l)$.

The single-loop network (also called ring network) is mathematically trivial. The double-loop network is the most important and most-studied multi-loop network, but it

¹Research partially supported by Republic of China NSC Grant 89-2115-M-009-036 and by Lee and MTI Center, National Chiao Tung University.

E-mail address: fhwang@math.nctu.edu.tw (F.K. Hwang).

has been recently surveyed [21]. So this survey will focus on *l*-loop networks, directed or undirected, for $l \ge 3$, and also on the undirected double-loop network (these have been briefly included in a survey by Bermond et al. [3]).

2. Multi-loop networks

We first discuss connectivity. For *r* a divisor of *N* and $S = \{s_1, \ldots, s_l\}$ define $M(r, S) = \{i: i \equiv s_j \in S \pmod{r}$ for $1 \leq i < r\}$. van Dorne [14] proved

Theorem 2.1. *The strong connectivity of* L(N; S) *is* $\min_{r|N} \{ (N/r) | M(r, S) | : |M(r, S)| < r - 1 \}.$

Divide the set $\{0,1,\ldots,N-1\}$ into r residue classes modulo r. Then M(r,S) represents the set of classes nodes in class 0 can go to via a s_j -step for some $s_j \in S$. Therefore, M(r,S) is a cutset except when there is no other class besides class 0 and those in M(r,S), which happens when |M(r,S)| = r - 1. Since each class has N/r nodes, (N/r)|M(r,S)| is the size of the cutset.

Corollary 2.2. $L(N; s_1, ..., s_l)$ is strongly connected if and only if $gcd(N, s_1, ..., s_l) = 1$.

Proof. L(N;S) is strongly connected if and only if |M(r,S)| > 0 for every r|N. \Box

In the following, we say L(N; S) does not exist if it is not strongly connected.

Hamidoune [18] proved that the link-connectivity of a strongly connected vertextransitive digraph is the vertex degree. Hence

Theorem 2.3. The arc-connectivity of an l-loop is l if and only if it is strongly connected.

Since the *l*-loops cannot be distinguished by the link-connectivity, we introduce a finer notion of link-connectivity. A digraph is *super-\lambda* if all its maximum link-cutsets are trivial (links adjacent to a node). Hamidoune and Tindell [19] characterized super- λ vertex-transitive digraphs from which the super- λ multi-loop can be characterized.

A minimum distance diagram (MDD) exhibits the shortest paths from node 0 to node *i* for all *i* (since the multi-loop network is vertex-transitive, there is no loss of generality in using node 0 as the source). Wong and Coppersmith gave a simple algorithm to construct the MDD. The \mathbb{R}^l space is first divided into unit *l*-dimensional hypercubes. The MDD is constructed by labeling a connected set of *N* hypercubes by the set of residues (mod *N*). The labeling is done step-wise. Let $l(x_1, \ldots, x_l)$ denote the label assigned to the cube with coordinate (x_1, \ldots, x_l) . At step 0, set $l(0, \ldots, 0) = 0$, i.e., the origin has label 0. At step *r* we label cubes distance *r* away from the origin and set $l(x_1, \ldots, x_l) \equiv \sum_{i=1}^l x_i s_i \pmod{N}$. The order of labeling follows the lexicographical order of $(x_l, x_{l-1}, \ldots, x_1)$, small first. For example for l=3 and r=2 the order is

			(2)	(3)	
		10	10 11	10 11 12	10 11 12
	5	56	567	5678	56789
0	0 1	0 1 2	0 1 2 3	0 1 2 3 4	0 1 2 3 4

Fig. 1. Constructing the MDD for L(13; 1, 5).

(2,0,0),(1,1,0),(0,2,0),(1,0,1),(0,1,1),(0,0,2). The order is important since if two hypercubes have the same label, only the first one is labeled. Labeling stops when every label has appeared. Fig. 1 illustrates this algorithm for L(13; 1, 5).

Hsu and Jia [20] extended a result of Wong and Coppersmith from l=2 to general l.

Theorem 2.4. If $(x_1,...,x_l)$ is not in the MDD, then nor is $(y_1,...,y_l)$ where $y_i \ge x_i$ for $1 \le i \le l$. Furthermore, there exists a unique $(x_1,...,x_l)$ not in the MDD such that the l hypercubes $(x_1 - 1, x_2,...,x_l), (x_1, x_2 - 1, x_3,...,x_l), ..., (x_1,...,x_{l-1},x_l-1)$ are all in the MDD, and $\sum_{i=1}^l x_i s_i \equiv 0 \pmod{N}$.

