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Abstract

Bermond, Comellas and Hsu gave an excellent survey on multi-loop networks, directed and
undirected, in 1995, but only one and half page is on loop networks other than the directed
double-loop. Hwang recently gave a substantial survey, but only on the directed double-loop.
This survey is a companion of the latter survey by focusing on the other loop networks.
(© 2002 Published by Elsevier Science B.V.

1. Introduction

Multi-loop networks were first proposed by Wong and Coppersmith [28] for orga-
nizing multimodule memory services. Fiol et al. [17] slightly extended its definition in
their study of the data alignment problem in SIMD processors. Nowadays, it is used
for both local area computer networks [23, 25] and large area communication networks
like SONET [13,26].

A multi-loop network, denoted by L(N;sy,...,s;), can be represented by a digraph
on N nodes, 0,1,...,N — 1 and IN links of [ types: i i+ s1,i =i+ $y,...,i =>i+s
(modN), i=0,1,...,N —1. When [ is specified, we can also call it an /-loop network.
A symmetric 2/-loop network, L(N;sy,...,s;,—s1,...,—S;) can be represented by a
graph on N vertices with edges of [ types: (i,i + s1),(i,i +52),...,(i,i + 5;)(mod N)
for i=0,1,...,N — 1. Such a multi-loop network will be called an undirected I-loop
network, and denoted by L(N; £sy,...,%s;).

The single-loop network (also called ring network) is mathematically trivial. The
double-loop network is the most important and most-studied multi-loop network, but it
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has been recently surveyed [21]. So this survey will focus on /-loop networks, directed
or undirected, for />3, and also on the undirected double-loop network (these have
been briefly included in a survey by Bermond et al. [3]).

2. Multi-loop networks

We first discuss connectivity. For 7 a divisor of N and S ={s,,...,s;} define M(r,S)
={i: i=s;€S8 (modr) for 1 <i<r}. van Dorne [14] proved

Theorem 2.1. The strong connectivity of L(N;S) is min, |y {(N/r)|M(r,S)|: |M(r,S)|<
r—1}

Divide the set {0,1,...,N — 1} into r residue classes modulo . Then M(r,S) rep-
resents the set of classes nodes in class 0 can go to via a s;-step for some s; € S.
Therefore, M(7,S) is a cutset except when there is no other class besides class 0 and
those in M(r,S), which happens when |M(r,S)|=7 — 1. Since each class has N/r
nodes, (N/r)|M(r,S)| is the size of the cutset.

Corollary 2.2. L(N;si,...,s;) is strongly connected if and only if gcd(N,sy,...,s;)=1.
Proof. L(N;S) is strongly connected if and only if |M(r,S)|>0 for every r|N. [

In the following, we say L(NV;S) does not exist if it is not strongly connected.
Hamidoune [18] proved that the link-connectivity of a strongly connected vertex-
transitive digraph is the vertex degree. Hence

Theorem 2.3. The arc-connectivity of an I-loop is | if and only if it is strongly con-
nected.

Since the /-loops cannot be distinguished by the link-connectivity, we introduce a
finer notion of link-connectivity. A digraph is super-Z if all its maximum link-cutsets
are trivial (links adjacent to a node). Hamidoune and Tindell [19] characterized super-4
vertex-transitive digraphs from which the super-A multi-loop can be characterized.

A minimum distance diagram (MDD) exhibits the shortest paths from node 0 to
node i for all i (since the multi-loop network is vertex-transitive, there is no loss
of generality in using node O as the source). Wong and Coppersmith gave a simple
algorithm to construct the MDD. The R’ space is first divided into unit /-dimensional
hypercubes. The MDD is constructed by labeling a connected set of N hypercubes by
the set of residues (mod N). The labeling is done step-wise. Let /(xy,...,x;) denote the
label assigned to the cube with coordinate (x,...,x;). At step 0, set /(0,...,0)=0, i.e.,
the origin has label 0. At step » we label cubes distance » away from the origin and
set [(x1,...,x;)= Zfilxisi (mod N). The order of labeling follows the lexicographical
order of (x;,x;_1,...,x1), small first. For example for /=3 and r=2 the order is
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10 10 11 101112 101112
5 56 567 5678 56789
0 01 012 0123 01234 01234

Fig. 1. Constructing the MDD for L(13;1,5).

