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Decoupling of degenerate positive-norm states in Witten’s string field theory
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We show that the degenerate positive-norm physical propagating fields of the open bosonic string can be
gauged to the higher rank fields at the same mass level. As a result, their scattering amplitudes can be
determined from those of the higher spin fields. This phenomenon arises from the existence of two types of
zero-norm states with the same Young representations as those of the degenerate positive-norm states in the old
covariant first quantizedOCFQ spectrum. This is demonstrated by using the lowest order gauge transforma-
tion of Witten’s string field theoryWSFT) up to the fourth massive levékpin-five), and is found to be
consistent with conformal field theory calculation based on the first quantized generalized sigma-model ap-
proach. In particular, on-shell conditions of zero-norm states in the OCFQ stringy gauge transformation are
found to correspond, in a one-to-one manner, to the background ghost fields in off-shell gauge transformation
of WSFT. The implication of decoupling of scalar modes on Sen’s conjectures is also briefly discussed.
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[. INTRODUCTION existence of zero-norm states with the same Young represen-
tations. It was also showfb] that the scattering amplitudes
It was pointed out more than ten years ago by Gfdgs of these degenerate positive-norm states can be expressed in
that, in addition to the strong coupling regime, the most im-terms of those of higher spin states at the same mass level
portant nonperturbative regime of string theory is the highthrough massive Ward identities. The subtlety of the scalar
energy stringy &' — o) behavior of the theory. It is in this state pointed out in Ref5] will be resolved at the end of
regime that the theory becomes very different from pointSec. Il. This phenomenon begins to show up at the third
particle field theory. Among many interesting stringy behav-massive level(spin-foun and was argued to be a sigma-
iors, it was believed that an infinite broken gauge symmetrymodel ofn+ 1 loop results for theth massive level. These
gets restored at an energy much higher than the Planck estringy phenomena seem to be closely related to the results
ergy. Moreover, this symmetry is powerful enough to linkin Ref. [1]. In fact, an infinite number of linear relations
different string scattering amplitudes and, in principle, can bébetween the string tree-level scattering amplitudes of differ-
used to express all string amplitudes in terms of, say, thent string states, similar to those claimed in R&l, can be
dilaton amplitude. derived by making use of an infinite number of zero-norm
Instead of studying stringy scattering amplitu2§ one  stateg5]. To claim that the decoupling phenomenon persist
alternative to explicitly derive the stringy symmetry is to usefor general higher levels, it would be very important a priori
the generalized worldsheet sigma-model approach. In thit see whether one can rederive it from the second quantized
approach, one uses conformal field theory to calculate theff-shell Witten string field theoryWSFT) [6].
equations of motion for massive string background fields in  Recently there is a revived interest in WSFT, mainly due
the lowest order weak field approximation, but valid to allto Sen’s conjecture on tachyon condensation on D-bf@he
orders ina’. The weak field approximation is thus the ap- It becomes more and more clear that a second quantized field
propriate approximation scheme to study high-energy symtheory of string is unavoidable, especially when one wants to
metry of the string. An infinite set of on-shell stringy gauge study higher string modes. Thus, a cross check by both first
symmetry is then derived by requiring the decoupling of bothand second quantized approaches of any reliable string
types of zero-norm physical states in the old covariant firstheory result would be of great importance. Unfortunately,
quantized(OCFQ spectrum[3]. In particular, all physical most of the recent researches on string field theory were
propagating states at each fixed mass level are found to forgonfined to the scalar modes on identification of nonpertur-
a large gauge multiplet. This begins to show up at the seconblative string vacuurf8]. Our aim in this paper is to consider
massive levelspin-thre¢. Moreover, it was remarkable to the gauge transformation of all string modes with any spin
discover that[4] the degenerate positive-norm physical and in arbitrary gauggd]. We will first prove the decoupling
propagating fields of the third massive level of the openphenomenon of the third massive level of open bosonic
bosonic string can be gauged to the higher rank fields by thstring claimed in Ref[4] by WSFT. The result is then gen-
eralized to the fourth massive level by both the first and the
second quantized approaches. This paper is organized as fol-
*Email address: hckao@phy.ntnu.edu.tw lows. In Sec. Il we first summarize the previous results ob-
"Email address: jcclee@cc.nctu.edu.tw tained in the first quantized approach. In Sec. lll we explic-
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TABLE |. The OCFQ spectrum of open bosonic string. It was demonstrated in the first order weak field approxi-
— mation that for each zero-norm state there corresponds an
Mass level  Positive-norm states Zero-norm states on-shell gauge transformation for the positive-norm back-
e 2 ° ground field @¢'=3) [3]:
m?=0, 6&A,=4,0, (3a)
m?=0 O ® (singler)
9?6=0; (3b)
m?=2 (] O, e 2
m :2, 6B/.LV:(9(,LL0V)’ (4a)
mi=a III:IE M, 2x0.e 6,=0, (5°—2)0,=0; (4b)
_3 _1
m?=6 OO, E’:Il:l:l @ |:|:|:|,H,2><|:|:|,3><|:|,2><0 OBuy=2043,6= 2049, (53
(*—2)6=0; (5b)
2
, , m°=4, 8C,\=39,0.,n 6
itly calculate the lowest order gauge transformation level by ) 63
level up to the third massive level in WSFT, and compare 9"0,,= 9;:0, ((92_4)9W:o; (6h)
them with those of the first quantized approach. Some im-
portant observations will be made for ghost fields in WSFT OC = %&(M&,ﬂi)— 77(,“,0%), (79
and zero-norm states in the OCFQ spectrum. The transfor- 1 5 N
mation will be separated into the matter and the ghost field #0,=0, (9°—4)6,=0; (7b)

