
On comparing the real and probed packet drop rates of a bottleneck

router: the TCP traffic case

S.Y. Wang

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC

Received 19 January 2002; revised 6 June 2002; accepted 24 June 2002

Abstract

In this paper, we address the question of whether the packet drop rate of a bottleneck router measured (experienced) by probe packets can

accurately reflect the bottleneck router’s real packet drop rate. To answer this question, we built a testbed network and conducted several real

experiments on it. In these experiments, using various traffic types and loads, we compared the probed and the real packet drop rates of the

bottleneck router. We also collected the internal queue length variation process of the bottleneck router and used it to do several post analyses

to answer some ‘what-if’ questions. This paper presents some interesting findings derived from this study.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Network measurement; Traffic measurement; Performance evaluation

1. Introduction

Injecting probe packets to a network is a method to

measure the quality of a network. In this method, the packet

drop rates and delays experienced by probe packets are used

as estimates of the real packet drop rate and delay of the

network. Because this method does not need any support

from the network, network customers can easily use this

method to estimate the quality of their networks. To help

customers choose an Internet service provider (ISP) with the

best quality, some third parties also use the probe method to

routinely measure and publish the quality of some ISPs’

networks.

Although the probe method is widely used, it has not

been adequately studied in the literature and many

important questions still remain unsolved. For example,

suppose that we have an infinite number of probe packets,

will the measured result converge and accurately reflect the

real packet drop rate? How many probe packets are needed

to obtain a converged result? Does the distribution of the

inter-probe packet times (i.e. different sampling techniques)

affect the measured results and the convergence speed? Not

knowing these answers, a customer who uses a probe

method to estimate the quality of his network may obtain

wrong measured results, interpret the measured results

wrongly, or waste time and effort on collecting unnecessary

samples.

To answer these important questions, we built a testbed

network to collect the detailed packet arrival, departure, and

dropping events, and queue length variation process of a

bottleneck router. With these information (which cannot be

obtained by an end-to-end probe method), we conducted

several on-line probe experiments to study the difference

between the measured and real packet drop rates of a

bottleneck router, and perform several off-line post analyses

to answer some ‘what if…’ questions.

This paper presents some interesting findings about

packet drop rate measurements. These findings are derived

from the results collected on three different routers and

switches that were tested in our experiments (a FreeBSD

router, a CISCO AGS þ router, and a 3COM 3300 SM

switch). In these experiments, we used two different kinds of

network traffic to generate congestion on the bottleneck

router/switch. These two kinds of traffic are ‘greedy TCP

traffic’ and ‘greedy HTTP traffic’, respectively. The greedy

TCP traffic is used to simulate the traffic that would be

generated by FTP programs that transfer huge files. The

greedy HTTP traffic is used to simulate the traffic that would

be generated by Web clients that continuously download

small-sized web pages.

This paper is organized as follows. Section 2 surveys

related work. Section 3 defines the terms that are frequently

0140-3664/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 14 0 -3 66 4 (0 2) 00 1 86 -X

Computer Communications 26 (2003) 591–602

www.elsevier.com/locate/comcom

E-mail address: shieyuan@csie.nctu.edu.tw (S.Y. Wang).

http://www.elsevier.com/locate/comcom

used in the paper. Section 4 describes the experimental setup

of our testbed networks. Section 5 presents our measure-

ment method and tool. Section 6 shows our experimental

results and derived findings when the network traffic is

greedy TCP traffic. Section 7 shows our experimental results

and derived findings when the network traffic is greedy

HTTP traffic. Finally, Section 8 concludes this paper.

2. Related work

There have been some researches on studying the packet

dropping behavior in a network. In Refs. [1–4], the authors

studied the packet dropping behavior of the Internet by

injecting unicast probe packets into the Internet and

observing their dropping behavior. In Ref. [5], the authors

inferred the packet drop rate of links by injecting multicast

probe packets onto a multicast tree. In Ref. [6], the authors

used analytical methods (queueing theory) to analyze the

packet loss process in a single server queueing system under

the assumption that the packet arrival is a Poisson process.

In Ref. [7], the authors used a collected packet trace to study

the relative performance of various sampling techniques. In

Ref. [8], the author studied the loss dependence of packets

that are transmitted in the Internet. Our work differs from

these work in that we study the difference between the

probed packet drop rate and the real packet drop rate of a

bottleneck router; however, these work do not investigate

this problem.

3. Terminology

Several terms that are frequently used in this paper are

defined in this section.

Real packet drop rate is the packet drop rate of a

bottleneck output port. Suppose that, over a long period of

time, N packets arrive at a bottleneck output port and D of

them are dropped before they are transmitted, then the

packet drop rate of this bottleneck output port is D=N: In

some contexts, when there is no ambiguity, we simply call it

‘packet drop rate’. Depending on contexts, it may be used to

represent the packet drop rate of a bottleneck output port, a

bottleneck router, or a network.

Measured packet drop rate is the packet drop rate of a

bottleneck output port measured (experienced) by probe

packets over a period of time. Suppose that N probe packets

traverse through a bottleneck output port and D of them are

dropped, then the packet drop rate of the bottleneck output

port measured (experienced) by the probe packet stream is

D=N: In some contexts, we use it to represent the measured

packet drop rate of a bottleneck output port, the bottleneck

router, or the network.

Queue-full percentage is the percentage of time in which

the bottleneck output port’s queue is full. This information

can be calculated from the queue length variation process of

the output queue. A queue length variation process has

many queue-full periods. A queue-full period starts when

the current queue length goes up to maxqlen and ends when

the current queue length goes down to maxqlen-1, where

maxqlen is the configured maximum queue length for the

output queue. Any packet arriving in this period will be

dropped due to a full queue. Suppose that, during an

experiment, the total time of the experiment is T seconds

and the total time of its queue-full periods is F seconds, then

the queue-full percentage is F=T :

FIFO scheme is the most commonly used first-in-first-

out packet scheduling and drop-tail packet dropping

scheme. To save space, when there is no ambiguity, we

simply use ‘the FIFO scheme’ to represent the FIFO and

drop-tail scheme.

