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Abstract

Bermond, Comellas and Hsu gave an excellent survey on multi-loop networks, directed and
undirected, in 1995, but only one and half page is on loop networks other than the directed
double-loop. Hwang recently gave a substantial survey, but only on the directed double-loop.
This survey is a companion of the latter survey by focusing on the other loop networks.
c© 2002 Published by Elsevier Science B.V.

1. Introduction

Multi-loop networks were 7rst proposed by Wong and Coppersmith [28] for orga-
nizing multimodule memory services. Fiol et al. [17] slightly extended its de7nition in
their study of the data alignment problem in SIMD processors. Nowadays, it is used
for both local area computer networks [23, 25] and large area communication networks
like SONET [13, 26].
A multi-loop network, denoted by L(N ; s1; : : : ; sl), can be represented by a digraph

on N nodes, 0;1; : : : ; N − 1 and lN links of l types: i→ i+ s1; i→ i+ s2; : : : ; i→ i+ sl
(modN ); i=0;1; : : : ; N −1. When l is speci7ed, we can also call it an l-loop network.
A symmetric 2l-loop network, L(N ; s1; : : : ; sl;−s1; : : : ;−sl) can be represented by a
graph on N vertices with edges of l types: (i; i + s1); (i; i + s2); : : : ; (i; i + sl) (modN )
for i=0;1; : : : ; N − 1. Such a multi-loop network will be called an undirected l-loop
network, and denoted by L(N ;±s1; : : : ;±sl).
The single-loop network (also called ring network) is mathematically trivial. The

double-loop network is the most important and most-studied multi-loop network, but it
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has been recently surveyed [21]. So this survey will focus on l-loop networks, directed
or undirected, for l¿3, and also on the undirected double-loop network (these have
been brieJy included in a survey by Bermond et al. [3]).

2. Multi-loop networks

We 7rst discuss connectivity. For r a divisor of N and S = {s1; : : : ; sl} de7ne M (r; S)
= {i: i≡ sj ∈ S (mod r) for 16i¡r}. van Dorne [14] proved

Theorem 2.1. The strong connectivity of L(N ; S) is minr|N{(N=r)|M (r; S)|: |M (r; S)|¡
r − 1}.

Divide the set {0;1; : : : ; N − 1} into r residue classes modulo r. Then M (r; S) rep-
resents the set of classes nodes in class 0 can go to via a sj-step for some sj ∈ S.
Therefore, M (r; S) is a cutset except when there is no other class besides class 0 and
those in M (r; S), which happens when |M (r; S)|= r − 1. Since each class has N=r
nodes, (N=r)|M (r; S)| is the size of the cutset.

Corollary 2.2. L(N ; s1; : : : ; sl) is strongly connected if and only if gcd(N; s1; : : : ; sl)= 1.

Proof. L(N ; S) is strongly connected if and only if |M (r; S)|¿0 for every r|N .

In the following, we say L(N ; S) does not exist if it is not strongly connected.
Hamidoune [18] proved that the link-connectivity of a strongly connected vertex-

transitive digraph is the vertex degree. Hence

Theorem 2.3. The arc-connectivity of an l-loop is l if and only if it is strongly con-
nected.

Since the l-loops cannot be distinguished by the link-connectivity, we introduce a
7ner notion of link-connectivity. A digraph is super-� if all its maximum link-cutsets
are trivial (links adjacent to a node). Hamidoune and Tindell [19] characterized super-�
vertex-transitive digraphs from which the super-� multi-loop can be characterized.
A minimum distance diagram (MDD) exhibits the shortest paths from node 0 to

node i for all i (since the multi-loop network is vertex-transitive, there is no loss
of generality in using node 0 as the source). Wong and Coppersmith gave a simple
algorithm to construct the MDD. The Rl space is 7rst divided into unit l-dimensional
hypercubes. The MDD is constructed by labeling a connected set of N hypercubes by
the set of residues (modN ). The labeling is done step-wise. Let l(x1; : : : ; xl) denote the
label assigned to the cube with coordinate (x1; : : : ; xl). At step 0, set l(0; : : : ; 0)=0, i.e.,
the origin has label 0. At step r we label cubes distance r away from the origin and
set l(x1; : : : ; xl)≡

∑l
i=1 xisi (modN ). The order of labeling follows the lexicographical

order of (xl; xl−1; : : : ; x1), small 7rst. For example for l=3 and r=2 the order is
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Fig. 1. Constructing the MDD for L(13; 1; 5).