parts in WSFT. The matter part is found to be consistent with

_1 2 _ 2
the previous calculatiofb] based on the old covariant string 0C L= 20(udy00) = 27(ur b)) »

field gauge transformation of Banks and Peskif]. The SCi =99, 62 (8a)
ghost part is argued to correspond to the lifting of on-shell R

(including on-mass-shell, gauge, and tracelessditions of #62=0, (5°—4)62=0; (8b)
zero-norm states in the OCFQ calculation. Section IV is de-

voted to the fourth massive level. Both first and second quan- 8C 0= 353,0,0\0— 51,010, (9a)
tized calculations are new and will be presented in Sec. IV. A 5

brief conclusion is made in Sec. V. The lengthy gauge trans- (9°—4)6=0. (9b)
Iﬁ;m:pt)lsgngrxgh%t fields for level four will be collected in These symmetry transformations can be explicitly shown to

be symmetries of the equation of motion for massive back-
ground fields, which were calculated in RE3]. A complete
2D sigma-model renormalization group analysis for the first
Il OLD COVARIANT FIRST QUANTIZED APPROACH massive level was done in Ref42,13. It was noted that the
The old covariant quantization is one of the three standartraceless condition of the equation of motion, which was
quantization schemes of string. In addition to the physicaincluded in Refs.[3], can only be obtained by requiring
positive-norm propagating modes, there exist two types ofluantum Weyl invariance at a linearizédo-loop approxi-

physical zero-norm states in the bosonic open string spedhation. The symmetries considered in REf2,13 corre-
trum [11]. They are as follows: sponding to adding worldsheet total derivative terms to the

effective Lagrangian, however, turn out to be only the subset
of symmetries calculated in Reff3]. The complete set of
Type I: L _4|x), whereLy|x)=0, m=1, Lg/x)=0, symmetries generated by two types of zero-norm states con-
1 sidered in this section include some nontotal derivative
terms, e.g., Eq(5).
32 i~ In the above equationgy, B, C are positive-norm back-
Type I (L_o+3L%))[x), ground fields, §’s represent zero-norm background fields,
andazza“aM. There are on-mass-shell, gauge, and traceless
conditions on the transformation parametéis which will
correspond to Becchi-Rouet-Stora-TyutifBRST) ghost
fields in a one-to-one manner in WSFT, as will be discussed
While type | states have zero-norm at any spacetime dimerin the next section. Equatio8) is of course the usual on-
sion, type Il states have zero-noramly at D=26. Their  shell gauge transformation, and E§) is the first residual
existence turns out to be important in the following discus-stringy gauge symmetry. Note thﬁi and Gi in Egs.(7) and
sion. The explicit forms of these zero-norm states have bee(8) are some linear combination of the original type | and
calculated and their Young tabulation, together with positive-type Il vector zero-norm states calculated by Edsand(2).
norm states, up to the third massive level, are listed in Tablét is interesting to see that E¢B) implies that the two second
I. Note that zero-norm states are not included in the lightmassive level mode€,,, andC,,, form a larger gauge
cone quantization. multiplet [3]. This is a generic feature for higher massive