(2,0,0),(1,1,0),(0,2,0),(1,0,1),(0,1,1),(0,0,2). The order is important since if two
hypercubes have the same label, only the first one is labeled. Labeling stops when
every label has appeared. Fig. 1 illustrates this algorithm for L(13;1,5).

Hsu and Jia [20] extended a result of Wong and Coppersmith from /=2 to
general /.

Theorem 2.4. If (xi,...,x;) is not in the MDD, then nor is (y\,...,y1) where y;=x;
for 1<i<l. Furthermore, there exists a unique (xi,...,x;) not in the MDD such that
the | hypercubes (x; — 1,xp,...,x1), (x1,x2 — 1,x3,...,x7 ), .., (X1, .., x;—1,x1 — 1) are all
in the MDD, and Zf:] x;5; =0(mod N).

Suppose that R? is divided into unit hypercubes and a shape is a connected set of
hypercubes. A shape is said to tessellate R? if any number of it can be connected
together with no internal gaps (rotation not allowed). Recently, Chen et al. [9] gave a
sufficient condition for a shape to tessellate. The following result follows as a special
case.

Theorem 2.5. Every MDD tessellates R?.

Wong and Coppersmith gave lower bounds and upper bounds for the diameter D
and the mean distance of a multi-loop. The lower bounds are obtained by a packing
argument, namely, for a given diameter, the number of nodes is at most the number
of hypercubes within distance D from the origin. Since a maximum packing yields

(1 +r_') hypercubes whose distance to the origin is exactly ,

-1

p [I+r—1 l+D

N<z< - >:< 1 ><[0+(1+1)/2]1/1!.
r=0 —

On the other hand let M denote the mean distance. Then

D—1 I+r—1 _ I+D—1
NM> Zr :M
r=0 [—1 I+1 l

i 1+31"
> Dy 2
(I +1)! {(ZD) 2 }
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Thus we have

Theorem 2.6. D(N;s1,...,s5;)=(IIN)/' — (14 1)/2 ~ (I'N).

1+1
1+3 I
;] ~ ——D(N;s1,...,s1).

M(N;si,..., =
(N;s1,...,581) 1

T [ -

Wong and Coppersmith argued the upper bounds by giving a construction of an
I-loop. Consider L(u'; 1,u,...,u'~"). It is easily seen that its MDD is a u x u X --- X u
hypercube, hence

Theorem 2.7. D(u'; 1,u,...,u'~"")=1(u—1) ~ IN';
M@ L. u' ™" = I(u — 1))2.

It should be noted that this upper bound is derived only for a special form of N. To
apply it to all N, we say, if (u — 1) <N <u’, then its diameter is upper bounded by
I(u—1). Actually, we can obtain better bounds if there is some gap between N and u’.
Clearly, if N >u' — 1, then we can remove node u’ — 1 (which lies opposite node 0 in
the hypercube MDD) to reduce the diameter by 1. To reduce the diameter by 2, one
cannot simply further remove the / nodes surrounding node u/ — 1 since these nodes
' —1)—1,(u' =1)—u,...,(u' —1)—u'~" are not the / consecutive nodes u' — [ —1,
u! —1,...,u’ —2. The following result shows a way of doing it.

Theorem 2.8. D(u! —20; 1, u,...,u' 2 u'"' = 1)=1(u—1)—2.