(2; 0; 0); (1; 1; 0); (0; 2; 0); (1; 0; 1); (0; 1; 1); (0; 0; 2). The order is important since if two
hypercubes have the same label, only the 7rst one is labeled. Labeling stops when
every label has appeared. Fig. 1 illustrates this algorithm for L(13; 1; 5).

Hsu and Jia [20] extended a result of Wong and Coppersmith from l=2 to
general l.

Theorem 2.4. If (x1; : : : ; xl) is not in the MDD; then nor is (y1; : : : ; yl) where yi¿xi
for 16i6l. Furthermore; there exists a unique (x1; : : : ; xl) not in the MDD such that
the l hypercubes (x1−1; x2; : : : ; xl); (x1; x2−1; x3; : : : ; xl); : : : ; (x1; : : : ; xl−1; xl−1) are all
in the MDD; and

∑l
i=1 xisi ≡ 0 (modN ):

Suppose that Rd is divided into unit hypercubes and a shape is a connected set of
hypercubes. A shape is said to tessellate Rd if any number of it can be connected
together with no internal gaps (rotation not allowed). Recently, Chen et al. [9] gave a
suLcient condition for a shape to tessellate. The following result follows as a special
case.

Theorem 2.5. Every MDD tessellates Rd.

Wong and Coppersmith gave lower bounds and upper bounds for the diameter D
and the mean distance of a multi-loop. The lower bounds are obtained by a packing
argument, namely, for a given diameter, the number of nodes is at most the number
of hypercubes within distance D from the origin. Since a maximum packing yields(
l+r−1
l−1

)
hypercubes whose distance to the origin is exactly r;

N 6
D∑
r=0

(
l+ r − 1

l− 1

)
=

(
l+ D

l

)
6 [D + (l+ 1)=2]l=l!:

On the other hand let M denote the mean distance. Then

NM ¿
D−1∑
r=0

r

(
l+ r − 1

l− 1

)
=

l(D − 1)
l+ 1

(
l+ D − 1

l

)

¿
l

(l+ 1)!

[
(l!D)1=l − l+ 3

2

]l+1

:
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Thus we have

Theorem 2.6. D(N ; s1; : : : ; sl)¿(l!N )1=l − (l+ 1)=2 ∼ (l!N )1=l.

M (N ; s1; : : : ; sl)¿
l

(l+ 1)!N

[
(l!N )1=l − l+ 3

2

]l+1

∼ l
l+ 1

D(N ; s1; : : : ; sl):

Wong and Coppersmith argued the upper bounds by giving a construction of an
l-loop. Consider L(ul; 1; u; : : : ; ul−1). It is easily seen that its MDD is a u× u× · · ·× u
hypercube, hence

Theorem 2.7. D(ul; 1; u; : : : ; ul−1)= l(u− 1) ∼ lN 1=l;

M (ul; 1; u; : : : ; ul−1) = l(u− 1)=2:

It should be noted that this upper bound is derived only for a special form of N . To
apply it to all N; we say, if (u − 1)l¡N6ul; then its diameter is upper bounded by
l(u−1). Actually, we can obtain better bounds if there is some gap between N and ul.
Clearly, if N¿ul − 1; then we can remove node ul − 1 (which lies opposite node 0 in
the hypercube MDD) to reduce the diameter by 1. To reduce the diameter by 2; one
cannot simply further remove the l nodes surrounding node ul − 1 since these nodes
(ul− 1)− 1; (ul− 1)− u; : : : ; (ul− 1)− ul−1 are not the l consecutive nodes ul− l− 1;
ul − l; : : : ; ul − 2. The following result shows a way of doing it.

Theorem 2.8. D(ul − 2l; 1; u; : : : ; ul−2; ul−1 − 1)= l(u− 1)− 2.