where L|x)=0, m=1, (Ly+1)|x)=0. (2)
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level and had also been justified frddmatrix point of view  already the most general form of the background-field cou-
[14]. One might want to generalize the calculation to thepling. This means that the degenerate spin-two and scalar
second order weak field to see the intermass level symmetrpositive-norm states can be gauged to the higher rank fields
This however suffers from the so-called nonperturbativeD ,,,s and mixed-symmetri® ,,, in the first order weak
nonrenormalizability of 2Do model, and one is forced to field approximation. In fact, for instance, it can be explicitly
introduce infinite number of counter terms to preserve theshown [5] that the scattering amplitude involving the
worldsheet conformal invariandé5]. positive-norm spin-two state can be expressed in terms of
Instead of calculating the stringy gauge symmetry at levethose of spin-four and mixed-symmetric spin-three states due
m?=6, we will only concentrate on the equation of motion. to the existence of a type | and a type Il spin-two zero-norm
It was discovered that an even more interesting phenomengstates. The subtlety of the scalar state scattering amplitude
begins to show up at this mass level. Take the energypointed out in Ref[5] can be resolved in the following way.
momentum tensor on the worldsheet boundary in the firsTake a representative of the scalar state t1e
order weak field approximation to be of the following form:

T(7)=—37,,0.XE0, X"+ D050, X", X3 X3, XP : PEXH XY

13
- U#V+ ?k,u,kv

v 2y« 0 -2 2y v
+ D uyad XEG X G X+ D, I XETX [20 2 13 M v 52yp
+DL 9, X#53X"+D X+ (10) 1| g KKkt Km0y TRy [0XE X 02X
Mmvo T T T 1
i i = is i - 23 32 19
where 7 is worldsheet t.lme).(—X(T). This is the most gen 22K KK K+ ook K70t 77
eral worldsheet coupling in the generalized model ap- 81 # e 27 #vIPT g RrER

proach consistent with vertex operator considerafib@.

The conditions to cancel afj number worldsheet conformal X OXH 9. XV 9.XP 9.XT
. . z V4 VA z

anomalous terms correspond to cancelling all kinds of loop

divergenceg13] up to the four loop orders in the 2D con-

formal field theory. It is easier to use- T operator-product It turns out that one cannot gauge away the first term in the

ekX@.

calculation and the conditions refd| above equation by using the two scalar zero-norm states.
However, we have already known the amplitude correspond-
20D 05— D (s =0, (113 ing to 92X* 92X" are fixed by those of the spin-four and

mixed-symmetric spin-three states. The totally symmetric
spin-three amplitude corresponding to the totally symmetric

9*D = 2D%,— 3D}, =0, (11 spin-three part of the second termX* 3,X* #?X?), can
be fixed by the spin-four amplitude due to the existence of
aﬂDllw_ 12D,=0, (110 the totally symmetric spin-three zero-norm state. As a result,

the scalar state scattering amplitude is again fixed by the
amplitudes of spin-four and mixed-symmetric spin-three
3D M+ a“DmM—SD(lm)=0, (110 states. Although all the four-point amplitudes considered in
Ref. [5] contain three tachyons, the argument can be easily
generalized to more general amplitudes. This is very differ-
ent from the analysis of lower massive levels where all
positive-norm states have independent scattering amplitudes.
2D, )+ 33”D1V—12D =0, (11) Presumably, this decoupling phenomenon comes from the
: . a ambiguity in defining positive-norm states due to the exis-
tence of zero-norm states in the same Young representations.

D, *+40*D%,—24D =0, (110

2D%*+3D 1+ 120D, =0, (119 we will justify this decoupling by WSFT in the next section.
X Finally, one expects this decoupling to persist even if one
(9°—6)$=0. (110 includes the higher order corrections in the weak field ap-

] ) ) proximation, as there will be even stronger relations between
Here, ¢ represents all background fields introduced in Eq.he packground fields order by order through iteration.

