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[1] A novel concept of “visible energy” is proposed, and its magnitude is shown to be
valuable information for determining whether the chosen orthogonal wavelet is proper in
solving a large object scattering problem. With the properly chosen wavelets for the
targeting problem the (transformed) wavelet-domain impedance matrix can be sparsified
effectively for solving electromagnetic integral problems. Visible energy is defined as the
energy of all dilations of a single mother wavelet for an arbitrary translation in the
spectral domain over the entire “visible region.” It is found that for large matrix sizes,
using wavelets with smaller visible energy will lead to a greater sparsification of the
matrix. Numerical examples considering various scatterers with different shapes such as a
circular cylinder, an L-shaped scatterer, and a duct show the validity of our
findings. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 0644 Electromagnetics:
Numerical methods; 0669 Electromagnetics: Scattering and diffraction; 0689Electromagnetics: Wave
propagation (4275); KEYWORDS: orthogonal wavelets, visible energy, sparsification
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1. Introduction
[2] Radiated emission of electromagnetic energy is

one of the major aspects of the electromagnetic compat-
ibility (EMC) problem. To study this problem, it is
necessary to understand the electromagnetic field distri-
bution in the surrounding environment, which may
consist of various dielectric media and conducting ob-
jects. Generally, EMC problems are relatively compli-
cated and usually cannot be solved analytically, so that
numerical analysis techniques must be used. Numerical
analysis techniques include method of moment (MoM)
[Harrington, 1968; Miller and Landt, 1980; Bernardi et al.,
1996], the finite difference time domain method [Tirkas
et al., 1993; Taflove and Umashankar, 1989], the trans-
mission line matrix method [Christopoulos and Herring,
1993; D�amore and Sarto, 1996], the finite element
method [Dixon et al., 1993; Sacks and Lee, 1995], and the
finite volume time domain method [Holland et al., 1991].
These methods have been successfully applied in solving
electromagnetic scattering problems in EMC-related
fields such as antennae, microwave, and millimeter wave
circuits and radar cross sections.

[3] MoM is a well-established numerical method and
is probably the most widely used technique for solving

integral equations in electromagnetics. In conventional
MoM the boundary of integration is approximated by
discretizing it into many segments, and then the un-
known function is expanded in terms of known basis
functions with unknown coefficients. However, classical
subsectional bases, when applied directly to the integral
equations, generally produce a dense impedance matrix.
The dense matrix often becomes computationally un-
manageable owing to the large memory requirement and
CPU time required to invert the dense matrix. Recently,
the use of wavelets and wavelet-like basis functions for
the efficient solution of electromagnetic integral equa-
tions has received considerable attention. The wavelet
bases have been used to overcome the major drawback
mentioned above and to sparsify the matrix, primarily
because of local supports and vanishing moment prop-
erties of the wavelet bases.

[4] Beylkin et al. [1991] first applied wavelets to the
solution of integral equations having essentially smooth,
nonoscillatory kernels, such as those encountered in
electrostatics. For electrodynamic problems, however,
the Green�s function (kernel) is oscillatory in the spec-
tral frequency domain which leads to a dense impedance
matrix. Hence many other researchers applied different
wavelet transform methods to effectively sparsify the
impedance matrix in MoM. Kim et al. [1996] used
spectral domain wavelet transform to increase matrix
sparsity. Golik [1998] applied discrete wavelet packet
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transform and presented an adaptive algorithm for the
selection of the near-best basis transform to sparsify the
matrix. Deng and Ling [1999a, 1999b] employed adaptive
wavelet packet transform and predefined wavelet packet
bases to further sparsify the matrix.