Greedy TCP traffic is the kind of traffic that is generated

by many greedy TCP flows. A greedy TCP flow is a TCP

connection that has infinite data to send and uses as much

bandwidth as allowed by its TCP congestion control.

Greedy HTTP traffic is the kind of traffic generated by

many greedy HTTP web clients. A greedy HTTP web client

is a program that continuously issues a new web request to

download a web page immediately when the current request

is completed. Each web request will cause a TCP connection

to be set up before the requested web page can be

downloaded. In this study, the size of the web pages is a

fixed value of 16KB. The web server program used is

Apache 1.3. The web client program used is a script

program that continuously issues the ‘ftp http://host[:port]/

file’ command. This ftp command will use the HTTP

protocol to download the requested file from a web server.

More information can be found in Ref. [9].

4. Experimental testbeds

In our experiments, we used two different kinds of traffic

to study the problem. The first kind is greedy TCP traffic and

the second kind is greedy HTTP traffic. (A HTTP session’s

transfer amount is small but it also uses TCP as its transport

protocol.) We chose TCP traffic to study because in today’s

Internet, TCP traffic is the most dominant traffic.

4.1. Greedy TCP traffic

We studied this kind of traffic because it is similar to the

traffic that would be generated when many people use ftp to

transfer huge files.

Two single-bottleneck configurations are used in this

suite of experiments. They are shown in Fig. 1. In both

configurations, there are seven sending hosts on the left and

one receiving host on the right. Between each sending host

and the receiving host, there are N greedy TCP flows and

therefore there are 7 p N greedy TCP flows in total passing

through the bottleneck router/switch, where N is varied from

4, 8 to 12. All of these hosts are PC running FreeBSD 4.2

S.Y. Wang / Computer Communications 26 (2003) 591–602592

and use Intel EtherExpress 100/10 Mbps Ethernet cards. All

links are 10-m full-duplex Ethernet cables and thus their

propagation delays are negligible. This experimental

configuration is chosen to create congestion conditions

and the bottleneck router in this configuration is expected to

represent a typical bottleneck router operating in a real

network.

Configuration (a) and (b) differ in what is used for the

bottleneck router/switch. In (a), because we want to collect

the detailed packet arrival, departure, and dropping

processes of the bottleneck router but commercial routers

and switches do not provide this information, we used a

1.6 GHz PC running FreeBSD 4.2 as the bottleneck router.

Because a PC does not have enough PCI/ISA slots to plug-in

eight Ethernet cards to connect to the seven sending hosts

and one receiving host, we set the bandwidth of the link

between the FreeBSD router and the receiving host to be

only 10 Mbps, and let the seven sending hosts and the

FreeBSD router connect to the switch (Intel 8-port

InBusiness switch) all at 100 Mbps speed.

Under this network and traffic configurations, the

bandwidth of the most-congested link (i.e. the link between

the FreeBSD router and the receiving host) is purposely set

to only 10 Mbps. Because TCP implements congestion

control, the aggregate throughput of these competing TCP

flows cannot exceed 10 Mbps in the long term. In the short

term, although the instantaneous aggregate throughput may

have a chance to exceed 10 Mbps, the difference should be

minimal. Because the bandwidth of the switch’s bottleneck

output port is 100 Mbps, which is 10 times of the bandwidth

of the most-congested link, packets of these competing TCP

flows will not have a chance to be dropped in the switch.

The reasons are that before they have a chance to be dropped

in the switch, they should have already been dropped on the

most-congested link.

In configuration (b), we used a CISCO AGS þ router

and a 3COM 3300 SM switch to repeat the experiments

conducted on configuration (a). We did this to see whether

the findings obtained from a FreeBSD router also apply to

some commercial routers/switches. The CISCO AGS þ

router was manufactured in Spring 1995 and stopped

servicing our campus in Spring 1999. We disabled the

3COM switch’s IEEE 802.3 £ flow control so that there is

no link-level flow control in our experiments. Unlike what

we did in configuration (a), since a commercial router/s-

witch has many ports, we directly connected the seven

sending hosts and one receiving host to the router/switch

without using an extra switch. Since these commercial

routers/switches do not provide the detailed packet arrival,

departure, and dropping process information, we focused

our study only on the packet drop rate of the router/switch.

This information can be calculated by the method presented

in Section 5.2 if it is not provided by the router/switch.

4.2. Greedy HTTP traffic

We studied this kind of traffic because it is similar to the

traffic that would be generated when many people

continuously download small-sized web pages.

In this suite of experiments, we used a single-bottleneck

configuration to study the problem. This configuration is

shown in Fig. 2. The network topology of configuration (c)

is the same as that of configuration (a). However, the traffic

of configuration (c) is different from that of configuration

(a). Now between each sending host and the receiving host,

there are N pairs of a web server and a greedy web client.

Therefore, in total there are 7 p N such pairs, where N is

varied from 5, 10 to 15.

We did not use the CISCO AGS þ router and the 3COM

3300 SM switch to do the greedy HTTP traffic experiments.

This is because (1) the FreeBSD router can provide more

internal information than these commercial router/switch,

and (2) the greedy TCP traffic results collected on

configuration (a) and (b) show that the CISCO AGS þ

router and the 3COM 3300 SM switch generate the same

findings as the FreeBSD router (see Section 6). Thus, in

Fig. 1. The two configurations used in the greedy TCP traffic experiments.

Fig. 2. The configuration used in the greedy HTTP traffic experiments.

S.Y. Wang / Computer Communications 26 (2003) 591–602 593

the greedy HTTP traffic case, we just used configuration (c)

to collect experimental results.

5. Measurement method and tool

This section presents (1) the method that we used to

capture the queue length variation, packet arrival, departure,

and dropping processes occurring inside a bottleneck

FreeBSD router, and (2) the method that we used to

calculate the packet drop rate of a bottleneck commercial

router/switch.