(10). It is now clear through Eqg11b) and(11d that both
DY, and D{,,, can be expressed in terms Bf,,,; and

nra
Duve- D[lwl can be expressed in termsbf,,,; andD ,,,
by Eg. (11b. Equations(11a and (119 imply that D, It would be much more convincing if one can rederive the
andD, can also be expressed in termsbf, .z and mixed-  stringy phenomena discussed in the previous section from
symmetricD,,,. Finally, Egs.(11e—(11g are the gauge WSFT. Not only can one compare the first quantized string
conditions forD ,,,,z and mixed-symmetri® ,,, after sub-  with the second quantized string, but also the old covariant
stituting D%, D, andD,, in terms ofD ,, 5 and mixed-  quantized string with the BRST quantized string. Although
symmetricD ,,,. The remaining scalar particle has auto-the calculation is lengthy, the results, as we shall see, are still
matically been gauged to higher rank fields since @q) is  controllable by utilizing the results from first quantized ap-

IIl. WITTEN'S STRING FIELD THEORY APPROACH
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proach in Sec. Il. There exist important consistency checks 8B,= 1(92-2)€°, (170
of first quantized string results from WSFT in the literature, .
e.g., the rederivation of Veneziano and Kubo-Nielson ampli- 5BO=1(57—2)él, (170)

tudes from WSFT17]. In some stringy cases, calculations
can only be done in the string field theory approach. For

1_ 0 1.
example, the recently developggd wave string amplitudes op =—d"€,—3€; (178
can only be calculated in the light-cone string field theory
[18]. Sen’s recent conjectures of tachyon condensation on m’=4, 5C#m=—é’(#egk)—%efﬂnm, (184
D-brane again were mostly justified by the string field theory.
Therefore, a consistent check by both first and second quan- 5C =~ a[vf;ld _ ‘7[u65] ' (18b)

tized approaches of any reliable string results would be of
great importance.

The infinitesimal gauge transformation of WSFT is 8C(un= _3(V€i)_a(ufi)+252v_ €n,,, (189
P =QgA+go(®*A—AxD). 12
Qe+ Go(®*A—AxP) (12 5C,= 0,62+ 26-+ &, (180)
To compare with our first quantized results in Sec. Il, we
only need to calculate the first term on the right-hand side 5yw=%((92—4)62,,—%e3nw, (18¢
(rhs) of Eq. (12). Up to the second massive levd}, and A
can be expressed as 572: %((92_4)'5/214_(9#63, (18f)
P=[p(x)+iA,(X)a’y+a(X)b_1co—B,,(X)at a”, Sy, =—29"€5,—2€,— 3¢5, (189
+iB ,(X)a* ,+iB,(X)a* b_1co+ B2(X)b_,C
P R X 20 5= P4y —,e, (18h
+,81(X)b,1C,1_|CI_LV)\(X)alilalef71
—C(X)ata?  +iC  (X)at 3 5Y’=3(9?—4)e*— €, (18i)
. . Syt=—otel—4e?—2¢€°, (18))
+|7,1L(x)a’ilb_1c_1+|yi(x)a’izb_lcoJr Yo(x)b_5Cq 4 m )
+ Y (x)b_c_ 1+ YA(X)b_c_
Y (X)b_pc 1+ y*(X)b_1c_5]c|k), (13 5y2=—2(9M62'L—562+463+62M. (18K)
A=[(x)b_ € (X)a" a” b +ie)(x)a’ b, It is interesting to note that Eq16b) corresponds to the

lifting of the on-mass-shell condition in Eq3b). Mean-
while, Egs.(17¢ and(17d correspond to the on-mass-shell
+€X(X)b_3+ e3(x)b_1b_,Co]|Q), (14)  condition in Egs(5b) and(4b), and Eq(17¢) corresponds to
the gauge condition in Eq4b). Similar correspondence ap-
where® and A are restricted to ghost numbers 1 and 0,plies to levelm?=4. Equationg18e), (18f), (18h), and(18i)

+ie(X)a b +ieh(x)ak b+ el (x)b_,

respectively, and the BRST charge is correspond to the on-mass-shell conditions in E6j9), (7b),
(8b), and(9b). Equation(18g), (18j), and(18Kk) correspond to
w * men the gauge conditions in Eq&b), (7b), and(8b). The trace-
_ Lmatt, 4 b o —cn. less condition in Eq(6b) corresponds to the trace part of Eq.
Qe nzz—oc n-n m,nz—oc 2 comenTemens 0 (188. Also, only zero-norm state transformation parameters

(15 appear on the rhs of matter transformatianB, C, and all
] ghost transformations correspond, in a one-to-one manner, to
The transformations one gets for each mass level are th@e Jifting of on-shell conditiongincluding on-mass-shell,
following: gauge, and traceless conditipns the OCFQ approach.
These important observations simplify the demonstration of
m2=0, 6A,=d,ée°, (163 decoupling of degenerate positive-norm states at higher mass
levels,m?=6 andm?=8 more specifically, in WSFT, as will
be discussed in the rest of this paper.