[5] In addition, many papers have applied Dau-
bechies wavelets to obtain the matrix sparsification in
MoM. Recently, many studies have used different kinds
of wavelets to efficiently solve electromagnetic (EM)
integral equations. Pan et al. [1998, 1999] use the
Coifman intervallic wavelets as the basis and testing
functions in MoM for fast construction of wavelet-
sparisfied matrices. Huang et al. [2000] applied Vaidy-
anathan wavelets based on the quadrature mirror filter
to construct the wavelet transform matrix. However, it
seems that most of the previous studies did not specify
how to choose a proper wavelet for targeting electro-
magnetic integral equations with oscillatory kernels.

[6] In this paper, we exploit a concept of “visible
energy” as a criterion for choosing suitable wavelets in
solving electrodynamic scattering problems. Visible en-
ergy is defined as the energy of all dilations of a single
mother wavelet for an arbitrary translation in the spec-
tral domain over the entire visible region in which the
spatial frequency is smaller than the free space spatial
frequency (wave number). In the visible region the
spectral content of wavelet current becomes the wavelet
source that will produce far-field radiation. Since the
elements of the wavelet-domain impedance matrix rep-
resent the interaction between wavelet sources and
receivers, the interaction becomes stronger when more
spectral content leaks into the visible region, i.e., greater
visible energy. Thus we expect that the quantity of visible
energy may reflect the sparsified extent of the imped-
ance matrix. To investigate our concept, numerical
simulations are used to solve electromagnetic scattering
problems. Different shapes of two-dimensional conduct-
ing scatterers such as a circular cylinder, an L-shaped
scatterer, and a duct are considered. The combined field
integral equation (CFIE) is employed and is solved by
the wavelet MoM (WMoM). Note that all the different
wavelet basis vectors used here are orthogonal.

2. Constructions of Wavelet Transform of
the MoM Impedance Matrix for
Electromagnetic Scattering

[7] In electromagnetic scattering problems the cur-
rent induced on the metallic scatter f(x) is related to the
incident field w(x) in the following form:

�
a

b
f�x��k�x,x��dx� � w�x� , (1)

where k(x) is Green�s function, acting as the kernel.

Here scattering of a transverse magnetic (TM) polarized
wave by a two-dimensional conducting object with arbi-
trary shape is considered. The incident TM wave Ez

inc

induces a surface current density Jz on the surface of the
object, which produces a scattered field Ez

sca 2.0pt. On
the boundary the total field Ez vanishes and yields

Ez
inc�r� � �Ez

sca�r� � �i��0 �
c

dl�Jz �r��g0 �r,r�� . (2)

Here c is the contour of the conducting object, l is length,
and g0 is the two-dimensional Green�s function given by

g0 �r,r�� �
i

4
H0

�1��k0 �r � r��� , (3)

where H0
�1� is the zero-order Hankel function of first kind

and k0 is the free space wave number. In order to avoid
the resonance problem we apply a differential operator
F�r� � 1 � �n̂ � � to equation (2), which yields the CFIE
given by

Ez
inc�r� � �

�Ez
inc�r�

�n
� �i��0 �

c

dl�Jz �r��

� �g0 �r,r�� � �
�g0 �r,r��

�n � , (4)

where the constant � is the CFIE combination parameter
and �/�n is the derivative in the outward normal direc-
tion.

[8] Equation (4) is discretized by subdividing con-
tour c into N nonoverlapping pieces of equal length.
Then, Jz is described by point matching on a pulse basis,
yielding the MoM matrix formulation given by

E� � Z� � J� , (5)

where Z� is a full nonsymmetric N � N matrix and the
element Zij of the matrix Z� represents the field radiated
by a unit amplitude current pulse j and received at the
observation point i; J� is a surface current density-related
unknown column vector to be solved, and E� is the
excitation-related column vector. However, because Z� is
a full matrix, the solution of equation (5) is expensive.
For a problem with N unknowns the direct solution of
equation (5) has a computational cost of O(N3). This
high solution cost motivates the study of wavelets as a
means for sparsifying Z to obtain an efficient solution.