Proof. We label the x/ =0 hyperplane according to L(u'~';1,u,...,u'~2) except re-
moving node u'~! — 1. Each of the x/ =k, 1<k <[ — 2, hyperplane is labeled exactly
like the x’ =0 hyperplane except with the set of nodes {k(u'~! — 1),k(u'~! — 1) +
L...,k(u'=' — 1)+ u'~' — 2}. The x’ =1 — 1 hyperplane is labeled similarly except
removing nodes ul =20u —21+1,...,u' —1. O

Example. D(21;1,3,8)=4

x3 =0 plane x3 =1 plane x3 =2 plane

6 7 14 15
3 45 11 12 13 19 20
01 2 & 9 10 16 17 18

Another way of generalization is to construct a hyper-rectangle with side lengths
uy,uy, ..., u;. It is easily verified that

! j—1
N=1lw, si=1, s;=][w for2<;<I
i=1 i=1

Theorem 2.9. D(]_[f:1 u;; 1,u1,u]u2,...,]_[f:_11 u;) = Ele (u; — 1).
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Fig. 2. A hyper-L shape.

For example, for N =28, Theorem 2.7 selects u =3 and obtains a bound of 6, while
Theorem 2.9 selects u; =2, u, =u3 =3 and obtains a smaller bound of 5.

3. Triple-loop networks

For /=3, the lower bound of diameter from Theorem 2.6 is D>(6N)"3. Note
that the above bound is obtained by packing a tetrahedron of cubes (x,x;,x3) sat-
isfying x; =0, x>0, x3=0 and x; + x, + x3<D. But the cubes on the surface
X1+x2+x3 =D violates Theorem 2.1 since it neighbors many hypercubes (x;,x;,x3) with
(x1 — Lxa,x3), (x1,% — 1,x3) and (x},x3,x3 — 1) all in the tetrahedron. By using The-
orem 2.1 to tighten the packing, Hsu and Jia were able to obtain a better lower bound
of D.

Theorem 3.1. D>[(14 — 3/3)N]'? — 3.

Hsu and Jia also gave an explicit construction of triple-loops with parameters a =1,
b=3D—-8r+5,¢c=rb+D—3r+2 and N =rc+ 2D — 6r + 3, where r = |D/4], and
D is the diameter, which results in

Theorem 3.2. D<(16N)"3.

While the MDD of a triple-loop may not necessarily produce a regular shape, Aguilo
et al. [1] took the approach of bypassing the triple-loop and going directly to the
following highly regular hyper-L shape.

The hyper-L shape is symmetric with respect to the three dimensions and has three
parameters /,m and n. It can be described as the /3-cube with several parts removed:
an (I — m — n)3-cube at one corner and an (I — m — n) x m x n hyper-rectangle from
each of the three remaining hyper-rectangle pieces (see Fig. 2). We will denote such a
hyper-L shape by HL(l,m,n). It is easily verified that the hyper-L shape tessellates R>.
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Assuming the existence of a triple-loop yielding HL(/,m,n), then node O lies at the
origin but also at (/ —m —n,l —m — n,Il — m — n) by Theorem 2.1. By studying the
distribution of nodes 0, we obtain the system of equations:

I —m —n a 0
-n I —-m b]l=10] (modN),
-m —n 1 c 0
or
I —m -—n a o
- 1 —-m b|=|p|N, for some integers o, f3,y not all 0. (1)
—m —n / c Yy

It is easily verified that
N=0_P—m®—n’—3Imn, and
D=3]1—2n—m—3 (assuming m = n).

By setting / = 3w, m=n=w, then N = 16w? and D = 6w —3 = 6(N/16)"/> —3. Aguilo
et al. thus claimed (27N/2)"® — 3 to be an upper bound of D, which yields a bet-
ter bound than Theorem 3.2. However, the validity of the new bound is based on
the existence of a triple-loop yielding a hyper-L shape with /=3w, m=n=w. Chen
et al. [8] provide a link between desirable hyper-L shapes and corresponding triple-
loops by proving

Theorem 3.3. 4 necessary and sufficient condition for L(N;a,b,c) whose MDD is
HL(I,m,n) to exist is gcd(I +m,l +n,m—n)=ged(l —m —n, 1> —mn)=1.