Suppose that \mathbb{R}^d is divided into unit hypercubes and a *shape* is a connected set of hypercubes. A shape is said to tessellate \mathbb{R}^d if any number of it can be connected together with no internal gaps (rotation not allowed). Recently, Chen et al. [9] gave a sufficient condition for a shape to tessellate. The following result follows as a special case.

Theorem 2.5. Every MDD tessellates \mathbb{R}^d .

Wong and Coppersmith gave lower bounds and upper bounds for the diameter D and the mean distance of a multi-loop. The lower bounds are obtained by a packing argument, namely, for a given diameter, the number of nodes is at most the number of hypercubes within distance D from the origin. Since a maximum packing yields $\binom{l+r-1}{l-1}$ hypercubes whose distance to the origin is exactly r,

$$N \leq \sum_{r=0}^{D} \binom{l+r-1}{l-1} = \binom{l+D}{l} \leq [D+(l+1)/2]^{l}/l!.$$

On the other hand let M denote the mean distance. Then

$$NM \ge \sum_{r=0}^{D-1} r \binom{l+r-1}{l-1} = \frac{l(D-1)}{l+1} \binom{l+D-1}{l} \\ \ge \frac{l}{(l+1)!} \left[(l!D)^{1/l} - \frac{l+3}{2} \right]^{l+1}$$

Thus we have

Theorem 2.6.
$$D(N; s_1, ..., s_l) \ge (l!N)^{1/l} - (l+1)/2 \sim (l!N)^{1/l}$$
.
 $M(N; s_1, ..., s_l) \ge \frac{l}{(l+1)!N} \left[(l!N)^{1/l} - \frac{l+3}{2} \right]^{l+1} \sim \frac{l}{l+1} D(N; s_1, ..., s_l).$

Wong and Coppersmith argued the upper bounds by giving a construction of an *l*-loop. Consider $L(u^l; 1, u, ..., u^{l-1})$. It is easily seen that its MDD is a $u \times u \times \cdots \times u$ hypercube, hence

Theorem 2.7. $D(u^l; 1, u, \dots, u^{l-1}) = l(u-1) \sim lN^{1/l};$ $M(u^l; 1, u, \dots, u^{l-1}) = l(u-1)/2.$

It should be noted that this upper bound is derived only for a special form of N. To apply it to all N, we say, if $(u-1)^l < N \le u^l$, then its diameter is upper bounded by l(u-1). Actually, we can obtain better bounds if there is some gap between N and u^l . Clearly, if $N \ge u^l - 1$, then we can remove node $u^l - 1$ (which lies opposite node 0 in the hypercube MDD) to reduce the diameter by 1. To reduce the diameter by 2, one cannot simply further remove the l nodes surrounding node $u^l - 1$ since these nodes $(u^l - 1) - 1, (u^l - 1) - u, \dots, (u^l - 1) - u^{l-1}$ are not the l consecutive nodes $u^l - l - 1, u^l - l, \dots, u^l - 2$. The following result shows a way of doing it.

Theorem 2.8. $D(u^l - 2l; 1, u, ..., u^{l-2}, u^{l-1} - 1) = l(u - 1) - 2.$

Proof. We label the $x^{l} = 0$ hyperplane according to $L(u^{l-1}; 1, u, ..., u^{l-2})$ except removing node $u^{l-1} - 1$. Each of the $x^{l} = k$, $1 \le k \le l-2$, hyperplane is labeled exactly like the $x^{l} = 0$ hyperplane except with the set of nodes $\{k(u^{l-1} - 1), k(u^{l-1} - 1) + 1, ..., k(u^{l-1} - 1) + u^{l-1} - 2\}$. The $x^{l} = l - 1$ hyperplane is labeled similarly except removing nodes $u^{l} - 2l, u^{l} - 2l + l, ..., u^{l} - 1$. \Box

Example. D(21; 1, 3, 8) = 4

Another way of generalization is to construct a hyper-rectangle with side lengths u_1, u_2, \ldots, u_l . It is easily verified that

$$N = \prod_{i=1}^{l} u_i, \quad s_1 = 1, \quad s_j = \prod_{i=1}^{j-1} u_i \text{ for } 2 \leq j \leq l.$$

Theorem 2.9. $D(\prod_{i=1}^{l} u_i; 1, u_1, u_1 u_2, \dots, \prod_{i=1}^{l-1} u_i) = \sum_{i=1}^{l} (u_i - 1).$

110

Fig. 2. A hyper-L shape.