da=30%€"; (16D For m?=4, it can be checked that onlg,,, andC,,,
are dynamically independent and they form a gauge multip-
m2=2, oB,,= _07@68)_ %flﬂ,m (173 let, whi(_:h is consisten_t with the result of the first quantized
calculation presented in Sec. Il.
10 We now show the decoupling phenomenon for the third
6B, =—d,ete,, (17D massive levem?=6, in which® andA can be expanded as
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; 0
(134=[DMVQE(X) aﬁlazlai 1a'§1_ | D,uva(x)alilali 1ac_kz_ D,uV(

x)a*,a” ,— D (X)a* a” 3 +iD ,(x)a*,
—i&,,a(X) et a” 10 b_1Co— & (X)at pa” b_1Co— &, (X) et a 1b_,Co— &2 (X)ak @’ b 1y
HIE (X) @k gb_1Co+i & (X)ak b _sCo+i&n(X)ak b _sCo+i&(X)ak b 1c i +i&h(X)ak b nc_y

HE(X)a 1b_1C_+ E2(X)b_gCot EX(X)D_5c_ 1+ EX(X)D_C_p+ E3(X)b_1C_3+ EX(X)b_b_;c_1Colcy k),

(19
Ay=[—i eﬂva(x)a’flazla‘flb,l— ellw(x) atsa” b — eiy(x)a’flazlb,z-i- [ ei(x) atsb_q+i ei(x)a’izb,z
+ie)(X)a b_gtied(X)ak b b 1Co+ X (X)b_ 4+ ¥ (X)b_sb_1co+e®(x)b_rb_1c_4]]Q). (20)
|
The transformations for the matter part are the following: 5§2: %(&Z—G)Ei— 3M55+ 62* (22f)
__ 0 _1.2
6Dp,vaﬂ_ a(ﬂe,uva) 2 6(,_“;77&/3) ! (2169 55;}‘: %(&2— 6)62_ 62 , (229)
_ 1 _ 2 0o _ 1 4 _ 5
D pva= = (u€laly) T da€iu T 3€uraT 2 €auu €<M’7€>2a1’b) 8E=5(*—6)e,+3,e8— €5, (22h
1 _ 3 5 1 683 =—9"el —0,5—3 -3¢, (22i)
D=~ €0~ € T 260, (219 s pro TR woTH
08 =20"€% +9,e5— 26} —4e>—2€° 22
5D(1MV)=—ﬁ(ﬂef’,)—&(vei)-l-Ze(lw)-i-26}2“/— 6477W, & €uvT Ou€ € TELT CEY (22)
(210
88, =—20"€,,~3€,—5e,+4e5+3¢6,,%, (22K
0 _ 4 1 4
oD, = _‘9(#61/)—'_6(;4'1)_%6 Nuvs (219
50=1(%—6)e*— 26, (221)
— 4 3 4 5
oD,=—d,€ +3€,t2€,T¢€,. (219
, 5&t=—gre; —5e*— 26— €°, (22m)
It can be checked from Eq&1) that onlyD ,,,z and mixed-
symmetricD ,,,, cannot be gauged away, which is consistent
with the result of the first quantized approach in Sec. Il. That &%= —2J"€,,— 6€*—3e®+ €3, (22n)
is, the spin-two and scalar positive-norm physical propagat-
ing modes can be gauged B,,,; and mixed-symmetric
D,va- Infact,D,,,,, Diy, D! f DC,, andD,, can be 06°=—30te, —Te'+6e5+5e%+2¢)), (229
va " 1 va v|? yiag ' v
gauged away byefm, E[i/;v]' €(uv)» €uy» and one of the
vector parameters, say,,”. The rest,ei, ei, and €* are 5&%=13(9°—6)€eb+ 3M62+ 465, (22p)

gauge artifacts ob ,,,5 and mixed-symmetri©

puva

The transformations for the ghost part are the following:

08 uva=3("—6) €0, €0, Mua) (229
55&1}] =2(*=6) E[1MV] - a[l-teg] ' (22b)
880,y =3(P—6) €40y = I(u€0) T € Ny, (220)
8&,,=3(*—6)es, (€, (220)
8, = —30%€) .~ 2€(,,)~3€5,~ 3€°7,,,, (220

There are nine on-mass-shell conditions, which contains a
symmetric spin-three, an antisymmetric spin-two, two sym-
metric spin-two, three vectors and two scalar fields, and
seven gauge conditions, which amount to 16 equations in Eq.
(22). This is consistent with counting from zero-norm states
listed in the table. Three traceless conditions read from zero-
norm states correspond to the three equations involving
8&,,", SE0#, SEL#, which are contained in Eqg22a),
(220, and(220.