Proof. We label the xl=0 hyperplane according to L(ul−1; 1; u; : : : ; ul−2) except re-
moving node ul−1 − 1. Each of the xl= k; 16k6l− 2; hyperplane is labeled exactly
like the xl=0 hyperplane except with the set of nodes {k(ul−1 − 1); k(ul−1 − 1) +
1; : : : ; k(ul−1 − 1) + ul−1 − 2}. The xl= l − 1 hyperplane is labeled similarly except
removing nodes ul − 2l; ul − 2l+ l; : : : ; ul − 1.

Example. D(21; 1; 3; 8)=4

x3 = 0 plane x3 = 1 plane x3 = 2 plane
6 7 14 15
3 4 5 11 12 13 19 20
0 1 2 8 9 10 16 17 18

Another way of generalization is to construct a hyper-rectangle with side lengths
u1; u2; : : : ; ul. It is easily veri7ed that

N =
l∏

i=1
ui; s1 = 1; sj =

j−1∏
i=1

ui for 26 j 6 l:

Theorem 2.9. D(
∏l

i=1 ui; 1; u1; u1u2; : : : ;
∏l−1

i=1 ui) =
∑l

i=1 (ui − 1).
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Fig. 2. A hyper-L shape.

For example, for N =28; Theorem 2.7 selects u=3 and obtains a bound of 6, while
Theorem 2.9 selects u1 = 2; u2 = u3 = 3 and obtains a smaller bound of 5.

3. Triple-loop networks

For l=3; the lower bound of diameter from Theorem 2.6 is D¿(6N )1=3. Note
that the above bound is obtained by packing a tetrahedron of cubes (x1; x2; x3) sat-
isfying x1¿0; x2¿0; x3¿0 and x1 + x2 + x36D. But the cubes on the surface
x1+x2+x3 =D violates Theorem 2.1 since it neighbors many hypercubes (x1; x2; x3) with
(x1 − 1; x2; x3); (x1; x2 − 1; x3) and (x1; x2; x3 − 1) all in the tetrahedron. By using The-
orem 2.1 to tighten the packing, Hsu and Jia were able to obtain a better lower bound
of D.

Theorem 3.1. D¿[(14− 3
√
3)N ]1=3 − 3.

Hsu and Jia also gave an explicit construction of triple-loops with parameters a=1;
b=3D− 8r + 5; c= rb+D− 3r + 2 and N = rc+ 2D− 6r + 3; where r= D=4�; and
D is the diameter, which results in

Theorem 3.2. D6(16N )1=3.

While the MDD of a triple-loop may not necessarily produce a regular shape, Aguilo
et al. [1] took the approach of bypassing the triple-loop and going directly to the
following highly regular hyper-L shape.
The hyper-L shape is symmetric with respect to the three dimensions and has three

parameters l; m and n. It can be described as the l3-cube with several parts removed:
an (l− m− n)3-cube at one corner and an (l− m− n)× m× n hyper-rectangle from
each of the three remaining hyper-rectangle pieces (see Fig. 2). We will denote such a
hyper-L shape by HL(l; m; n). It is easily veri7ed that the hyper-L shape tessellates R3.
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Assuming the existence of a triple-loop yielding HL(l; m; n), then node 0 lies at the
origin but also at (l − m − n; l − m − n; l − m − n) by Theorem 2.1. By studying the
distribution of nodes 0; we obtain the system of equations:

 l −m −n
−n l −m
−m −n l




 a
b
c


 ≡


 0

0
0


 (modN );

or 
 l −m −n

−n l −m
−m −n l




 a
b
c


 =


 �
�
�


N; for some integers �; �; � not all 0: (1)

It is easily veri7ed that

N = l3 − m3 − n3 − 3lmn; and

D = 3l− 2n− m− 3 (assuming m¿ n):

By setting l=3w, m= n=w, then N =16w3 and D=6w−3=6(N=16)1=13−3. Aguilo
et al. thus claimed (27N=2)1=3 − 3 to be an upper bound of D, which yields a bet-
ter bound than Theorem 3.2. However, the validity of the new bound is based on
the existence of a triple-loop yielding a hyper-L shape with l=3w, m= n=w. Chen
et al. [8] provide a link between desirable hyper-L shapes and corresponding triple-
loops by proving

Theorem 3.3. A necessary and su8cient condition for L(N ; a; b; c) whose MDD is
HL(l; m; n) to exist is gcd(l+ m; l+ n; m− n)= gcd(l− m− n; l2 − mn)= 1.