5.1. Capturing events

We used the user-level tcpdump program with a modified

kernel to capture the queue length variation process, packet

arrival, departure, and dropping events in the FreeBSD

router. The tcpdump is a user-level program that can instruct

the in-kernel Berkeley packet filter [10] to capture certain

packets, associate each captured packet with a timestamp

(with a granularity of 1 ms), and pass the information of

captured packets to the user level. Since we also wanted to

pass the in-kernel events of packet arrival, departure,

dropping, and the current queue length information to the

user level, we decided to take advantage of tcpdump to do

this job.

We modified the kernel so that the in-kernel packet filter

captures only the packets that are of interest to us. By

default, the packet filter captures the incoming and outgoing

packets of a monitored network interface. However, this is

not what we want. Actually, for a monitored interface, we

are not interested in capturing its incoming packets. Instead,

we want to capture three different kinds of packets. The first

kind is the packets that are successfully enqueued into the

output queue, the second kind is the packets that should be

enqueued but dropped due to a full queue under FIFO (or

selected to be dropped under RED [11]), the third kind is the

packets that are dequeued from the output queue for

transmission. For each of such packets, we associate it

with a timestamp to record when the corresponding event

(arrival, dropping, or departure) happens.

When we process the tcpdump output, we need to

distinguish between these three different kinds of packets.

To be able to do this, we put this ‘kind’ information into the

Ethernet source address field of a captured packet. We did

this because when a packet is captured, a copy of the packet

is generated and passed to the tcpdump for display.

Modifying the Ethernet header of the copy (the captured

packet) to convey some information to the user level does

no harm to the original packet. We set the Ethernet source

address of a captured packet that is enqueued to the output

queue, that is dropped, and that is dequeued from the output

queue to be qlen:1:1:1:1:1, qlen:2:2:2:2:2, and

qlen:3:3:3:3:3, respectively, where qlen is the current

queue length when the corresponding event occurs. Using

this approach, the tcpdump output provides detailed

information about the queue length variation, packet arrival,

dropping, and departure processes. Fig. 3 depicts this

capturing mechanism.

During our experiments, because we used a high

performance 1.6 GHz PC as the FreeBSD router and the

bottleneck link bandwidth is only 10 Mbps, the tcpdump

program did not lose any packet when capturing packets.

5.2. Calculating packet drop rates

If a commercial router/switch does not provide packet

drop count information for its output ports, we use the

method presented here to calculate the packet drop rate of an

output port. Not every commercial router/switch provides

packet drop count information. For example, the 3COM

3300 SM switch does not provide this information.

In this method, we first sum up the number of packets

successfully sent on each of the seven sending hosts. This

number S is the total number of packets that enter the

router/switch and then are directed to the bottleneck output

port. Suppose that the number of packets successfully

received by the receiving host is R. Then the number D,

which is S 2 R; is the number of packets dropped at the

bottleneck output port. Finally, we divide D by S to obtain

the packet drop rate of the bottleneck output port. We have

verified the correctness of this method by using the

FreeBSD router. In all of our verification experiments, the

packet drop rate calculated by this method is very close to

the real packet drop rate of the FreeBSD router.

6. Results and findings: the greedy TCP traffic case

In this section, we present experimental results and

findings derived when the network traffic is greedy TCP

traffic. As described in Section 4.1, 7 p N greedy TCP flows

compete for the bottleneck link’s bandwidth (N ¼ 4, 8, and

12), and some packets of these TCP flows are dropped inside

Fig. 3. The mechanism used to capture the internal queue length variation

process of a bottleneck router.

S.Y. Wang / Computer Communications 26 (2003) 591–602594

the bottleneck router/switch. Every experiment lasts at least

90 min. In the following, more specific setup information

will be provided.

6.1. Packet drop rate measurements

With the background greedy TCP traffic going on, we run

the ping program on each of the seven sending hosts to

measure the packet drop rate of the paths between the

sending and receiving hosts. The ping program sends

multiple ping request packets to the receiving host, and

requires the receiving host to send back a ping reply packet

when it receives a ping request packet. When the ping

program stops, it divides the number of received reply

packets by the number of sent request packets and reports

this number as the measured packet drop rate. Because there

is no bottleneck on the paths from the receiving host to the

sending hosts, only ping request packets may be dropped

and no ping reply packet will be dropped. The FreeBSD

router, CISCO AGS þ router, and 3COM 3300 SM switch

do not favor non-ping packets over ping packets or favor

ping packets over non-ping packets when dropping packets.

Therefore, the seven ping programs unbiasedly measure the

packet drop rate that a packet may experience at the

bottleneck output port.

Each of these ping programs uses the default time

interval of 1 s to send out its request packets. The number of

request packets sent during every experiment is at least

5000. (We need this large number of samples to obtain

converged results. See the figures and discussion in Section

6.4.) Because each request packet is only 84 bytes and each

ping program’s sending rate is 1 packet/s, the extra traffic

load placed on the bottleneck link by the seven ping

programs is only 588 bytes/s. Since this rate is only 0.045%

of the bottleneck link’s bandwidth (10 Mbps), the ping

probe packets affect the original background TCP traffic

insignificantly. Our experimental results show that the

bottleneck output port’s packet drop rate is almost the same

with or without the ping traffic.

6.2. Finding about packet drop rate under FIFO

Finding 1. When FIFO is used in a bottleneck

router/switch, the measured packet drop rate reflects the

queue-full percentage, which is larger than the real packet

drop rate.

The bottleneck routers/switches that we used to verify

this finding are (1) a FreeBSD router, (2) a CISCO AGS þ

router, and (3) a 3COM 3300 SM switch. In (1)–(3), the

packet scheduling and dropping scheme used at the

bottleneck output port is FIFO and drop tail. The maximum

queue lengths of the FIFOs in (1) and (2) are the default of

50 and 40 packets, respectively. The information about the

maximum queue length of the FIFO in (3) is unavailable.