[9] Let W be an N � N wavelet matrix: Carrying out
the wavelet matrix transform to equation (5), the wave-
let-domain equation is obtained as

Ẽ � Z̃ � J̃ , (6)
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where Z̃ � WZWT , Ẽ�WE, and J̃�(WT) �1J. Because
the vectors of W form an orthonormal basis for the
N-dimensional vector space RN, W is an orthogonal
matrix satisfying WT � W�1, where T stands for the
transpose of a matrix. For a given threshold value,
equation (6) becomes a sparse matrix which can be
efficiently solved by a sparse solver.

3. Visible Energy of Wavelets
[10] Recently, Wagner and Chew [1995] analyzed the

effectiveness of the wavelet method in terms of the
radiation/receiving characteristics of the wavelet basis
function. They also demonstrated that in the visible
region, where the spatial frequency is smaller than the
spatial frequency in free space (k � k0), the wavelet
currents radiate their spectral content, which induces
interaction between wavelet sources and receivers. If this
interaction is strong, the number of nonzero elements of
the transformed matrix increases. In this section we will
extend this finding to exploit a novel concept of “visible
energy,” which is used as a criterion to select proper
wavelets for EM scattering problems. Here the visible
energy is defined as the energy of all dilations of a single
mother wavelet for an arbitrary translation in the spec-
tral domain over the visible region. Consider a mother
wavelet �(x) defined by Pan [1996]. The equation of the
visible energy is given by

E	 � �
l�Z

�
k�k0

��̂ l,m �k�� 2 , (7)

where �̂l,m(k) is the Fourier transform of �l,m(x). Note
that {�l,m(x) � 2l/2�(2l x � m) | l, m � Z} forms a
Riesz basis for L2(R), where R is the set of all real
numbers. Let us consider an N � N (2n � 2n) matrix W
formed by wavelets; the visible energy may then be
computed by the following equation:

E	 � �
i�1

log2 N�1 �
j�1

�N
M�

�	
 ij 
� 2 . (8)

The matrix [
 ij ] of equation (8) is of dimension (log2
N�1) � N, and the ith row of the matrix is defined to be
the Fourier transform of row ai of the wavelet matrix W,
where ai is given by

ai � �
N

2 i�1 i�1

N

2 i�1� �
p�1

i�1 N

2 p, i�2 .... log2 N � 1
(9)

where p is vanishing moments. The row index ai is
designed to sample one wavelet basis for an arbitrary
translation of each resolution scale of the wavelet matrix
W. Here the centered translation row index of each
resolution scale is chosen for the computation of visible
energy. A discretization density of M points per wave-
length for the scaling of the spatial frequency axis is
assumed. In order to quantify the visible energy from
these sample basis vectors at rows ai in the visible region,
where the spatial frequency is smaller than the spatial
frequency in free space (k/k0 � 1), the column j of the
matrix [
 ij ] within limits 1 � j � [N/M] is just required.

[11] Figure 1illustrates a gray scale image (magni-
tude) of the basis vector matrix W for Daubechies
wavelets with number of discretization points N � 256
and vanishing moments p � 5. It is known that each row
of the wavelet matrix stands for a wavelet basis. The
different bands in the image correspond to different
resolution scales in the basis. Sample basis vectors of W
at rows (ai) 64, 160, 208, 232, 244, 250, and 253 are
shown in Figure 2. The basis vectors form a complete
orthonormal basis for N-dimensional wavelet vector
space RN. These basis vectors are true wavelets as can be
seen in Figure 2; they are all translations and dilations of
a single mother wavelet. Translations of the finest reso-
lution wavelet compose one half of the basis set; trans-
lations of the next finest resolution wavelet make up one
quarter of the set and so on down the hierarchy.
Magnitude spectra of these basis vectors with a discreti-
zation density of 10 points per unit wavelength are
shown in Figure 3. It is apparent that the broader spatial
support of wavelets has more spectral content extending
into the visible region.