Corollary 3.4. A necessary conditions for L(N ; a; b; c) to exist is m �= n.

Proof. Suppose m= n. Then

gcd(l+ m; l+ n; n− n) = l+ m ¿ 1:

By Corollaries 3:4 and 2:2, we know that L(N ; a; b; c) for l=3w, m= n=w does
not exist. Nevertheless, Aguilo et al. gave three families of triple-loops:
(i) L(16x3 + 3x; 4x2 + x + 1; 4x2 − x + 1; 8x2 + 1) with l=3x, m= x + 1, n= x − 1

and D=6x − 2,
(ii) L(16x3 + 12x2 + 3x; 4x2 + 4x + 1; 4x2 + 3x + 1; 8x2 + 5x + 1) with l=3x + 1,

m= x + 1, n= x and D=6x − 1,
(iii) L(16x3 +36x2 +27x+7; 4x2 +5x+1; 4x2 +4x+1; 8x2 +11x+4) with l=3x+2,

m= x + 1 and D=6x + 2,
whose diameters approach the (27N=2)1=3 bound. It is easily veri7ed that these families
satisfy the conditions of Theorem 3.3.
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4. Undirected multi-loop networks

Most of the results in this section parallel those in Section 2:1 since an undirected
l-loop can be treated as a directed 2l-loop. Therefore by setting S = {± s1; : : : ;± sl},
Theorem 2.1 can be translated into

Theorem 4.1. The connectivity of L(N ;± s1; : : : ;± sl) is minr|N {(N=r)|M (r; S)| :
|M (r; S)|¡r − 1}.

Corollary 4.2. L(N ;± s1; : : : ;± sl) is connected if and only if gcd(N; s1; : : : ; sl)= 1:

The edge-connectivity of an undirected multi-loop easily follows from a result of
Mader [24] on connected vertex-transitive graphs.

Theorem 4.3. The edge-connectivity of an undirected l-loop is 2l if and only if it is
connected.

Boesch and Tindell [6] characterized super-� undirected l-loops.

Theorem 4.4. The only connected undirected l-loops which are not super-� are L(N ; s)
for all s and L(2l; 2; 4; 6; : : : ; l− 1; l) for l odd.

As in the directed case, MDD can be constructed by 7lling in the nodes in the order
of their distances to node 0 at the origin; and for nodes with the same distance r
in the same hyperplane (x1; x2; : : : ; xj), 16j6l, in the order of xj =0; 1; : : : ; r. Fig. 3
illustrates this construction for L(14;± 3;± 4).
Only the 7rst part of Theorem 2.4 holds for the undirected case. Hence the MDD

has less structure as a shape.

Theorem 4.5. If (x1; : : : ; xl) is not in the MDD; then nor is (y1; : : : ; yl); where yixi¿0;
|yi|¿|xi|; 16i6l.

Wong and Coppersmith also gave a packing upper bound. The number of hyper-
cubes r-distance away from the origin with exactly i coordinates equal to zero is 1 for

Fig. 3. Constructing the MDD for L(14;± 3;± 4).
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r=0 and(
n− 1

l− i − 1

)
for r ¿ 1;

and there are ( l
i
) ways of selecting the i coordinates. By noting that each nonzero xi

can be set either positive or negative, we have

N 6 1 +
D∑
r=1

l−1∑
i=0

(
l
i

)(
r − 1

l− i − 1

)
2l−i = 1 +

l−1∑
i=0

(
l
i

)(
D

l− i

)
2l−i

=
l∑

i=0

(
l
i

)(
D

l− i

)
2l−i 6 2l

l∑
i=0

(
l
i

)(
D

l− i

)

=
(
l+ D
l

)
2l 6 (2D + l+ 1)l=l!: (1)

On the other hand

NM ¿
D−1∑
r=1

r
l−1∑
i=0

(
l
i

)(
r − l

l− i − 1

)
2l−i

=
l−1∑
i=0

r
(
r − 1
l− 1

)
2l

=
l

l+ 1
D
(
D − 1
l

)
2l

¿ l2l
(

D
l+ 1

)
¿

l
2(l+ 1)!