For example, for N = 28, Theorem 2.7 selects u = 3 and obtains a bound of 6, while Theorem 2.9 selects $u_1 = 2$, $u_2 = u_3 = 3$ and obtains a smaller bound of 5.

3. Triple-loop networks

For l=3, the lower bound of diameter from Theorem 2.6 is $D \ge (6N)^{1/3}$. Note that the above bound is obtained by packing a tetrahedron of cubes (x_1, x_2, x_3) satisfying $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ and $x_1 + x_2 + x_3 \le D$. But the cubes on the surface $x_1+x_2+x_3 = D$ violates Theorem 2.1 since it neighbors many hypercubes (x_1, x_2, x_3) with $(x_1 - 1, x_2, x_3)$, $(x_1, x_2 - 1, x_3)$ and $(x_1, x_2, x_3 - 1)$ all in the tetrahedron. By using Theorem 2.1 to tighten the packing, Hsu and Jia were able to obtain a better lower bound of D.

Theorem 3.1. $D \ge [(14 - 3\sqrt{3})N]^{1/3} - 3.$

Hsu and Jia also gave an explicit construction of triple-loops with parameters a = 1, b = 3D - 8r + 5, c = rb + D - 3r + 2 and N = rc + 2D - 6r + 3, where $r = \lfloor D/4 \rfloor$, and D is the diameter, which results in

Theorem 3.2. $D \leq (16N)^{1/3}$.

While the MDD of a triple-loop may not necessarily produce a regular shape, Aguilo et al. [1] took the approach of bypassing the triple-loop and going directly to the following highly regular *hyper-L shape*.

The hyper-*L* shape is symmetric with respect to the three dimensions and has three parameters l, m and n. It can be described as the l^3 -cube with several parts removed: an $(l - m - n)^3$ -cube at one corner and an $(l - m - n) \times m \times n$ hyper-rectangle from each of the three remaining hyper-rectangle pieces (see Fig. 2). We will denote such a hyper-*L* shape by HL(l, m, n). It is easily verified that the hyper-*L* shape tessellates \mathbb{R}^3 .

Assuming the existence of a triple-loop yielding HL(l,m,n), then node 0 lies at the origin but also at (l - m - n, l - m - n, l - m - n) by Theorem 2.1. By studying the distribution of nodes 0, we obtain the system of equations:

$$\begin{pmatrix} l & -m & -n \\ -n & l & -m \\ -m & -n & l \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \equiv \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \pmod{N},$$

or

$$\begin{pmatrix} l & -m & -n \\ -n & l & -m \\ -m & -n & l \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} N, \text{ for some integers } \alpha, \beta, \gamma \text{ not all } 0. (1)$$

It is easily verified that

$$N = l^3 - m^3 - n^3 - 3lmn, \text{ and}$$
$$D = 3l - 2n - m - 3 \text{ (assuming } m \ge n).$$

By setting l = 3w, m = n = w, then $N = 16w^3$ and $D = 6w - 3 = 6(N/16)^{1/13} - 3$. Aguilo et al. thus claimed $(27N/2)^{1/3} - 3$ to be an upper bound of *D*, which yields a better bound than Theorem 3.2. However, the validity of the new bound is based on the existence of a triple-loop yielding a hyper-*L* shape with l = 3w, m = n = w. Chen et al. [8] provide a link between desirable hyper-*L* shapes and corresponding triple-loops by proving

Theorem 3.3. A necessary and sufficient condition for L(N; a, b, c) whose MDD is HL(l,m,n) to exist is $gcd(l+m, l+n, m-n) = gcd(l-m-n, l^2-mn) = 1$.

Corollary 3.4. A necessary conditions for L(N; a, b, c) to exist is $m \neq n$.

Proof. Suppose m = n. Then

 $gcd(l+m, l+n, n-n) = l+m > 1. \qquad \Box$

By Corollaries 3.4 and 2.2, we know that L(N; a, b, c) for l = 3w, m = n = w does not exist. Nevertheless, Aguilo et al. gave three families of triple-loops:

- (i) $L(16x^3 + 3x; 4x^2 + x + 1, 4x^2 x + 1, 8x^2 + 1)$ with l = 3x, m = x + 1, n = x 1and D = 6x - 2,
- (ii) $L(16x^3 + 12x^2 + 3x; 4x^2 + 4x + 1, 4x^2 + 3x + 1, 8x^2 + 5x + 1)$ with l = 3x + 1, m = x + 1, n = x and D = 6x - 1,
- (iii) $L(16x^3 + 36x^2 + 27x + 7; 4x^2 + 5x + 1, 4x^2 + 4x + 1, 8x^2 + 11x + 4)$ with l = 3x + 2, m = x + 1 and D = 6x + 2,

whose diameters approach the $(27N/2)^{1/3}$ bound. It is easily verified that these families satisfy the conditions of Theorem 3.3.