[12] Table 1 lists the visible energy of some well-
known wavelets such as Daubechies, Coifman, Beylkin,

Figure 1. Magnitude of the basis vector matrix W for the
Daubechies wavelets with number of discretization points N
� 256 and vanishing moments p � 5. Each row is one basis
vector.
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and Vaidyanathan wavelets, which are also referred to as
orthogonal filters, assuming a discretization density of 10
points per unit wavelength. From Table 1 it is also found
that the visible energy is decreased when the filter length
lc of the wavelet is increased. The reason for this is that
the larger filter length produces smoother, broader basis
functions whose magnitude spectra of wavelet have
sharper spectral cutoffs, so less spectra leaks into the
visible region. Additionally, the visible energy is in-
creased as the matrix size is increased because a larger
number of different scales of wavelets leak their spectra
into the visible region.

4. Numerical Results and Discussions
[13] In this section, we investigate the relation be-

tween the matrix sparsity and visible energy through
some numerical examples. In the examples, three two-
dimensional scatterers, including a circular cylinder,
an L-shape scatterer, and a duct, are chosen. The
geometry of each problem is shown in Figure 4. Here
the excited TM (Ez) polarized planar wave is incident
from 0� into the circular cylinder and 45� into the
L-shaped or duct scatterer. To avoid internal reso-
nance, CFIE is employed to generate the moment
matrices by using a discretization size of 0.1 �. Both
the MoM and WMoM are applied to solve the surface
currents induced on the conducting scatterer with
relative residual error �E� � Z�J��/�E�� � (1 
 0.01)
%. Note that in WMoM all the different wavelet basis
vectors chosen here are orthonormal and that their
discrete wavelet transform matrices are orthogonal.
Figures 5, 6, and 7 show the computed magnitudes of
the induced current densities for the circular cylinder,
the L-shaped scatterer, and the duct, respectively. It is
found that the solution accuracy of MoM and WMoM
is almost the same when the residual error is fixed at
1%.

[14] For the circular cylinder case the nonzero-ele-
ment percentages of the transformed matrix versus
visible energy for different kinds of orthogonal wavelets
are presented in Figure 8. Cases of different filter length
and matrix size are considered. It is found that for fixed
matrix size the greater the visible energy of the wavelet,
the less matrix sparsity is seen. This is because greater
visible energy leads to more spectral content radiation,
which induces strong interaction between wavelet
sources and receivers. This yields a larger number of
nonzero elements to the transformed matrix.

[15] The larger filter length of the wavelets is, the
lower the visible energy is and the higher the com-
pression rate of the matrix is. However, larger filter
lengths would result in more basis vectors and need
more computation time to solve the sparsified matrix.
Therefore, when choosing a particular wavelet, we
thus face a trade-off between the visible energy and
filter length. Figure 9 illustrates the visible energy and
matrix sparsity as a function of filter lengths of
Daubechies wavelets. It is apparent that both curves
have a similar trend. The percentage of the nonzero
elements of the wavelet matrix and visible energy both
have larger decreasing slope in the range of lc � 24
than in the range of lc � 24. This means that it is not
worth increasing the filter length in the range of lc �
24 since the sparsification only increases slightly and
vice versa. The results were confirmed by Sarkar et al.
[1998]. For a large object scattering problem, time
savings due to the increase of matrix sparsification

Figure 2. Sample basis vectors for the Daubechies wave-
lets with discretization points N � 256 and vanishing
moments p � 5.

Figure 3. Magnitude spectra of sample basis vectors with
a discretization density of 10 points per wavelength given in
Figure 1.
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effectively compensates the computational time in-
crease because of increasing filter length.

[16] Similar results are presented in Figures 10 and
11 for an L-shaped scatterer and a duct, respectively.
However, when the matrix size is small (N � 512), the
smaller visible energy may not lead to greater matrix
sparsity, especially for wavelets with a larger filter length,
such as Daubechies 24, Daubechies 30, Coifman 24,
Coifman 30, and Vaidyanathan 24. This is because the
large-filter-length wavelets will result in more wavelet
basis vectors than those with a small filter length. A
small scatterer with several corners may produce extra
interactions among wavelet basis vectors compared with
the case of using wavelets with larger filter lengths. This
could adversely affect the matrix sparsity. However, for
larger object scatter problems the geometrical bending
effects will be diminished.