[(l!N )1=l − (3l+ 1)]l+1: (2)

Thus we have

Theorem 4.6. D(N ;± s1; : : : ;± sl)¿ 1
2 (l!N )1=l − (2l+ 1)=2∼ 1

2 (l!N )1=l;

M (N ;±s1; : : : ;±sl)¿ l
2(l+ 1)!N

[(l!N )1=l − (3l+ 1)]l+1 ∼ l
2(l+ 1)

(l!N )1=l:

Wong and Coppersmith again used the l-dimensional hypercube with side u (see
Theorem 2.5) to give upper bounds. By placing the center of the hypercube at the
origin, we obtain

Theorem 4.7.

D(ul;±1;±u; : : : ;±ul−1) = l(u− 1)=2 ∼ (l=2)N 1=l:

M (ul;±1;±u; : : : ;±ul−1) = l(u2 − 1)=4u:
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ErdOos and Hsu [15] gave a better bound than Theorem 4.7 provided some condition
(not easily checked or met) is satis7ed.

Theorem 4.8. Suppose that there exists an optimal L(N ;± 1;± s′2; : : : ;± s′l−1); l¿4;
i.e.; its diameter is the lower bound [(l − 1)!N ]1=(l−1) − l=2. Then there exists an
L(N ;± 1;± s2; : : : ;± sl) whose diameter is upper bounded by minc {[(l− 1)!c]1=(l−1) +
1=c}N 1=l − l=2− 1.

These values serve as upper bounds for (u− 1)l¡N6ul.
Since the MDD of an undirected multi-loop has irregular shape, Zerovink and Pisan-

ski [30] brought in some structure by introducing a diPerent kind of diagram which we
will call base diagram (BD). For a given l-loop, let Z denote the set of coordinates of
the 0-nodes. A 0-vector is a vector from a 0-node to another 0-node. Let b1; : : : ; bl be
a set of l independent 0-vectors. Then {b1; : : : ; bl} is a base of Z . A BD [b1; : : : ; bl)
is de7ned as

[b1; : : : ; bl) = {x: x = �1b1 + · · ·+ �lbl; where 06 �i ¡ 1}:

Note that [b1; : : : ; bl) contains half of the boundary of the parallelepiped. Similarly, we
can de7ne (b1; : : : ; bl]; [b1; : : : ; bl] and (b1; : : : ; bl) by specifying whether each of the
inequalities 06�i and �i61 is strict (with a diPerent ePect on the boundary). They
proved

Theorem 4.9. [b1; : : : ; bl) contains every residue modulo N exactly once.

Chen and Jia [11] gave a diPerent construction to obtain a better bound. For l¿3,
n= (D − l+ 3)=l� and choose si =(4n)i−1 for 16i6l. They proved that for

N 6 2n
l−1∑
i=0

(4n)i =
(
1
2

)(
4
l

)l

Dl +O(Dl−1);

every residue x (modN ) can be represented as

x =
l∑

i=1
xisi; with −2n ¡ xi 6 2n for 16 i 6 l− 1 and 06 xl 6 2n;

furthermore,

l∑
i=1

|xi|6 D:

Thus for such N ,

Theorem 4.10. D6(l=4)(2N )1=l for l¿3:
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5. Undirected double-loop networks

The connectivity of undirected double-loops can be determined without going through
the computation of Theorem 4.1.

Theorem 5.1. L(N ;±s1;±s2) is 4-connected for N¿6.

Proof. Watkins [27] proved that a connected vertex-transitive graph is maximally con-
nected if it does not contain K4. It is easily veri7ed that L(N ;±s1;±s2) does not
contain K4 for N¿6.

Set l=2 in Eq. (1), we have

N 6
2∑
i=0

(
2
i

)(
D

2− i

)
22−i = 2D(D − 1) + 4D + 1 = 2D2 + 2D + 1; or

D¿
⌈−1 +

√
2N − 1
2

⌉
, D∗:

Boesch and Wong [7] proved that this lower bound of D can always be achieved by
choosing s1 =D∗ and s2 =D∗ + 1.