However, because the transmission time of a 1500-byte TCP

packet on the 10 Mbps bottleneck link is 1.2 ms and the

maximum queueing delays reported by ping packets in (3) is

158 ms, we estimate that the maximum queue length of the

3COM 3300 SM switch is about 130 (158/1.2) packets.

Table 1 presents the results when the bottleneck is a

FreeBSD router under three different levels of load (28, 56,

and 84 greedy TCP flows, respectively). The results include

the packet drop rates measured by the seven ping programs,

the average of these seven ping results (ave), the queue-full

percentage, the real packet drop rate (real), and the ratio of

ave over real (ave/r). Table 2 presents the results when the

bottleneck is a CISCO AGS þ router. Table 3 presents the

results when the bottleneck is a 3COM 3300 SM switch.

From Tables 1 to 3, we see that the packet drop rates

measured by the seven ping programs overestimate the real

packet drop rate (the overestimating ratios are between 1.45

and 2.93), and what they really measure is the queue-full

percentage rather than the real packet drop rate. This

important finding can be explained as follows.

First, when a probe packet arrives at a bottleneck output

port, it must be in either a queue-full period or a non-queue-

full period. If it is in a queue-full period, the probe packet

must be dropped. Otherwise, it is not dropped. It is clear that

the packet drop rate measured (experienced) by multiple

Table 1

The FIFO packet drop rate results when a FreeBSD router is used (greedy TCP traffic)

TCPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) qFull Real (%) ave/r

28 TCPs 10.66 12.67 12.02 11.79 11.80 11.21 11.97 11.73 11.30 3.85 2.93

56 TCPs 16.56 15.66 15.97 15.74 14.83 15.84 15.47 15.72 15.01 6.80 2.20

84 TCPs 19.49 18.43 19.52 19.09 19.68 18.38 19.19 19.11 18.20 9.18 1.98

Table 2

The FIFO packet drop rate results when a CISCO AGS þ router is used (greedy TCP traffic)

TCPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) qFull Real (%) ave/r

28 TCPs 13.50 13.21 13.56 12.87 12.76 13.23 12.42 13.07 N/A 4.96 2.63

56 TCPs 15.37 15.45 16.26 17.31 17.58 16.72 16.49 16.65 N/A 6.60 2.49

84 TCPs 19.37 18.45 19.83 19.96 18.69 19.81 19.83 19.42 N/A 8.47 2.29

S.Y. Wang / Computer Communications 26 (2003) 591–602 595

probe packets in the time domain actually reflects the queue-

full percentage.

Second, because in a queue-full period there may be no

packet dropping (to be discussed later) whereas a probe

packet arriving in such a period must be dropped, the queue-

full percentage does not proportionally correspond to the

real packet drop rate.

In a queue-full period, there may be no packet dropping.

Such a period is called ‘queue-full-but-no-drop’ in this

paper and may occur as follows. Suppose that the current

queue length is maxqlen-1. When a packet arrives and is

enqueued to the output queue, the current queue length will

go up to maxqlen, which starts a queue-full period. Later,

when an in-queue packet is dequeued for transmission, the

current queue length will go down to maxqlen-1, which

stops the current queue-full period. If no other packet arrives

in this period, no packet is dropped in this queue-full period.

The queue-full percentage is greater than the real packet

drop rate in experiments. This is because in these

experiments, the average packet drop rate (measured in

packet/s) in queue-full periods is less than the average

packet arrival rate. This phenomenon certainly must occur

in these experiments. Otherwise, the real packet drop rate

will be equal to or greater than the queue-full percentage,

which is not true for these experiments. (Note: For an

experiment, let N and D represent the number of packet

arrival and dropping events, and F and T represent the total

time of queue-full periods and the total time of the

experiment. If D=F , N=T is not true, then D=F $ N=T

must be true. This is equivalent to D=N $ F=T ; which means

that the real packet drop rate is equal to or greater than the

queue-full percentage and is not true.) We use the

experimental results of the 28 TCPs case of Table 1 to

show this phenomenon. In the experiment, the average

packet drop rate in queue-full periods is 286.21 packet/s.

This number is less than the average packet arrival rate of

840.61 packet/s. The results of other cases also exhibit the

same phenomenon.

When network congestion level increases, the over-

estimating ratio decreases. This phenomenon is evidenced

by the results in Tables 1–3. The reason is that as network

load increases, the queue-full-but-no-drop periods occur

less and less likely. This causes the ratio (denoted as

PDRQF=PAR) of the average packet drop rate in queue-full

periods (measured in packet/s) over the average packet

arrival rate to increase. As an evidence, for the 28 TCPs, 56

TCPs, and 84 TCPs cases of Table 1, the ratios of queue-

full-but-no-drop percentage over queue-full percentage are

0.69, 0.60, and 0.54, respectively (decreasing), and the

ratios of PDRQF=PAR are 0.34, 0.45, and 0.51, respectively

(increasing). This finding leads to Finding 3 (presented

later), which discusses how the overestimating ratio will

change under FIFO and RED when network load increases.

We can derive some implications from this finding.

† If routers/switches of a network use the FIFO scheme, an

end-to-end probe method (e.g. the most commonly used

ping) will measure the real packet drop rate too high.

Since most network users do not carefully distinguish

between a measured and the real packet drop rate of a

network, they usually incorrectly interpret a measured

packet drop rate as the real packet drop rate. Therefore, it

is unfair to their ISPs because the quality of their

networks actually is not that bad.

† A network’s packet drop rate is a composite number.

Different types of traffic in a network may experience and

have different packet drop rates. This implication is

evidenced by the different packet drop rates experienced

by probe packets and the background TCP packets listed

in Tables 1–3. If we view the seven ping packet streams

as a part of the background traffic in the first beginning

and do not view them as external probe packets, clearly

we see that TCP and ping packets experience and have

different packet drop rates at the same bottleneck.