112

4. Undirected multi-loop networks

Most of the results in this section parallel those in Section 2.1 since an undirected *l*-loop can be treated as a directed 2*l*-loop. Therefore by setting $S = \{\pm s_1, \ldots, \pm s_l\}$, Theorem 2.1 can be translated into

Theorem 4.1. The connectivity of $L(N; \pm s_1, ..., \pm s_l)$ is $\min_{r|N} \{ (N/r) | M(r,S) | : |M(r,S)| < r-1 \}.$

Corollary 4.2. $L(N; \pm s_1, \ldots, \pm s_l)$ is connected if and only if $gcd(N, s_1, \ldots, s_l) = 1$.

The edge-connectivity of an undirected multi-loop easily follows from a result of Mader [24] on connected vertex-transitive graphs.

Theorem 4.3. The edge-connectivity of an undirected *l*-loop is 2*l* if and only if it is connected.

Boesch and Tindell [6] characterized super- λ undirected *l*-loops.

Theorem 4.4. The only connected undirected *l*-loops which are not super- λ are L(N;s) for all *s* and L(2l; 2, 4, 6, ..., l - 1, l) for *l* odd.

As in the directed case, MDD can be constructed by filling in the nodes in the order of their distances to node 0 at the origin; and for nodes with the same distance r in the same hyperplane $(x_1, x_2, ..., x_j)$, $1 \le j \le l$, in the order of $x_j = 0, 1, ..., r$. Fig. 3 illustrates this construction for $L(14; \pm 3, \pm 4)$.

Only the first part of Theorem 2.4 holds for the undirected case. Hence the MDD has less structure as a shape.

Theorem 4.5. If (x_1, \ldots, x_l) is not in the MDD, then nor is (y_1, \ldots, y_l) , where $y_i x_i \ge 0$, $|y_i| \ge |x_i|, 1 \le i \le l$.

Wong and Coppersmith also gave a packing upper bound. The number of hypercubes r-distance away from the origin with exactly i coordinates equal to zero is 1 for

Fig. 3. Constructing the MDD for $L(14; \pm 3, \pm 4)$.

r = 0 and

$$\binom{n-1}{l-i-1} \quad \text{for } r \ge 1,$$

and there are $\binom{l}{i}$ ways of selecting the *i* coordinates. By noting that each nonzero x_i can be set either positive or negative, we have

$$N \leqslant 1 + \sum_{r=1}^{D} \sum_{i=0}^{l-1} {l \choose i} {r-1 \choose l-i-1} 2^{l-i} = 1 + \sum_{i=0}^{l-1} {l \choose i} {D \choose l-i} 2^{l-i}$$
$$= \sum_{i=0}^{l} {l \choose i} {D \choose l-i} 2^{l-i} \leqslant 2^{l} \sum_{i=0}^{l} {l \choose i} {D \choose l-i}$$
$$= {l+D \choose l} 2^{l} \leqslant (2D+l+1)^{l}/l!.$$
(1)

On the other hand

$$NM \ge \sum_{r=1}^{D-1} r \sum_{i=0}^{l-1} {l \choose i} {r-l \choose l-i-1} 2^{l-i}$$

= $\sum_{i=0}^{l-1} r {r-1 \choose l-1} 2^{l}$
= $\frac{l}{l+1} D {D-1 \choose l} 2^{l}$
 $\ge l2^{l} {D \choose l+1} \ge \frac{l}{2(l+1)!} [(l!N)^{1/l} - (3l+1)]^{l+1}.$ (2)

Thus we have

Theorem 4.6.
$$D(N; \pm s_1, \dots, \pm s_l) \ge \frac{1}{2} (l!N)^{1/l} - (2l+1)/2 \sim \frac{1}{2} (l!N)^{1/l},$$

 $M(N; \pm s_1, \dots, \pm s_l) \ge \frac{l}{2(l+1)!N} [(l!N)^{1/l} - (3l+1)]^{l+1} \sim \frac{l}{2(l+1)} (l!N)^{1/l}.$

Wong and Coppersmith again used the *l*-dimensional hypercube with side u (see Theorem 2.5) to give upper bounds. By placing the center of the hypercube at the origin, we obtain

Theorem 4.7.

$$D(u^{l}; \pm 1, \pm u, \dots, \pm u^{l-1}) = l(u-1)/2 \sim (l/2)N^{1/l}.$$
$$M(u^{l}; \pm 1, \pm u, \dots, \pm u^{l-1}) = l(u^{2}-1)/4u.$$

114

Erdös and Hsu [15] gave a better bound than Theorem 4.7 provided some condition (not easily checked or met) is satisfied.