Theorem 5.2. L(N ;±D∗;±(D∗ + 1)) achieves the minimum diameter D∗ for all N .

Bermond et al. [5] tightened the bound Eq. (2) of mean distance (their de7nition of
mean distance is not counting self-distance) by taking account of the un7lled hyper-
cubes in packing.

(N − 1)M ¿
D−1∑
r=1

r
l−1∑
i=0

(
l
i

)(
r − 1

l− i − 1

)
2l−i + D(N − 2D2 + 2D − 1): (3)

For l=2; (3) becomes

(N − 1)M ¿ (N − 1)D − 2D
3
(D2 − 1); or

M ¿ D
[
1− 2(D2 − 1)

3(N − 1)

]
, M∗ ∼

√
2N=3:

They proved.

Theorem 5.3. L(N ;±D∗;±(D∗ + 1)) achieves M∗ for 2(D∗)2 − 16N62(D∗)2 +
2(D∗) +1; L(N ;±(D∗−1);±D∗) achieves M∗ for 2(D∗)2−2(D∗)+16N62(D∗)2+1.

We observe

Corollary 5.4. The undirected double-loops in Theorem 5:3 achieve both minimum
diameter and minimum average distance in their respective range. Furthermore; since
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Fig. 4. The FQabrega and Zaragoza’s tree.

2(D∗−1)2 +2(D∗−1)+1=2(D∗)2−2D∗+1; for every N; there exists an undirected
double-loop achieving both minimum diameter and minimum mean distance.

Bermond et al. also proved

Theorem 5.5. The diameter of L(N ;±D∗;±(D∗ + 1)) after one fault (node or edge)
is at most D∗ + 1.

Theorem 4.3 says that an undirected double-loop has edge-connectivity 4. Bermond
et al. [4] obtained a stronger result.

Theorem 5.6. An undirected double-loop has two link-disjoint hamiltonian cycles.

In view of Corollary 5.4, Theorems 5.5 and 5.6, it seems that we do have an optimal
undirected double-loop in either L(N ;±D∗;±(D∗ + 1)) or L(N ;±(D∗ − 1);±D∗) for
all N . Therefore we fail to understand the existence of a large body of literature
studying the diameters of L(N ;±1;±s) which are often suboptimal.
For a given routing $ and a set F of faulty elements (nodes or edges), a surviving

route graph is a graph whose nodes are the nodes of the undirected double-loop and
an edge [i; j] exists if and only if $(i; j) contains no element of F . So an edge in a
surviving route graph represents a surviving route. The diameter of a surviving route
graph, representing the maximum number of surviving routes a path has to bypass
through, is a common measure for fault tolerance.
FQabrega and ZaragozQa [16] considered the surviving route graphs for optimal undi-

rected double-loops, i.e., (s1; s2) is either (D;D + 1) or (D − 1; D). They de7ned a
routing $ by the rule: for any node i draw a shortest spanning tree ti in the MDD
centered at i, and route (i; j) coincides with the path on ti. The ti chosen by them
takes a-steps before b-steps if j is in the upper half (including the horizontal line) and
b-steps 7rst if otherwise (see Fig. 4).
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Clearly, if F consists of nodes in the boundary of ti and edges not in ti, then all
nodes not in G are adjacent to i in the surviving route graph. By symmetry, a node j
can be put at any place of an MDD, including the boundary. This makes it clear that
for any single node-fault, the surviving graph has diameter 2. FQabrega and Zaragoza
in fact proved.

Theorem 5.7. Suppose N =2D2 + 2D + 1. Then the diameter of the surviving route
graph is 2 for any F consisting of two nodes; the diameter is 3 if F consists of three
nodes.

There are not many results for undirected double-loops with general (s1; s2).
Zerovink and Pisanski were able to obtain results beyond Theorem 4.9 for l=2.

They proved the following two results.