It is important to note that the transformation for the mat-
ter parts, Eqs(189—(18d and Egs.(21a9—(21f), are the
same as the calculatids] based on the chordal gauge trans-
formation of free covariant string field theory constructed by
Banks and Peskif10]. The chordal gauge transformation
can be written in the following form:

086003-5



H.-C. KAO AND J.-C. LEE

T( T) =- % 7];1,1/‘97' XH&T XY

SO[X(0)]= 2 L n@p[X(0)], (23)
n=0 FE napds X1, X 9, XN, X9, XP
I v N2 ya
where®[ X(o)] is the string field andb [ X(o)] are gauge T Euinads X0, X709, X007 X

parameters, which are functions ¥f o] only and free of
ghost fields. This is because the pure ghost pa@©fn Eq.
(15) does not contribute to the transformation of matter back-
ground fields. It is interesting to note that the rhs of E28)

is in the form of off-shell spurious stat¢sl] in the OCFQ

approach. They become zero-norm states on imposing tgsier a lengthy calculation, the condition to cancel all world-

physjcal and on-shell state condition. sheetq number anomalies are as follows:
Finally, it can be shown that the number of scalar zero-

norm states atth massive levelr{=3) is at least the sum of
those at i—2)th and 6—1)th massive levels. So positive-
norm scalar modes aith level, if they exist, will be decou-
pled according to our decoupling conjecture. The decoupling
of these scalars has important implication on Sen’s conjec-
tures on the decay of open string tachyon. Since all scalars
on D-brane including tachyon get a nonzero VEV in the false
vacuum, they will decay together with tachyon and disappear
eventually to the true closed string vacuum. As the scalar
states together with the higher tensor states form a large
gauge multiplet at each mass level, and its scattering ampli-
tudes are fixed by the tensor fields, these tensor fields of 1 1
open string(D25-brang will accompany the decay process. I"BLun— 6By =0,
This means that the whole D-brane could disappear to the
true closed string vacuum! The mechanism could provide a
hint to solve the so-called (1) problem[19] in Sen’s con-
jectures. A further study is in progress.

IV. THE FOURTH MASSIVE LEVEL

We will use both the first and the second quantized ap-
proaches to test the decoupling conjecture for the fourth mas-
sive levelm?=38.

A. The first quantized calculation
The positive-norm physical propagating fields can be
found in Ref.[20]. Their Young tabulations are the follow-

ing: 2E% ,+E*+100“E,=0,
|:|:|:|:|:|,H:|:|,B:|,|:|:|:|,H,|:|. (24)
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HED N0, X1, X IS XM, 0, XE2 X 9% XM

+ED 0, XFOt X!+ By, 05 X192 X+ E 9% X<,

(26)

S&MEMV}\aB_ZE(V)\aB):Oa (273
JE),—20E,=0, (27b
IE no— 12E2, ,—8EL, =0, (270
J"EY,\—BE% —E1, =0, (270
(27¢
20E* ot OME pyp— 12E0,, =0, (283
EO% ,,+40"E},,—120E,=0, (28b)
E# . +8"E;, ,—48E, —12E;,=0, (280
E# put 0MES, ,—4E(,),=0, (299
E .+ 120E;,—24CE,=0, (29b)

0 1 0o _ _
3E% ,, +E} [ +65"ES,—30E,=0, (30)
(3D
(6°—8)¢=0. (32

The Young tabulations of zero-norm states can then be

shown to be Here, ¢ again represents all background fields introduced in
Eq. (26). Equations(27a—(27¢ are extracted from 14
D, [P .2X00 2x[,4xm,5%0,3%@. 25 = 7')% anomalous terms in the operator product calculation;

Note that the two representations B:I in Eq. (24) and

a*,a” ,a" , and the other corresponds td" a” a5 or

in Eq. (25) are different. One corresponds to

similarly, Egs.(289—-(28¢), (299—-(29b), (30), and (31) are
extracted from 14—7)* 1/(r—7')% 1/(r—7')%, and
1/(r— 7')” anomalous terms, respectively. It can be carefully
checked, as one did for the third massive level, that only
E.nap @and mixed-symmetri€ ,,,, and E;lm (or Efm\)
corresponding to the first three Young representations in Eq.