Corollary 3.4. A necessary conditions for L(N;a,b,c) to exist is m+#n.

Proof. Suppose m =n. Then
ged(l +m,l+nn—n)y=I014+m > 1. 0

By Corollaries 3.4 and 2.2, we know that L(N;a,b,c) for I =3w, m=n=w does
not exist. Nevertheless, Aguilo et al. gave three families of triple-loops:
(i) L(16x3 4+ 3x;4x% +x + 1,4x2 —x 4+ 1,8x% + 1) with /=3x, m=x+1, n=x—1
and D=6x — 2,
(i) L(16x> 4+ 12x% + 3x;4x? + 4x + 1,4x> + 3x + 1,8x2 + 5x + 1) with /=3x + 1,
m=x-+1, n=x and D=6x — 1,
(iii) L(16x3 +36x% 4+ 27x +7;4x% 4+ 5x + 1,4x% +4x +1,8x% + 11x +4) with [ =3x+2,
m=x-+1and D=6x + 2,
whose diameters approach the (27N/2)"/3 bound. It is easily verified that these families
satisfy the conditions of Theorem 3.3.
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4. Undirected multi-loop networks

Most of the results in this section parallel those in Section 2.1 since an undirected
[-loop can be treated as a directed 2/-loop. Therefore by setting S ={=£s1,..., L5/},
Theorem 2.1 can be translated into

Theorem 4.1. The connectivity of L(N;=%s,...,+s) is min,y {(N/F)|M(r,S)]:
[M(r,S)|<r —1}.

Corollary 4.2. L(N;+tsy,...,%s;) is connected if and only if gcd(N,s1,...,5)=1.

The edge-connectivity of an undirected multi-loop easily follows from a result of
Mader [24] on connected vertex-transitive graphs.

Theorem 4.3. The edge-connectivity of an undirected I-loop is 21 if and only if it is
connected.

Boesch and Tindell [6] characterized super-A undirected /-loops.

Theorem 4.4. The only connected undirected [-loops which are not super-J. are L(N;s)
for all s and L(21;2,4,6,...,1 —1,1) for [ odd.

As in the directed case, MDD can be constructed by filling in the nodes in the order
of their distances to node 0 at the origin; and for nodes with the same distance r
in the same hyperplane (x1,x»,...,x;), 1<j</, in the order of x;=0,1,...,r. Fig. 3
illustrates this construction for L(14;+3,+4).

Only the first part of Theorem 2.4 holds for the undirected case. Hence the MDD
has less structure as a shape.

Theorem 4.5. If (xi,...,x;) is not in the MDD, then nor is (y1,...,y1), where y;x; >0,
il = el 1<i<L

Wong and Coppersmith also gave a packing upper bound. The number of hyper-
cubes r-distance away from the origin with exactly i coordinates equal to zero is 1 for

8
4 147
0 1103 @110 3 6
10 (7)10 13

©) (6)(9)

Fig. 3. Constructing the MDD for L(14;£3,+4).
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r=0 and

n—1
>
(lil) for r > 1,

and there are (f) ways of selecting the i coordinates. By noting that each nonzero x;

can be set either positive or negative, we have

S EE() (B
O O

:(“; )2’<(2D+l+1)’/1!. (1)

On the other hand

> 12! (lfl) > ﬁ[(zw)l/bou L, (2)

Thus we have

Theorem 4.6. D(N; +s1,...,+5)= (N — 21+ 1)/2~ L(1IN),

I
M(N;+sy,...,£s) = ———[(I!'N)/ = B3I+ )] ~ (IINHY!,

2(I+1)IN 20+ 1)

Wong and Coppersmith again used the /-dimensional hypercube with side u (see
Theorem 2.5) to give upper bounds. By placing the center of the hypercube at the
origin, we obtain
Theorem 4.7.