Theorem 5.8. Suppose b1 and b2 are the two shortest (in L1-metric) independent
0-vectors; then for every node in [b1; b2); the closest 0-node is always one in the four
corners of [b1; b2]:

Clearly, the center of [b1; b2] must be the point farthest away from the closest corner,
the diameter of L(N ; ± s1; ± s2) can be obtained by computing only the distances of
the four nodes surrounding the center to their respective closest corners. Let d1 and
d2 be the two diagonals of [b1; b2]: Then

‖d1‖ = min{‖b1 + b2‖; ‖b1 − b2‖};
‖d2‖ = max{‖b1 + b2‖; ‖b1 − b2‖};

Theorem 5.9.

D(N ;± s1;± s2) =




‖d1‖=2� − 1 if ‖d1‖ = ‖d2‖ ¿ max{‖b1‖; ‖b2‖} and
both ‖b1‖ and ‖b2‖ are odd;

‖d1‖=2� otherwise:

Corollary 5.10. Any two shortest 0-vectors {b1; b2} yield the same diameters.

6. Chordal ring networks

Arden and Lee [2] 7rst proposed the chordal ring network on an even number N
of nodes with two types of edges:

ring-edges: (i; i + 1) for i = 0; 1; : : : ; N − 1; and

chords: (i; i + h); where h is odd; for i = 1; 3; 5; : : : ; N − 1 (i odd):

Note that there are only N=2 chords, where a loop typically has N edges. Therefore a
chordal ring can be viewed as an undirected one-and-half loop.
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Arden and Lee considered an optimal mixture of the following three kinds of moves:
(i) at an even node: a 1-step followed by an h-step,
(ii) at an even node: a (−1)-step followed by an h-step,
(iii) 1-step or (−1)-step.
For a given diameter D, they found the maximum N using the above three moves and
mistakenly claimed it to be an upper bound of N for the chordal ring. Yebra et al.
[29] considered two additional kinds of moves:
(iv) at an odd node: a 1-step followed by a (−h)-step,
(v) at an odd node: a (−1)-step followed by a (−h)-step,
and obtained better results. They proved

Theorem 6.1. (i) N6(3D2 + 1)=2 for D odd; achievable by setting

h = 3k:

(ii) N6(3=2)D2 − D for D even; achievable by setting h=3k + 1:

Corollary 6.2. D∼ (2N=3)1=2:

For comparison, the diameter of an optimal undirected double-loop is about (1=
√
2)

N 1=2 ∼=(0:7)N 1=2¡(0:82)N 1=2 ∼=(2N=3)1=2.
Hwang and Wright [22] considered directed chordal ring network which replaces

ring-edges with links, namely, it has two types of links:

ring-link : i → i + 1 for i = 0; 1; : : : ; N − 1 (N even); and

chords : i → i + h for odd i:

Similarly, a directed chordal ring can be viewed as a one-and-half loop.
Hwang and Wright observed that by combining nodes i and ith into one super-

node, then a directed chordal ring with parameters (N; h) is reduced to a double-loop
L(N=2; 1; (h+1)=2). They used this equivalence to compute the reliability of a directed
chordal ring when each node, each ring-link and each chord fails with the probabilities
p;p1; ph, respectively. Chen et al. [10] observed that the diameter of a directed chordal
ring can also be computed by using the O(logN ) algorithm developed by Cheng and
Hwang [12] for the double-loop. They further extended the directed chordal ring to
allow the replacement of i→ i + 1 link by i→ i + s for some odd s.

Chen et al. also proposed the mixed chordal ring, denoted by M (N ; s; h), with

ring-link: i → i + s for i = 0; 1; : : : ; N − 1 (N even); and
chords: (i;±h) for odd i:

By treating an edge (i; j) as the set of two links i→ j and j→ i, then a mixed chordal
ring is a regular digraph with degree 2, hence comparable in hardware with a double-
loop. Chen et al. gave the surprising result that a mixed chordal ring can achieve
shorter diameter than a double-loop.
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Theorem 6.3. D(N ; s; h)6
√
2N + 3; where s and h are computed by the following

rules: set N ′ to be the smallest even integer ¿�√N=2�: Then s=N ′+1 and h=N ′−1:

They also proved

Theorem 6.4. M (N ; s; h) is hamiltonian if and only if L(N=2; (s − h)=2; (s + h)=2)
does. Furthermore; it has two link disjoint hamiltonian circuits if and only if gcd(N;
s− h)= gcd(N; s+ h)= 2:
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