Theorem 4.8. Suppose that there exists an optimal $L(N; \pm 1, \pm s'_2, ..., \pm s'_{l-1})$, $l \ge 4$, *i.e.*, its diameter is the lower bound $[(l-1)!N]^{1/(l-1)} - l/2$. Then there exists an $L(N; \pm 1, \pm s_2, ..., \pm s_l)$ whose diameter is upper bounded by $\min_c \{[(l-1)!c]^{1/(l-1)} + 1/c\}N^{1/l} - l/2 - 1$.

These values serve as upper bounds for $(u-1)^l < N \leq u^l$.

Since the MDD of an undirected multi-loop has irregular shape, Zerovink and Pisanski [30] brought in some structure by introducing a different kind of diagram which we will call *base diagram* (BD). For a given *l*-loop, let *Z* denote the set of coordinates of the 0-nodes. A 0-vector is a vector from a 0-node to another 0-node. Let b_1, \ldots, b_l be a set of *l* independent 0-vectors. Then $\{b_1, \ldots, b_l\}$ is a base of *Z*. A BD $[b_1, \ldots, b_l)$ is defined as

$$[b_1,\ldots,b_l) = \{x: x = \alpha_1 b_1 + \cdots + \alpha_l b_l, \text{ where } 0 \leq \alpha_i < 1\}.$$

Note that $[b_1, \ldots, b_l]$ contains half of the boundary of the parallelepiped. Similarly, we can define $(b_1, \ldots, b_l]$, $[b_1, \ldots, b_l]$ and (b_1, \ldots, b_l) by specifying whether each of the inequalities $0 \le \alpha_i$ and $\alpha_i \le 1$ is strict (with a different effect on the boundary). They proved

Theorem 4.9. $[b_1, \ldots, b_l)$ contains every residue modulo N exactly once.

Chen and Jia [11] gave a different construction to obtain a better bound. For $l \ge 3$, $n = \lfloor (D - l + 3)/l \rfloor$ and choose $s_i = (4n)^{i-1}$ for $1 \le i \le l$. They proved that for

$$N \leq 2n \sum_{i=0}^{l-1} (4n)^i = \left(\frac{1}{2}\right) \left(\frac{4}{l}\right)^l D^l + O(D^{l-1}),$$

every residue $x \pmod{N}$ can be represented as

$$x = \sum_{i=1}^{l} x_i s_i$$
, with $-2n < x_i \le 2n$ for $1 \le i \le l-1$ and $0 \le x_l \le 2n$,

furthermore,

$$\sum_{i=1}^l |x_i| \leqslant D.$$

Thus for such N,

Theorem 4.10. $D \leq (l/4)(2N)^{1/l}$ for $l \geq 3$.

5. Undirected double-loop networks

The connectivity of undirected double-loops can be determined without going through the computation of Theorem 4.1.

Theorem 5.1. $L(N; \pm s_1, \pm s_2)$ is 4-connected for $N \ge 6$.

Proof. Watkins [27] proved that a connected vertex-transitive graph is maximally connected if it does not contain K_4 . It is easily verified that $L(N; \pm s_1, \pm s_2)$ does not contain K_4 for $N \ge 6$. \Box

Set l = 2 in Eq. (1), we have

$$N \leqslant \sum_{i=0}^{2} {2 \choose i} {D \choose 2-i} 2^{2-i} = 2D(D-1) + 4D + 1 = 2D^2 + 2D + 1, \text{ or}$$
$$D \geqslant \left\lceil \frac{-1 + \sqrt{2N-1}}{2} \right\rceil \triangleq D^*.$$

Boesch and Wong [7] proved that this lower bound of *D* can always be achieved by choosing $s_1 = D^*$ and $s_2 = D^* + 1$.

Theorem 5.2. $L(N; \pm D^*, \pm (D^* + 1))$ achieves the minimum diameter D^* for all N.