D@’ £, 4u,. .., +u' ") = l(u—1)/2 ~ ({/2)N'.
M@+, 4, +u' ™) = 1P — 1)/4u.
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Erdos and Hsu [15] gave a better bound than Theorem 4.7 provided some condition
(not easily checked or met) is satisfied.

Theorem 4.8. Suppose that there exists an optimal L(N;+1,£55,...,£5/_,), [=4,
ie., its diameter is the lower bound [(I — 1)IN]YU=D — [/2. Then there exists an
L(N; 4 1,%s5,...,£5)) whose diameter is upper bounded by min. {[(I —1)!c]"/!=D 4
VeINV— 12 — 1.

These values serve as upper bounds for (1 — 1)/ <N <u'.

Since the MDD of an undirected multi-loop has irregular shape, Zerovink and Pisan-
ski [30] brought in some structure by introducing a different kind of diagram which we
will call base diagram (BD). For a given [-loop, let Z denote the set of coordinates of
the 0-nodes. A 0-vector is a vector from a 0-node to another 0-node. Let by,...,b; be
a set of / independent 0-vectors. Then {by,...,b;} is a base of Z. A BD [by,...,b;)
is defined as

[b1,....,b)) ={x: x=o4b1 + -+ + oyb;, where 0 < o; < 1}.
Note that [by,...,b;) contains half of the boundary of the parallelepiped. Similarly, we
can define (by,...,b;], [b1,...,b;] and (by,...,b;) by specifying whether each of the
inequalities 0<¢; and o; <1 is strict (with a different effect on the boundary). They
proved

Theorem 4.9. [by,...,b;) contains every residue modulo N exactly once.

Chen and Jia [11] gave a different construction to obtain a better bound. For />3,
n=|(D — [+ 3)/l] and choose s;=(4n)~! for 1 <i< /. They proved that for

= 1 (4
N < 2nd (4n) = (2) <1> D'+ 0D,
i=0
every residue x (mod V) can be represented as
!
x=> xs;, with —2n<x; <2nforl <i<l—1 and 0 <x; <2n,
i=1
furthermore,

!
> x| < D.
=1

Thus for such N,

Theorem 4.10. D <(1//4)2N)"" for 1=3.
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5. Undirected double-loop networks

The connectivity of undirected double-loops can be determined without going through
the computation of Theorem 4.1.

Theorem 5.1. L(N; +sy,+sy) is 4-connected for N =6.

Proof. Watkins [27] proved that a connected vertex-transitive graph is maximally con-
nected if it does not contain Kj. It is easily verified that L(N;+ts;,+s;) does not
contain K4 for N >6. [l

Set /=2 in Eq. (1), we have

2 .
N < Z()(f) <2Di)22":2D(D—1)+4D+1:21)2+2D+1’ or

D> [—” VZZN—W s pr

Boesch and Wong [7] proved that this lower bound of D can always be achieved by
choosing s; =D* and s, =D* + 1.

Theorem 5.2. L(N;+D*,£(D* + 1)) achieves the minimum diameter D* for all N.

Bermond et al. [5] tightened the bound Eq. (2) of mean distance (their definition of
mean distance is not counting self-distance) by taking account of the unfilled hyper-
cubes in packing.

(N—l)M>Dfrl§(l>< r—1 )2’—1'+D(N—2D2+2D—1) 3)
/r:l i=0 ' I—i—1 '

1

For /=2, (3) becomes

(N—1)M > (N —1)D— ZTD(D2 —1), or

2D - 1] 4 o
M>D[1—3(N_l)} A M* ~ V2NJ3.

They proved.