[17] Fortunately, our finding is still useful since the
direct solution of conventional MoM equations is pro-
hibitively expensive for large-scale scattering problems.
Our results suggest that when the matrix size is large (for
large scattering objects), using wavelets with smaller
visible energy leads to a greater sparsification of the
matrix.

5. Summary
[18] In this paper, we show that the use of visible

energy can help in choosing proper orthogonal wavelets
to solve EM integral problems. It is found that for large
scattering object problems or the circular cylinder prob-
lems the wavelets with smaller visible energy lead to
greater wavelet-domain impedance matrix sparsity. This
result may not be true for the cases of small L-shaped or

Table 1. Visible Energy E	 of Some Well-Known Orthogonal Wavelet Filters With Various Filter Lengths lc and Matrix
Sizes Na

Wavelet Filter

Matrix Size

128 256 512 1024 2048

Daubechies 6 4.9988�03 2.8192�04 1.3735�04 6.1447�05 2.6487�06
Daubechies 12 4.0111�03 2.1909�04 1.0485�04 4.6401�05 1.9856�06
Daubechies 18 3.6266�03 1.9565�04 9.3127�04 4.1080�05 1.7542�06
Daubechies 24 3.4270�03 1.8354�04 8.7074�04 3.8332�05 1.6347�06
Daubechies 30 3.3042�03 1.7607�04 8.3320�04 3.6622�05 1.5602�06
Coifman 6 5.2366�03 2.9795�04 1.4615�04 6.5700�05 2.8419�06
Coifman 12 4.4675�03 2.4757�04 1.1935�04 5.3034�05 2.2756�06
Coifman 18 3.9483�03 2.1523�04 1.0291�04 4.5517�05 1.9470�06
Coifman 24 3.6704�03 1.9828�04 9.4435�04 4.1670�05 1.7798�06
Coifman 30 3.4996�03 1.8793�04 8.8262�04 3.9323�05 1.6778�06
Vaidyanathan 16 3.4975�03 1.8789�04 8.9279�04 3.9343�05 1.6789�06
Vaidyanathan 24 3.1553�03 1.6700�04 7.8747�04 3.4537�05 1.4693�06
Beylkin 18 3.2458�03 1.7237�04 8.1374�04 3.5711�05 1.5189�06

aA discretization density of 10 points per wavelength is assumed. Visible energy E	 is in e.

Figure 4. The geometry of the three test scatterers: (a) a circular cylinder, (b) an L-shaped scatterer,
and (c) a duct.
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Figure 5. Magnitude of the surface current density for a circular cylinder with contour length 25.6 �
and discretized with N � 256 (Daubechies 18).

Figure 6. Magnitude of the surface current density for an L-shaped scatterer with contour length 25.6
� and discretized with N � 256 (Daubechies 18).
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Figure 7. Magnitude of the surface current density for a duct with contour length 51.2 � and
discretized with N � 512 (Daubechies 18).

Figure 8. Matrix sparsity as a function of visible energy for a circular cylinder with different kinds of
wavelets and matrix sizes N.
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Figure 9. Matrix sparsity and visible energy (E	) as a function of filter length with matrix size N �
2048. The Daubechies wavelets were used.

Figure 10. Matrix sparsity as a function of visible energy for an L-shaped scatterer with different kinds
of wavelets and matrix sizes N.
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duct scatterers. However, our finding remains useful
since the direct solution of conventional MoM equations
is prohibitively expensive for large-scale scattering prob-
lems. The analysis in this paper only considers the
orthogonal wavelets. In the near future the same prin-
ciple will be validated for nonorthonormal wavelets.
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