Bermond et al. [5] tightened the bound Eq. (2) of mean distance (their definition of mean distance is not counting self-distance) by taking account of the unfilled hypercubes in packing.

$$(N-1)M \ge \sum_{r=1}^{D-1} r \sum_{i=0}^{l-1} \binom{l}{i} \binom{r-1}{l-i-1} 2^{l-i} + D(N-2D^2+2D-1).$$
(3)

For l = 2, (3) becomes

$$(N-1)M \ge (N-1)D - \frac{2D}{3}(D^2 - 1),$$
 or
 $M \ge D\left[1 - \frac{2(D^2 - 1)}{3(N-1)}\right] \triangleq M^* \sim \sqrt{2N}/3.$

They proved.

Theorem 5.3. $L(N; \pm D^*, \pm (D^* + 1))$ achieves M^* for $2(D^*)^2 - 1 \le N \le 2(D^*)^2 + 2(D^*) + 1$; $L(N; \pm (D^*-1), \pm D^*)$ achieves M^* for $2(D^*)^2 - 2(D^*) + 1 \le N \le 2(D^*)^2 + 1$.

We observe

Corollary 5.4. The undirected double-loops in Theorem 5.3 achieve both minimum diameter and minimum average distance in their respective range. Furthermore, since

Fig. 4. The Fàbrega and Zaragoza's tree.

 $2(D^*-1)^2+2(D^*-1)+1=2(D^*)^2-2D^*+1$, for every N, there exists an undirected double-loop achieving both minimum diameter and minimum mean distance.

Bermond et al. also proved

Theorem 5.5. The diameter of $L(N; \pm D^*, \pm (D^* + 1))$ after one fault (node or edge) is at most $D^* + 1$.

Theorem 4.3 says that an undirected double-loop has edge-connectivity 4. Bermond et al. [4] obtained a stronger result.

Theorem 5.6. An undirected double-loop has two link-disjoint hamiltonian cycles.

In view of Corollary 5.4, Theorems 5.5 and 5.6, it seems that we do have an optimal undirected double-loop in either $L(N; \pm D^*, \pm (D^* + 1))$ or $L(N; \pm (D^* - 1), \pm D^*)$ for all N. Therefore we fail to understand the existence of a large body of literature studying the diameters of $L(N; \pm 1, \pm s)$ which are often suboptimal.

For a given routing ρ and a set F of faulty elements (nodes or edges), a *surviving* route graph is a graph whose nodes are the nodes of the undirected double-loop and an edge [i, j] exists if and only if $\rho(i, j)$ contains no element of F. So an edge in a surviving route graph represents a surviving route. The diameter of a surviving route graph, representing the maximum number of surviving routes a path has to bypass through, is a common measure for fault tolerance.

Fabrega and Zaragozà [16] considered the surviving route graphs for optimal undirected double-loops, i.e., (s_1, s_2) is either (D, D + 1) or (D - 1, D). They defined a routing ρ by the rule: for any node *i* draw a shortest spanning tree t_i in the MDD centered at *i*, and route (i, j) coincides with the path on t_i . The t_i chosen by them takes *a*-steps before *b*-steps if *j* is in the upper half (including the horizontal line) and *b*-steps first if otherwise (see Fig. 4). Clearly, if F consists of nodes in the boundary of t_i and edges not in t_i , then all nodes not in G are adjacent to i in the surviving route graph. By symmetry, a node j can be put at any place of an MDD, including the boundary. This makes it clear that for any single node-fault, the surviving graph has diameter 2. Fabrega and Zaragoza in fact proved.

Theorem 5.7. Suppose $N = 2D^2 + 2D + 1$. Then the diameter of the surviving route graph is 2 for any F consisting of two nodes; the diameter is 3 if F consists of three nodes.

There are not many results for undirected double-loops with general (s_1, s_2) .

Zerovink and Pisanski were able to obtain results beyond Theorem 4.9 for l=2. They proved the following two results.

Theorem 5.8. Suppose b_1 and b_2 are the two shortest (in L_1 -metric) independent 0-vectors, then for every node in $[b_1, b_2)$, the closest 0-node is always one in the four corners of $[b_1, b_2]$.

Clearly, the center of $[b_1, b_2]$ must be the point farthest away from the closest corner, the diameter of $L(N; \pm s_1, \pm s_2)$ can be obtained by computing only the distances of the four nodes surrounding the center to their respective closest corners. Let d_1 and d_2 be the two diagonals of $[b_1, b_2]$. Then

$$\|d_1\| = \min\{\|b_1 + b_2\|, \|b_1 - b_2\|\},\$$

$$\|d_2\| = \max\{\|b_1 + b_2\|, \|b_1 - b_2\|\},\$$

Theorem 5.9.