vice versa. So, one expects that the last three states in E(®4) are dynamically independent as the conjecture has
(24) can be gauged to the higher rank fields. The most genclaimed. The last three states in EB4) again can be gauged
eral worldsheet coupling consistent with vertex operator conto the first three states due to the existence of zero-norm

sideration is

states with the same Young representations in(Eq).
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B. WSFT calculation

® and A can be expanded at this massive level as

; A
¢)5:[IE/J,V}\Q’B(X)alilalilagla—laél—'— EMVaﬁ

(X)aﬁlailaglaéz_iEo

icl
MW(X)a"flaz 1ati3l_ | EMVQ(X)ali 1“226“12

0 1 H i 20
- EMV(X)ali 1@114_ EMV(X)aﬁzaz:g"‘ |EM(X)al£5+ {MW’B(X) a’flazlai 1a€1b_1C0_ | gﬂya(x)aﬁzazla(ilb_]_CO

1 -2 0 1
=Xt jal @b 5co—i (X at e jal b1 1=, (X)atzal 1b_1c—,,(X)ak el b _icq

2 3 4 5
LX) atal b yco— ), (X) et ja” 1b_sco— ), (X)at e 1b_sc =), (X)ata” 1b_sc g

=00, et a” b1 i) ak o1+l (X)at gb_sCo+ila(X)at b sCo+ils(X)at b 4co

HL(X) et sb_1C 1 HI (X b s +iZS(X)a” b _sc 1 +ill(X)a” b e, +iS(x)a" b s,

HIE(X) e b g+ LX) ak b ob_1C 1Co+ O(X)b_sCo+ LM (X)D_4C_ 1+ LA(X)b_5C o+ 3(X)b_sC_3

+ZH(x)b_1c_ 4+ ()b _3b_1c_ 1o+ L%(X)b_ob_;c_5colcylk),

1

_r,0 ;
A5—[eﬁmﬁ(x)a’ilaﬁla‘flaelb,l—Ieﬂm

4 5 6
—€,,(X)aka’ b 1—€, (X)aka b ,—€, (X a

X)ata’ a%,b_—ie
201104

(33

3
e Xt ol jatib ,—e€,, (X)atzal by

7 i 7
/ila]ilb_g,_ ep,v(x)alilailb—Zb—lCO—’— | eﬂ(x)a"f‘lb_l

i 8 - 9 + 10 - 11 - 12
i€, (X)atsb o +ie,(X)atb _s+ie, (X)akb 4+ie, (X)akb b jcot+ie(X)ak b 3b_icq

+ie, (X)at b b 1c 1+ e’ (X)b_s+ eB(X)b_gb_1Co+ ¥ (X)b_sb_,Co+ e AX)b_3b_sc_4

+eXx)b_,b_sc_,]|Q).

The transformations for the matter part are

(353

_ 0 12
OE unap= ~ (B€uma) T 2€0napur)

2

apv

0

1.5
A€, vap™ 2€500 Man)

_ 1
OE 4vap= ~ O(u€iplav)~ Ip€

— €l ) (35b)
OB a= — I(u€infr)~ a€opt 260,362, ~ €7,

— €l M)ar (350
5Ellwa: - (9/’«6;4/01_ a(aersl)u+ 26(1001)#_ 6?&”]})#

~ €0 Ma (350)
OB D)= = 91u€0) — Ipv€n) B, T 260, (358
OB L) = €0 = I€py T €+ €Ly (35f)

0 _ 7 9 3 5 6
OB (41)= ~ 0(u€1) ~ Iw€p) T 3€(, ) T 260, T 2€,,

. (359
1 _ 7 8 3 4 5
OB (1) =~ 0(u€1) ~ Iw€ ) T €y T 26, T €
—6777M,,, (35h)
a7 7 8, 9 -
OE,=—d,e'+T€,+2¢,+€,. (35i)

Again these are the same as the calculation by(£8). All
background fields excepE,,,,; and mixed-symmetric

(39

E e and Ellm (or E?m) can be either gauged away or
gauged toE,,\ .5, Euna, andE,,, (or ES ) by zero-
norm states. This is consistent with the result of the first
quantized approach presented in Sec. IV A. The transforma-
tion for the ghost part is very lengthy and is given in the
Appendix. There are 18 on-mass-shell conditions, which
contain a spin-four, a mixed-symmetric spin-three, two sym-
metric spin-three, two antisymmetric spin-two, four symmet-
ric spin-two, five vector and three scalar fields, and 15 gauge
conditions. It is again consistent with counting the number of
zero-norm states listed in ER5).