Theorem 5.3. L(N;+D*,+(D* + 1)) achieves M* for 2(D*)*> — 1<N<2(D*)* +
2(D*) +1; L(N;+(D*—1),£D*) achieves M* for 2(D*)*—2(D*)+1<N <2(D*)*+1.

We observe

Corollary 5.4. The undirected double-loops in Theorem 5.3 achieve both minimum
diameter and minimum average distance in their respective range. Furthermore, since
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Fig. 4. The Fabrega and Zaragoza’s tree.

2(D* — 12 +2(D* —1)+1=2(D*)> —2D* +1, for every N, there exists an undirected
double-loop achieving both minimum diameter and minimum mean distance.

Bermond et al. also proved

Theorem 5.5. The diameter of L(N;+D*,£(D* + 1)) after one fault (node or edge)
is at most D* + 1.

Theorem 4.3 says that an undirected double-loop has edge-connectivity 4. Bermond
et al. [4] obtained a stronger result.

Theorem 5.6. An undirected double-loop has two link-disjoint hamiltonian cycles.

In view of Corollary 5.4, Theorems 5.5 and 5.6, it seems that we do have an optimal
undirected double-loop in either L(N; £D*,+(D* + 1)) or L(N;+(D* — 1),£D*) for
all N. Therefore we fail to understand the existence of a large body of literature
studying the diameters of L(N;£1,+s) which are often suboptimal.

For a given routing p and a set F of faulty elements (nodes or edges), a surviving
route graph is a graph whose nodes are the nodes of the undirected double-loop and
an edge [i, /] exists if and only if p(i,j) contains no element of F. So an edge in a
surviving route graph represents a surviving route. The diameter of a surviving route
graph, representing the maximum number of surviving routes a path has to bypass
through, is a common measure for fault tolerance.

Fabrega and Zaragoza [16] considered the surviving route graphs for optimal undi-
rected double-loops, i.e., (s1,s7) is either (D,D + 1) or (D — 1,D). They defined a
routing p by the rule: for any node i draw a shortest spanning tree # in the MDD
centered at i, and route (i,;) coincides with the path on #. The ¢ chosen by them
takes a-steps before b-steps if j is in the upper half (including the horizontal line) and
b-steps first if otherwise (see Fig. 4).
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Clearly, if F consists of nodes in the boundary of #; and edges not in #;, then all
nodes not in G are adjacent to 7 in the surviving route graph. By symmetry, a node j
can be put at any place of an MDD, including the boundary. This makes it clear that
for any single node-fault, the surviving graph has diameter 2. Fabrega and Zaragoza
in fact proved.

Theorem 5.7. Suppose N =2D? + 2D + 1. Then the diameter of the surviving route
graph is 2 for any F consisting of two nodes; the diameter is 3 if F consists of three
nodes.

There are not many results for undirected double-loops with general (sy,s7).
Zerovink and Pisanski were able to obtain results beyond Theorem 4.9 for /=2.
They proved the following two results.

Theorem 5.8. Suppose b, and b, are the two shortest (in Li-metric) independent
0-vectors, then for every node in [by,b,), the closest 0-node is always one in the four
corners of [by,by].

Clearly, the center of [b;,b,] must be the point farthest away from the closest corner,
the diameter of L(N; £s;, £5,) can be obtained by computing only the distances of
the four nodes surrounding the center to their respective closest corners. Let d; and
d, be the two diagonals of [b,b;]. Then

1|l = min{[|by + ba|l, |61 = b2},
([ = max{[|by + bal|, [|bv = bal|},

Theorem 5.9.

Ldnll/2] =1 if lldi[l = lidal| > max{[[ba]], [[ba][} and
D(N;+ s1,+ 55) = both ||b1|| and ||by|| are odd,

L1 ll/2] otherwise.

Corollary 5.10. Any two shortest 0-vectors {by,b,} yield the same diameters.