118

$$D(N; \pm s_1, \pm s_2) = \begin{cases} \lfloor \|d_1\|/2 \rfloor - 1 & \text{if } \|d_1\| = \|d_2\| > \max\{\|b_1\|, \|b_2\|\} \text{ and } \\ & \text{both } \|b_1\| \text{ and } \|b_2\| \text{ are odd,} \\ \\ \lfloor \|d_1\|/2 \rfloor & \text{otherwise.} \end{cases}$$

Corollary 5.10. Any two shortest 0-vectors $\{b_1, b_2\}$ yield the same diameters.

6. Chordal ring networks

Arden and Lee [2] first proposed the *chordal ring network* on an even number N of nodes with two types of edges:

```
ring-edges: (i, i + 1) for i = 0, 1, ..., N - 1, and
chords: (i, i + h), where h is odd, for i = 1, 3, 5, ..., N - 1 (i odd).
```

Note that there are only N/2 chords, where a loop typically has N edges. Therefore a chordal ring can be viewed as an undirected one-and-half loop.

Arden and Lee considered an optimal mixture of the following three kinds of moves: (i) at an even node: a 1-step followed by an h-step,

- (ii) at an even node: a (-1)-step followed by an *h*-step,
- (iii) 1-step or (-1)-step.

For a given diameter D, they found the maximum N using the above three moves and mistakenly claimed it to be an upper bound of N for the chordal ring. Yebra et al. [29] considered two additional kinds of moves:

- (iv) at an odd node: a 1-step followed by a (-h)-step,
- (v) at an odd node: a (-1)-step followed by a (-h)-step,

and obtained better results. They proved

Theorem 6.1. (i) $N \leq (3D^2 + 1)/2$ for D odd; achievable by setting

- h = 3k.
- (ii) $N \leq (3/2)D^2 D$ for D even; achievable by setting h = 3k + 1.

Corollary 6.2. $D \sim (2N/3)^{1/2}$.

For comparison, the diameter of an optimal undirected double-loop is about $(1/\sqrt{2})$ $N^{1/2} \cong (0.7)N^{1/2} < (0.82)N^{1/2} \cong (2N/3)^{1/2}$.

Hwang and Wright [22] considered *directed chordal ring network* which replaces ring-edges with links, namely, it has two types of links:

ring-link: $i \to i+1$ for i = 0, 1, ..., N-1 (N even), and chords: $i \to i+h$ for odd i.

Similarly, a directed chordal ring can be viewed as a one-and-half loop.

Hwang and Wright observed that by combining nodes *i* and *i*th into one supernode, then a directed chordal ring with parameters (N, h) is reduced to a double-loop L(N/2; 1, (h+1)/2). They used this equivalence to compute the reliability of a directed chordal ring when each node, each ring-link and each chord fails with the probabilities p, p_1, p_h , respectively. Chen et al. [10] observed that the diameter of a directed chordal ring can also be computed by using the $O(\log N)$ algorithm developed by Cheng and Hwang [12] for the double-loop. They further extended the directed chordal ring to allow the replacement of $i \rightarrow i + 1$ link by $i \rightarrow i + s$ for some odd s.

Chen et al. also proposed the mixed chordal ring, denoted by M(N; s, h), with

ring-link: $i \rightarrow i + s$ for i = 0, 1, ..., N - 1 (N even), and chords: $(i, \pm h)$ for odd i.

By treating an edge (i, j) as the set of two links $i \rightarrow j$ and $j \rightarrow i$, then a mixed chordal ring is a regular digraph with degree 2, hence comparable in hardware with a double-loop. Chen et al. gave the surprising result that a mixed chordal ring can achieve shorter diameter than a double-loop.

Theorem 6.3. $D(N; s, h) \leq \sqrt{2N} + 3$, where *s* and *h* are computed by the following rules: set N' to be the smallest even integer $\geq \lceil \sqrt{N/2} \rceil$. Then s = N' + 1 and h = N' - 1.

They also proved

Theorem 6.4. M(N; s, h) is hamiltonian if and only if L(N/2; (s - h)/2, (s + h)/2)does. Furthermore, it has two link disjoint hamiltonian circuits if and only if gcd(N, s - h) = gcd(N, s + h) = 2.