Why ping and TCP packets experience different

packet drop rates can be explained as follows. Because

ping packets are transmitted independently of the packet

drop rate experienced by previously sent ping packets,

they unbiasedly sample the length of the bottleneck

output queue. The ratio of the number of ping packets

that encounter a queue-full period over the total number

of ping packets sent thus will converge to the queue-full

percentage. TCP packets, on the other hand, are sent

under the control of TCP congestion control, whose

actions depend on the packet drop rate experienced by

previously sent TCP packets. Because TCP packets are

not independently sent, they do not unbiasedly sample

the length of the bottleneck output queue. Therefore, the

packet-dropping ratio (measured packet drop rate) does

not correspond to the queue-full percentage.

† If the majority of traffic is TCP, using the packets of a

greedy TCP flow as probe packets can obtain a closer

estimate of the real packet drop rate.

In our experiments, the traffic flows that compete for

the bottleneck link’s bandwidth are all TCP flows and

they are homogeneous. Each of these TCP flows thus will

Table 3

The FIFO packet drop rate results when a 3COM 3300 SM switch is used (greedy TCP traffic)

TCPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) qFull Real (%) ave/r

28 TCPs 4.36 4.49 4.49 4.02 4.05 4.27 4.70 4.34 N/A 2.36 1.83

56 TCPs 8.24 8.24 8.22 8.39 8.25 8.34 8.56 8.32 N/A 5.45 1.52

84 TCPs 10.64 11.25 12.03 11.97 12.23 11.71 11.69 11.64 N/A 7.99 1.45

S.Y. Wang / Computer Communications 26 (2003) 591–602596

experience the same packet drop rate (the real packet

drop rate of the network). This means that if we use the

packets of a greedy TCP flow as probe packets, the

packet drop rate measured by them will reflect the real

packet drop rate. This implication is confirmed by a post

analysis of our experimental results. For example, for the

28 TCP flows case of Table 1, the packet drop rates

experienced by five individual TCP flows are 3.74, 3.80,

3.81, 3.76, 3.98, respectively. These numbers are close to

the real packet drop rate.

6.3. Finding about packet drop rate under RED

Finding 2. When RED is used in a bottleneck router and

the network is not too congested, the measured packet drop

rates are close to the real packet drop.

The bottleneck router that we used to verify this finding

is a FreeBSD router. Unlike what we did for the FIFO case,

because the CISCO AGS þ router and 3COM 3300 SM

switch do not support RED, they are not used in the

experiments. To use RED at the bottleneck output port of

the FreeBSD router, we let the router run FreeBSD 4.2 and

the ALTQ 3.0 [12] package. The ALTQ package

implements various packet scheduling and buffer manage-

ment schemes for a PC-UNIX based router. The parameter

settings for RED used in our experiments are (weight:1/512

inv_pmax:10 qthresh:(10,50) q_limit:50).

Table 4 presents the results when the bottleneck router

uses RED under three different levels of load (28, 56, and 84

greedy TCP flows, respectively). The information shown in

this table is similar to that shown in previous tables. The

only exception is that the qFull column is replaced with the

forceD (forced drop) column, which shows what percentage

of incoming packets is force-dropped. The design of RED

tries to drop incoming packets proactively before the queue

length exceeds the maximum queue length. The queue-full

percentage under RED thus is very small when the network

is not too congested. However, if the network becomes

severely congested and the queue eventually overflows,

some packets need to be dropped (called ‘forced drop’ in

RED).

From Table 4, we see that for the 28 TCP flows case, the

packet drop rates measured by the seven ping programs are

very close to the real packet drop rate. (The overestimating

ratio is only 1.04). For the 56, and 84 TCP flows cases,

although the overestimating ratio becomes larger and

increases to 1.14 and 1.25, respectively, the measured and

real packet drop rates are still quite close to each other,

compared to the FIFO results.

REDs proactive packet dropping strategy makes a

measured packet drop rate close to the real packet drop

rate. In RED, when a packet arrives at an output port, the

probability of dropping it is a linear function Drop() of the

exponential average of the queue length. Suppose that

the probability distribution of the exponential average queue

length seen by arriving packets is PðiÞ; i ¼ 0; 1; 2;…;

maxqlen; the average packet dropping probability (or drop

rate) for arriving packets will be
Pmaxqlen

i¼0 PðiÞ p DropðiÞ:

The probability distribution of the exponential average

queue length seen by probe packets is close to that seen by

TCP packets under RED. Fig. 4 shows the probability

distributions of the 28 TCP flows case of Table 4. (Note:

Because probe packets are ICMP packets, we can

distinguish probe packets from TCP packets in a tcpdump

log file.) Because the difference between PðiÞprobe (seen by

probe packets) and PðiÞTCP (seen by TCP packets) is small

and less than 1 (the maximum difference is 0.003 in Fig. 4

when i is 32), and DropðiÞ is also small and less than 1 (the

maximum value is 0.1 when i is maxqlen), the product term

ðPðiÞprobe 2 PðiÞTCPÞ p DropðiÞ becomes tiny (the maximum

value is 0.000165 when i is 32). Because every product term

is tiny and some of the product terms are positive while

some of them are negative, the sum of these product terms,

which is the difference between the packet drop rates of

probe and TCP packets, is small (0.0015).

Table 4

The RED packet drop rate results when a FreeBSD router is used (greedy TCP traffic)

TCPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) forceD (%) Real (%) ave/r

28 TCPs 4.78 4.96 4.82 5.08 4.99 4.78 4.87 4.89 0.08 4.68 1.04

56 TCPs 7.21 7.31 7.85 8.33 8.68 8.25 9.01 8.09 0.6 7.05 1.14

84 TCPs 10.58 10.84 10.73 11.78 11.29 11.64 12.22 11.29 1.91 9.03 1.25

Fig. 4. The probability distributions of the exponential average queue

length (rounded to integers) seen by probe and TCP packets under RED,

respectively (greedy TCP traffic).