6. Chordal ring networks

Arden and Lee [2] first proposed the chordal ring network on an even number N
of nodes with two types of edges:

ring-edges: (i,i+1) for i=0,1,...,N — 1, and
chords: (i,i + h), where h is odd, for i =1,3,5,...,N — 1 (i odd).

Note that there are only N/2 chords, where a loop typically has N edges. Therefore a
chordal ring can be viewed as an undirected one-and-half loop.
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Arden and Lee considered an optimal mixture of the following three kinds of moves:
(i) at an even node: a 1-step followed by an A-step,
(ii) at an even node: a (—1)-step followed by an A-step,
(ii1) 1-step or (—1)-step.
For a given diameter D, they found the maximum N using the above three moves and
mistakenly claimed it to be an upper bound of N for the chordal ring. Yebra et al.
[29] considered two additional kinds of moves:
(iv) at an odd node: a 1-step followed by a (—#)-step,
(v) at an odd node: a (—1)-step followed by a (—h)-step,
and obtained better results. They proved

Theorem 6.1. (i) N <(3D? + 1)/2 for D odd; achievable by setting
h =3k
(ii) N <(3/2)D?> — D for D even; achievable by setting h =3k + 1.
Corollary 6.2. D~ (2N/3)"/2,

For comparison, the diameter of an optimal undirected double-loop is about (1/v/2)
N'22(0.7)N'? <(0.82)N'/2 = (2N/3)"/2.

Hwang and Wright [22] considered directed chordal ring network which replaces
ring-edges with links, namely, it has two types of links:

ring-link: i —i+1 for i=0,1,...,N —1 (N even), and
chords : i — i+ h for odd i.

Similarly, a directed chordal ring can be viewed as a one-and-half loop.

Hwang and Wright observed that by combining nodes i and ith into one super-
node, then a directed chordal ring with parameters (N, /) is reduced to a double-loop
L(N/2;1,(h+1)/2). They used this equivalence to compute the reliability of a directed
chordal ring when each node, each ring-link and each chord fails with the probabilities
D> P1, Ph, respectively. Chen et al. [10] observed that the diameter of a directed chordal
ring can also be computed by using the O(log N) algorithm developed by Cheng and
Hwang [12] for the double-loop. They further extended the directed chordal ring to
allow the replacement of i —i+ 1 link by i —i + s for some odd s.

Chen et al. also proposed the mixed chordal ring, denoted by M(N;s,h), with

ring-link: i - i+s for i=0,1,...,N — 1 (N even), and
chords: (i,£h) for odd i.

By treating an edge (7, /) as the set of two links i — j and j — i, then a mixed chordal
ring is a regular digraph with degree 2, hence comparable in hardware with a double-
loop. Chen et al. gave the surprising result that a mixed chordal ring can achieve
shorter diameter than a double-loop.
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Theorem 6.3. D(N;s,h)<V2N + 3, where s and h are computed by the following
rules: set N' to be the smallest even integer > [+/N/2]. Then s=N'+1 and h=N'—1.

They also proved

Theorem 6.4. M(N;s,h) is hamiltonian if and only if L(N/2;(s — h)/2,(s + h)/2)
does. Furthermore, it has two link disjoint hamiltonian circuits if and only if gcd(N,
s —h)=gcd(N,s + h)=2.

Acknowledgements

The author wishes to thank C. Chen for a very careful reading.

References

[1] F. Aguilo, M.A. Fiol, C. Garcia, Triple loop networks with small transmission delay, Discrete Math.
167/168 (1997) 3-16.

[2] B.W. Arden, H. Lee, Analysis of chordal ring networks, IEEE Trans. Comput. C 30 (1981) 291-295.

[3] J.C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Para. Distr.
Comput. 24 (1995) 2-10.

[4] J.C. Bermond, O. Favaron, M. Maheo, Hamiltonian decomposition of Cayley graph of degree four,
J. Combin. Theory B 46 (1989) 142-153.