V. CONCLUSION

We have explicitly shown that the degenerate positive-
norm states at the third and fourth massive levels of bosonic
open string theory can be gauged to the higher rank fields at
the same mass level. This means that the scattering ampli-
tudes of these degenerate positive-norm states can be ex-
pressed in terms of those of higher spin states at the same
mass level through massive Ward identities. This is demon-
strated by using both the OCFQ string and WSFT. We have
compared the on-shell conditions of zero-norm states in the
OCFQ stringy gauge transformation to the background ghost
fields in off-shell gauge transformation of WSFT. This im-
portant observation makes the lengthy calculations in both
the first and the second quantized approaches controllable
and more importantly provides a double consistency check
of our results. The interesting stringy behaviors discussed in
this paper and those in Refd,2] seem to imply that there
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must exist enormous exotic high-energy properties of string 5§ = 39%? vat 9 61)3_26? V)_4E6 —257y,
theory, which remained to be uncovered. One interesting ap- . e . T A13)
plication of the decoupling of higher scalar modes is the
decay of tensor fields on D-brane into the true closed string 5§ =—20% 166 ph-3e 56 e,
vacuum in Sen’s conjectures. Canr T O€uvap (kr)

It is straightforward to generalize our calculation to closed —1et Nyws (A14)
string theory for the first quantized approach presented in
Secs. Il and IV A. Another way to generalize to the closed 552: %(32_8)6;_(9”6% 2511»1+ 5}1L2, (A15)
string case is to make use of the simple relation between
closed and open string amplitudes in REZ1]. A reliable g L(52— 8)e — 0, _2611 (A16)

second quantized closed string field theory may help uncover
more high-energy stringy properties. 5§ 12— 8)e +,e —512 (A17)
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APPENDIX 5§I7L= —45V6iy—&ﬂfll—46 —-5¢° +46,1L1+ Eﬂmn(Azz)
Gauge transformation for background ghost fields of the

fourth massive level are as follows: 5522 _28V6§#+(9M611_36 6610 36i3+3€wa7,
A23
O pvap=3(9° _S)EMWB 26(7,uv770/3)' (A1) (A3

9 3 10 12 13

2 11 12 0L, =—30d"¢ V—4 — 7€, +6€,+5€ +4em n"e

5 ;Lva 2(‘9 8)6;/,1/&_(9#6 %E Nva™ 6(1/7]01);1,! m ® s “ (A24)
(A2)

10_1,42_ 13 v 7 11 12
5§iva:%(a2_8)eiva+ a(MGZa)' (A3) 5§ ((9 8)6 +20 €, +26 +4E (A25)
5§iya=—4& eﬂmﬁ ZG(MW) 36Mm %e(linm), 54'0:%(!92_8)57_368_69, (A26)

(A4)
8=t —6e’— 2%~ 2™, (A27)
55?#!/] =3(d- 8)6[3;41/] - ‘9[#‘511/]2' (AS)
5 5§2= —(9”“6,3—767—469—3610— e+ eevn”V,
5§ e 19 8)6[MV + € M], (AB) (A28)
Ol = 20 €10 I1u€s) — 3€0u — 3€L, 803=—304e® — 8T+ 62— 4+ 265 ph,
® pv
(A7) (A29)
0 _1,2_ ov.3 _ 12,5 7 _ 8
08 (un = 2(0" = 8) €y = I(u€))+ 2€,, = €y, A8) 5§4=—407“6;—9€7+868+7610+6611+362V77M
+4€* 7 (A30)
80,,=3(P—8) €y, — du€n— 3 € Nap, (A9) a
80°=5(*—8) €'+ g€, >+ 5€%+ 3¢, A31
502 = H(P—8) €S, + Gyl 26l — O, CmE(T 8T e, e e (ASD
(A10)

508=3(6%°—8) e+ 207”'6/1}4‘ 6e—567— 67“,77’“’.

803 ,=3(P—8)€S ,+def—el 4%, (A32)

All
(A1D There are 18 on-mass-shell conditions and 15 gauge condi-
5§21 5= Zaae(l = 19(M€11/)3_ 36? . 4t - 365 ) tions in Eqs(A1)—(A32), which are _consi_stent with counting
" " " ” " from number of zero-norm states listed in E25). Note that
—€9,,, (A12)  there are two irreducible components in E42).
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