S.Y. Wang / Computer Communications 26 (2003) 591–602 597

Using the same
Pmaxqlen

i¼0 PðiÞ p DropðiÞ formula, we

can show that under FIFO the packet drop rate difference

is not tiny. Under FIFO, because Drop(maxqlen) is 1 and

DropðiÞ is 0, i ¼ 0; 1; 2;…;maxqlen-1; the packet drop rate

difference becomes ðPðmaxqlenÞprobe 2 PðmaxqlenÞTCPÞ p 1:

PðmaxqlenÞprobe 2 PðmaxqlenÞTCP is close to the queue-full-

but-no-drop percentage and is not tiny. Fig. 5 shows the

probability distributions of the 28 TCP flows case of Table 1.

The difference between PðmaxqlenÞprobe and PðmaxqlenÞTCP

is about 7% (maxqlen here is 50), which is not tiny.

Finding 3. When network load increases, the over-

estimating ratio under RED increases whereas the over-

estimating ratio under FIFO decreases.

When the network congestion level increases and causes

a higher percentage of incoming packets to be force-

dropped, the overestimating ratio under RED will increase.

Table 4 shows that when the load increases from 28, 56, to

84 greedy TCP flows, the forced drop percentage increases

from 0.08, 0.6, to 1.91%, and the overestimating ratio

increases from 1.04, 1.14, to 1.25. This can be explained as

follows. When a larger and larger percentage of packets are

force-dropped, RED gradually degenerates to the FIFO

scheme. Because our previous FIFO results show that the

FIFO scheme has the overestimation problem, it is clear that

when network load becomes heavier, a measured packet

drop rate will deviate from the real packet drop rate by a

larger value.

Previously, our experimental results show that when

network load increases, the overestimating ratio under FIFO

decreases. It is interesting to calculate the packet drop rate

where the two ratios will meet each other. (Note: Because

even under severe congestion, RED at worst only degen-

erates to FIFO and will not perform worse than FIFO, these

two ratios will not cross over.) Using the regression analysis

and extrapolation method, we find that this rate would be

13% for the experiments of Tables 1 and 4.

6.4. Finding about various sampling techniques

Finding 4. Different sampling techniques generate close

measured packet drop rates and convergence speeds.

When using probe packets to measure a network’s packet

drop rate, an important question is “Will different

distributions of inter-probe packet times result in different

measured packet drop rates and convergence speeds?” By

‘convergence speed’, we mean how many samples are

needed to let a measured packet drop rate converge to what

it should eventually converge to. Another important

question is “If we have multiple probe packet streams that

measure the same bottleneck router’s packet drop rate but

each of them is launched at a different time, how soon can

their results approach each other?” (Note: In this case, we

are concerned about the convergence of the difference

among their results, not the convergence of the difference

between their results and the real packet drop rate.)

Fig. 5. The probability distributions of the queue length seen by probe and

TCP packets under FIFO, respectively (greedy TCP traffic).

Fig. 6. The convergence of measured packet drop rates under FIFO when

periodic sampling is used (greedy TCP traffic).

Fig. 7. The convergence of measured packet drop rates under FIFO when

periodic sampling with random delay is used (greedy TCP traffic).

S.Y. Wang / Computer Communications 26 (2003) 591–602598

To answer these questions, we used two queue length

variation processes collected in the FreeBSD router to

perform some post analyses. The first was collected when

the FreeBSD router uses the FIFO scheme and under the

load of 28 greedy TCP flows (the first row of Table 1). The

second was collected with RED and under the same load

(the first row of Table 4).

We test three different sampling techniques (periodic,

periodic þ random delay, Poisson) in our analyses. The

periodic sampling is the most widely used method for its

simplicity. In this technique, the inter-arrival times of probe

packets at the bottleneck output port is a fixed interval. The

periodic þ random delay sampling is used to simulate the

delay jitter that periodic probe packets may experience

before arriving at the output port. In analyses, we add a

random number generated uniformly between 230 and

30 ms to a packet’s original arrival time. That is, if the

average interval is T seconds, the arrival time of the ith probe

packet is set to be T p i þ ri; where ri is a uniform random

number between 230 and 30 ms. We also study Poisson

sampling because it is recommended in Ref. [13] for its

memoryless property [14]. In our analyses, the average inter-

arrival time for these sampling techniques is set to the same

value of 1 s (the default value used by the ping program).

In our analyses, for a N-packet probe packet stream,

given the arrival times of its packets P1;P2;…;PN ; the

measured packet drop rate up to the time when packet Pi is

issued is calculated as D=i; where D is the number of packets

between P1 and Pi that are dropped due to encountering a

full queue under FIFO or are selected to be dropped under

RED. Under FIFO, we consider a packet to be dropped if its

arrival time fall into a queue-full period of the collected

queue length variation process. Under RED, we consider a

packet to be dropped if the dropping probability function

chooses to drop it. To study the convergence speeds of a

sampling technique, in each analysis, we launch ten probe

packet streams using the same sampling technique at

0:0; 0:1; 0:2;…; 0:9 s; respectively. If a probe packet stream

needs to use random numbers (e.g. Poisson sampling), it

uses a different sequence of random numbers.

Fig. 8. The convergence of measured packet drop rates under FIFO when

Poisson sampling is used (greedy TCP traffic).

Fig. 9. The convergence of measured packet drop rates under RED when

periodic sampling is used (greedy TCP traffic).

Fig. 10. The convergence of measured packet drop rates under RED when

periodic sampling with random delay is used (greedy TCP traffic).

Fig. 11. The convergence of measured packet drop rates under RED when

Poisson sampling is used (greedy TCP traffic).