[5] J.C. Bermond, G. Illiades, C. Peyrat, An optimization problem in distributed loop computer networks,
Ann. New York Acad. Sci. S55 (1989) 45-55.

[6] F.T. Boesch, R. Tindell, Circulants and their connectivity, J. Graph Theory 8 (1984) 487-499.

[7] F.T. Boesch, J.K. Wang, Reliable circulant networks with minimum transmission delay, IEEE Trans.
Circuits Syst. 32 (1985) 1286-1291.

[8] C. Chen, F.K. Hwang, J.S. Lee, S.J. Shih, The existence of hyper-L shapes in triple-loop networks,
preprint, 2001.

[9] M.Y. Chen, F.K. Hwang, C.H. Yen, Tessellating shapes in the plane, preprint, 2001.

10] S.K. Chen, F.K. Hwang, Y.C. Liu, Mixed chordal rings, preprint, 2001.

11] S. Chen, X.D. Jia, Undirected loop networks, Networks 23 (1993) 257-260.

12] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks, J. Algebra 9 (1988) 401-410.

13] H.M. Dao, C.B. Silio Jr., Ring-network reliability with a constrained number of consecutively-bypassed
stations, IEEE Trans. Rel. 47 (1998) 35-43.

[14] E.A. van Dorne, Connectivity of circulant graphs, J. Graph Theory 10 (1986) 9-14.

[15] P. Erdés, D.F. Hsu, Distributed lodp network with minimum transmission delay, Theoret. Comput. Sci.
100 (1992) 23-241.

[16] J. Fabrega, M. Zaragoza, Fault tolerant routings in double fixed-step networks, Discrete Appl. Math. 78
(1997) 61-74.

[17] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local networks and
data alignment, IEEE Trans. Comput. 36 (1987) 702-713.

[18] Y.O. Hamidoune, Quelques problems de connexite dans les graphes orientés, J. Combin. Theory B 30
(1981) 1-10.

[19] Y.O. Hamidoune, R. Tindell, Vertex transitivity and super line connectedness, SIAM J. Discrete Math.
3 (1990) 524-530.

[20] D.F. Hsu, X.D. Jia, Extremal problems in the combinatorial construction of distributed loop networks,
SIAM J. Discrete Math. 7 (1994) 57-71.

[21] F.K. Hwang, A complementary survey of double loop networks, Theoret. Comput. Sci. 263 (2001)
211-229.

[
[
[
[



F.K. Hwang| Theoretical Computer Science 299 (2003) 107-121 121

[22] F.K. Hwang, P.E. Wright, Survival reliability of some double-loop networks ad chordal rings, IEEE
Trans. Comput. 44 (1995) 1468-1471.

[23] M.T. Liu, Distributed Loop Computer Networks, Advances in Computers, Vol. 17, Academic Press,
New York, 1981, pp. 163-221.

[24] W. Mader, Minimale n-fach kantenzusamenhingende graphen, Math. Ann. 191 (1971) 21-28.

[25] C.S. Raghavendra, J.A. Sylvester, A survey of multi-connected loop topologies for local computer
networks, Comput. Network ISDN Syst. 11 (1986) 29-42.

[26] A. Schrijver, P.D. Seymour, P. Winkler, The ring loading problem, SIAM J. Discrete Math. 11 (1998)
1-14.

[27] M.E. Watkins, Connectivity of transitive graphs, J. Graph. Theory 8 (1970) 23-29.

[28] C.K. Wong, D. Coppersmith, A combinatorial problem related to multimode memory organizations, J.
ACM 21 (1974) 392-402.

[29] J.L.A. Yebra, M.A. Fiol, P. Morillo, I. Alegre, The diameter of undirected graphs associated to plane
tessellations, Ars Combin. 20B (1985) 159-171.

[30] J. Zerovink, T. Pisanski, Computing the diameter in multiple-loop networks, J. Algebra 14 (1993)
226-243.