Acknowledgements

The author wishes to thank C. Chen for a very careful reading.

References

- F. Aguilo, M.A. Fiol, C. Garcia, Triple loop networks with small transmission delay, Discrete Math. 167/168 (1997) 3–16.
- [2] B.W. Arden, H. Lee, Analysis of chordal ring networks, IEEE Trans. Comput. C 30 (1981) 291-295.
- [3] J.C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Para. Distr. Comput. 24 (1995) 2–10.
- [4] J.C. Bermond, O. Favaron, M. Maheo, Hamiltonian decomposition of Cayley graph of degree four, J. Combin. Theory B 46 (1989) 142–153.
- [5] J.C. Bermond, G. Illiades, C. Peyrat, An optimization problem in distributed loop computer networks, Ann. New York Acad. Sci. S55 (1989) 45–55.
- [6] F.T. Boesch, R. Tindell, Circulants and their connectivity, J. Graph Theory 8 (1984) 487-499.
- [7] F.T. Boesch, J.K. Wang, Reliable circulant networks with minimum transmission delay, IEEE Trans. Circuits Syst. 32 (1985) 1286–1291.
- [8] C. Chen, F.K. Hwang, J.S. Lee, S.J. Shih, The existence of hyper-L shapes in triple-loop networks, preprint, 2001.
- [9] M.Y. Chen, F.K. Hwang, C.H. Yen, Tessellating shapes in the plane, preprint, 2001.
- [10] S.K. Chen, F.K. Hwang, Y.C. Liu, Mixed chordal rings, preprint, 2001.
- [11] S. Chen, X.D. Jia, Undirected loop networks, Networks 23 (1993) 257-260.
- [12] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks, J. Algebra 9 (1988) 401-410.
- [13] H.M. Dao, C.B. Silio Jr., Ring-network reliability with a constrained number of consecutively-bypassed stations, IEEE Trans. Rel. 47 (1998) 35–43.
- [14] E.A. van Dorne, Connectivity of circulant graphs, J. Graph Theory 10 (1986) 9-14.
- [15] P. Erdös, D.F. Hsu, Distributed loóp network with minimum transmission delay, Theoret. Comput. Sci. 100 (1992) 23–241.
- [16] J. Fàbrega, M. Zaragozà, Fault tolerant routings in double fixed-step networks, Discrete Appl. Math. 78 (1997) 61–74.
- [17] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local networks and data alignment, IEEE Trans. Comput. 36 (1987) 702–713.
- [18] Y.O. Hamidoune, Quelques problems de connexité dans les graphes orientés, J. Combin. Theory B 30 (1981) 1–10.
- [19] Y.O. Hamidoune, R. Tindell, Vertex transitivity and super line connectedness, SIAM J. Discrete Math. 3 (1990) 524–530.
- [20] D.F. Hsu, X.D. Jia, Extremal problems in the combinatorial construction of distributed loop networks, SIAM J. Discrete Math. 7 (1994) 57–71.
- [21] F.K. Hwang, A complementary survey of double loop networks, Theoret. Comput. Sci. 263 (2001) 211–229.

- [22] F.K. Hwang, P.E. Wright, Survival reliability of some double-loop networks ad chordal rings, IEEE Trans. Comput. 44 (1995) 1468–1471.
- [23] M.T. Liu, Distributed Loop Computer Networks, Advances in Computers, Vol. 17, Academic Press, New York, 1981, pp. 163–221.
- [24] W. Mader, Minimale n-fach kantenzusamenhängende graphen, Math. Ann. 191 (1971) 21-28.
- [25] C.S. Raghavendra, J.A. Sylvester, A survey of multi-connected loop topologies for local computer networks, Comput. Network ISDN Syst. 11 (1986) 29–42.
- [26] A. Schrijver, P.D. Seymour, P. Winkler, The ring loading problem, SIAM J. Discrete Math. 11 (1998) 1–14.
- [27] M.E. Watkins, Connectivity of transitive graphs, J. Graph. Theory 8 (1970) 23-29.
- [28] C.K. Wong, D. Coppersmith, A combinatorial problem related to multimode memory organizations, J. ACM 21 (1974) 392–402.
- [29] J.L.A. Yebra, M.A. Fiol, P. Morillo, I. Alegre, The diameter of undirected graphs associated to plane tessellations, Ars Combin. 20B (1985) 159–171.
- [30] J. Zerovink, T. Pisanski, Computing the diameter in multiple-loop networks, J. Algebra 14 (1993) 226–243.