S.Y. Wang / Computer Communications 26 (2003) 591–602 599

Figs. 6–8 present the packet drop rates measured by 10

probe packet streams under FIFO. Figs. 9–11 present the

10 measured results under RED. In these figures, each of

the 10 lines in the top represents the measured packet drop

rate of a probe packet stream. The line at the bottom

represents the standard deviation (labeled ‘stddev’) of these

10 measured packet drop rates. This metric shows how soon

these measured drop rates approach each other. The line

above the stddev line represents the distance (labeled

‘distance’) between the 10 measured packet drop rates and

the packet drop rate C that they should converge to. (Note:

We have shown that under FIFO, this value is the queue-full

percentage, and under RED, it is the real packet drop rate.)

More precisely, suppose that M1;M2;…;M10 are the 10

measured packet drop rates, then the distance is the distance

between the two points ðC;C;C;C;C;C;C;C;C;CÞ and

ðM1;M2;M3;M4;M5;M6;M7;M8;M9;M10Þ in the 10-dimen-

sion space ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP10
i¼1 ðMi 2 CÞ2

q
Þ: This metric shows how soon

the measured packet drop rates converge to what they should

eventually converge to.

From these figures, we have some findings as follow.

† Different sampling techniques generate close measured

packet drop rates.

In the FIFO case, the periodic, periodic þ random

delay, and Poisson samplings all converge to the queue-

full percentage. In the RED case, they all converge to the

real packet drop rate. In fact, we have tried many

different distributions of the inter-arrival times of probe

packets (e.g. the normal and uniform distributions). They

all generate close packet drop rates.

† Different sampling techniques have about the same

convergence speeds.

In both the FIFO and RED cases, from the stddev and

distance lines, we see that the three different sampling

techniques have about the same convergence speeds.

† Under RED, different probe packet streams report very

close measured packet drop rates over time if their

corresponding packets (i.e. Pi) arrive at the bottleneck

output port not too far away from each other.

RED uses the exponential average of the queue length

to calculate a dropping probability. Its weighing factor is

1/512 for a new queue length sample. (Note: The

exponential average of the queue length is updated as

EA ¼ EA p 511=512 þ NewQlen p 1=512; where EA is

the exponential average and NewQlen is a new sample of

the current queue length.) Because the weighting factor is

purposely configured small to not punish bursty traffic,

the exponential average changes very slowly. Therefore,

if probe packets arrive closely at the output port, they

would receive about the same packet dropping

probabilities.

This explains why in Fig. 9, the standard deviation of

the 10 measured packet drop rates reduces to a small

value rapidly while the distance to the real packet drop

rate is still large. In Fig 9, the 10 periodic sampling

packet streams are only shifted by 0.1 s on the time axis

and use no random number in their scheduled arrival

times. Therefore, the arrival times of packet Pi of each of

the 10 probe packet streams are close to each other.

† A large number of samples are needed to obtain

converged results.

We see that for a probe packet stream to obtain a

measured packet drop rate that is close to what it should

converge to, just a few hundreds of probe packets are not

enough. At least a few thousands probe packets are

needed to let a measured packet drop rate approach what

it should converge to.

7. Results and findings: the greedy HTTP traffic case

In this section, we present experimental results and

findings derived when the network traffic is greedy HTTP

traffic. As described in Section 4.2, the reply traffic of 7 p N

Fig. 12. The probability distributions of the queue length seen by probe and

TCP packets under FIFO, respectively (greedy HTTP traffic).

Table 5

The FIFO packet drop rate results when a FreeBSD router is used (greedy HTTP traffic)

HTTPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) qFull (%) Real (%) ave/r

35 HTTPs 3.23 3.05 3.12 2.98 2.95 3.20 3.03 3.08 3.01 2.16 1.43

70 HTTPs 8.19 8.17 7.88 7.94 7.99 8.06 8.28 8.07 7.91 6.17 1.31

105 HTTPs 10.49 11.17 10.74 10.53 11.43 10.87 10.89 10.92 10.63 9.34 1.17

S.Y. Wang / Computer Communications 26 (2003) 591–602600

greedy Web clients compete for the bottleneck link’s

bandwidth (N ¼ 5, 10, and 15). The size of each web

transfer is 16KB. Every experiment lasts at least 90 min.

7.1. Packet drop rate measurements

LikewhatwedidinthegreedyTCPtrafficcase,withgreedy

HTTP traffic going on, we run the ping program on each of the

seven sending hosts to measure the packet drop rate of the

bottleneck FreeBSD router. The interval used by the ping

program for its request packets is the default value of 1 s.

7.2. Finding about packet drop rate under FIFO

Table 5 presents the FIFO results under three different

levels of load (35, 70, and 105 greedy HTTP sessions,

respectively). Like the results presented in Table 1, the

results in Table 5 show that the measured packet drop rates

are higher than the real packet drop rates of the bottleneck

router and actually are close to the queue-full percentages.

These results show that Finding 1, which is presented in

Section 6.2, also holds for the greedy HTTP traffic case.

Fig. 12 shows the probability distributions of the queue

length seen by probe packets and TCP packets under FIFO

for the 105 HTTP sessions case of Table 6. We can see that

probe packets experience more packet drops than TCP

packets (at the place when the queue length is 50), and their

experienced packet drop rate is close to the queue-full

percentage.

7.3. Finding about packet drop rate under RED

Table 6 presents the RED results under three different

levels of load (35, 70, and 105 greedy HTTP sessions,

respectively). Like the results presented in Table 4, the

results in Table 6 show that the measured packet drop rates

are close to the real packet drop rates of the bottleneck

router. These results show that Finding 2, which is presented

in Section 6.3, also holds for the greedy HTTP traffic case.

By comparing the results shown in Tables 5 and 6, we

can find that Finding 3, which is presented in Section 6.3,

holds for the greedy HTTP traffic case as well. That is, under

FIFO, the overestimating ratio decreases as the network

load increases whereas under RED, the overestimating ratio

increases as the network load increases.

Fig. 13 shows the probability distributions of the

exponential average queue length seen by probe packets

and TCP packets under RED for the 105 HTTP sessions

case of Table 6. We can see that these two probability

distribution curves are close to each other.

7.4. Finding about various sampling techniques

Like what we did in Section 6.4, we test the performance

of various sampling techniques when the network traffic is

greedy HTTP traffic. The performance results show that

Finding 4, which is presented in Section 6.4, holds for the

greedy HTTP traffic case as well. To space, we do not

present the performance figures of these cases in this paper.

8. Conclusions

In this paper, we study several important questions

related to using probe packets to measure a network’s real

packet drop rate. By using an instrumented FreeBSD kernel

as a bottleneck router, we were able to collect its internal

queue length variation process and derive the following

findings.

† Finding 1. When FIFO is used in a bottleneck

router/switch, the measured packet drop rate reflects

the queue-full percentage, which is larger than the real

packet drop rate.

Table 6

The RED packet drop rate results when a FreeBSD router is used (greedy HTTP traffic)

HTTPs ping1 (%) ping2 (%) ping3 (%) ping4 (%) ping5 (%) ping6 (%) ping7 (%) ave (%) forceD (%) Real (%) ave/r

35 HTTPs 3.23 3.01 3.10 3.20 3.07 3.38 3.27 3.18 0.007 3.14 1.01

70 HTTPs 5.69 5.74 6.00 5.77 5.84 5.92 5.79 5.82 0.076 5.65 1.03

105 HTTPs 7.63 7.54 7.42 7.64 7.37 7.54 7.49 7.51 0.870 7.08 1.06

Fig. 13. The probability distributions of the exponential average queue

length (rounded to integers) seen by probe and TCP packets under RED,

respectively (greedy HTTP traffic).

S.Y. Wang / Computer Communications 26 (2003) 591–602 601

† Finding 2. When RED is used in a bottleneck router/

switch and the network is not too congested, the measured

packet drop rates are close to the real packet drop rate.

† Finding 3. When network load increases, the over-

estimating ratio under RED increases whereas the

overestimating ratio under FIFO decreases.

† Finding 4. Different sampling techniques generate close

measured packet drop rates and convergence speeds.

The above findings are derived from the results collected

on our single-bottleneck testbed network. In the future, we

plan to build a multibottleneck testbed network and repeat

our studies.

Acknowledgements

We would like to thank the anonymous reviewers for

their valuable comments. This research was supported in

part by MOE Program of Excellence Research under

contract 89-E-FA04-4, the Lee and MTI Center for

Networking Research, NCTU, NSC grant 90-2213-E-009-

157, and the Institute of Applied Science and Engineering

Research, Academia Sinica, Taiwan.

References

[1] J.-C. Bolot, End-to-End Packet Delay and Loss Behavior in the

Internet, Proceedings of SIGCOMM’93, September, 1993, pp. 289–

298.

[2] V. Paxson, End-to-end internet packet dynamics, IEEE/ACM

Transactions on Networking 7 (3) (1999) 277–292. June.

[3] M. Yajnik, S. Moon, J. Kurose, D. Towsley, Measurement and

Modeling of the Temporal Dependence in Packet Loss, Proceedings

of IEEE INFOCOM’99, March, 1999.

[4] Y. Zhang, V. Paxson, S. Shenker, On the constancy of Internet path

properties, Proceedings of ACM SIGCOMM Internet Measurement

Workshop (IMW’2001), San Francisco, California, USA, November,

2001.

[5] R. Caceres, N.G. Duffield, J. Horowitz, D. Towsley, T. Bu, Multicast-

Based Inference of Network-Internal Characteristics: Accuracy of

Packet Loss Estimation, Proceedings of IEEE INFOCOM’99, March,

1999.

[6] I. Cidon, A. Khamisy, M. Sidi, Analysis of packet loss processes in

high-speed networks, IEEE Transactions on Information Theory 39

(1) (1993) 98–108. January.

[7] K. Claffy, G. Polyzos, H.-W. Braun, Application of Sampling

Methodologies to Network Traffic Characterization, Proceedings of

ACM SIGCOMM’93, September, 1993, pp. 194–203.

[8] M.S. Borella, Measurement and interpretation of internet packet loss,

Journal of Communications and Networks 2 (2) (2000) June.

[9] FreeBSD General Commands Manual.

[10] S. McCanne, V. Jacobson, Berkeley Packet Filter: A New Archi-

tecture for User-Level Packet Capture, Proceedings of USENIX

Winter Technical Conference, January, 1993.

[11] S. Floyd, V. Jacobson, Random early detection gateways for

congestion avoidance, IEEE/ACM Transactions of Networking 1

(4) (1993) 397–413. August.

[12] K. Cho, A Framework for Alternate Queueing: Towards Traffic

Management by PC-UNIX Based Routers, Proceedings of 1998

USENIX Annual Technical Conference, June, 1998, The latest ALTQ

release can be retrieved from http://www.csl.sony.co.jp/kjc/software.

html..

[13] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, Framework for IP

performance metrics, RFC 2330.

[14] R. Wolf, Poisson arrivals see time averages, Operating Research 30

(2) (1982) 223–231.

S.Y. Wang / Computer Communications 26 (2003) 591–602602

http://www.csl.sony.co.jp/kjc/software.html
http://www.csl.sony.co.jp/kjc/software.html

	On comparing the real and probed packet drop rates of a bottleneck router: the TCP traffic case
	Introduction
	Related work
	Terminology
	Experimental testbeds
	Greedy TCP traffic
	Greedy HTTP traffic

	Measurement method and tool
	Capturing events
	Calculating packet drop rates

	Results and findings: the greedy TCP traffic case
	Packet drop rate measurements
	Finding about packet drop rate under FIFO
	Finding about packet drop rate under RED
	Finding about various sampling techniques

	Results and findings: the greedy HTTP traffic case
	Packet drop rate measurements
	Finding about packet drop rate under FIFO
	Finding about packet drop rate under RED
	Finding about various sampling techniques

	Conclusions
	Acknowledgements
	References

