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Abstract. We prove the dispersionless Hirota equations for the dispersionless Toda, disper-

sionless coupled modified KP and dispersionless KP hierarchies using an idea from classical
complex analysis. We also prove that the Hirota equations characterize the tau functions
for each of these hierarchies. As a result, we establish the links between the hierarchies.
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1. Introduction

Dispersionless integrable hierarchies have been under active research in recent years

(see, e.g., [13, 14, 19–22]). One of the reasons is due to its close relation with the other

area of mathematics and physics, such as topological field theory, string theory, 2D

gravity, matrix models and conformal maps (see, e.g., [1–4, 7, 10, 12, 15, 17, 18, 26]).

The tau functions of the dispersionless integrable hierarchies play an important role

in topological field theories ([8, 9]), for they give solutions to the so-called WDVV

equation. Conversely, in [4], it was proved that the tau functions of the dispersionless

KP (dKP) and dispersionless Toda (dToda) hierarchies satisfy the associativity equa-

tion. One of the main ingredients of the proof of [4] is the dispersionless Hirota equa-

tions satisfied by the dKP and dToda hierarchies. The dispersionless Hirota equation

for the dKP hierarchy was first derived by Takasaki and Takebe [22] as the disper-

sionless limit of the differential Fay identity. Later, the Hirota equation was further

studied by Carroll and Kodama [5]. In connection to conformal mappings which

give rise to solutions of the dToda hierarchy, Wiegmann, Zabrodin et al. derive

the Hirota equations for the dToda hierarchy [12, 15, 25]. In this paper, we point

out that these Hirota equations are closely related to some concepts in classical

complex analysis, namely Faber polynomials and Grunsky coefficients.

In Section 2, we review some concepts from classical complex analysis. We

define some classes of formal power series which appear in dKP, dcmKP (disper-

sionless coupled modified KP, see [24]) and dToda hierarchies. We generalize the
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definition of the Grunsky coefficients and Faber polynomials to these classes of

formal power series and review their properties. In Section 3, we review the dToda,

dcmKP and dKP hierarchies and their tau functions. We derive the dispersionless

Hirota equations by establishing the relation between the tau functions and the

Grunsky coefficients. We also prove that the dispersionless Hirota equations for each

of these hierarchies uniquely characterize the tau functions of their solutions. As a

corollary, we show that some solutions of the dToda hierarchy will give rise to solu-

tions of dcmKP hierarchy, which in turn will give rise to solutions of dKP hierarchy.

We omit some details in the exposition below. We refer to our preprint [23] on the

web for further reference.

2. Algebraic Analysis

2.1. SPACES OF FORMAL POWER SERIES

We consider the following classes of formal power series:

~S ¼ gðzÞ ¼ bzþ b0 þ
b1
z
þ � � � ¼ bzþ

X1
n¼0

bnz
�n; b 6¼ 0

( )
;

S ¼ g 2 ~S; b ¼ 1
n o

; S0 ¼
n
g 2 S; b0 ¼ 0

o
:

~S can be considered as the completion? of the space of analytic functions that fix
the point 1 and univalent in a small neighbourhood of1. S and S0 are subspaces
of ~S consist of formal power series satisfying certain normalization conditions. By
post-composing ~g 2 ~S with the linear map z 7! ð1= ~bÞz, we get a function g in S. Fur-
ther post-composition with the linear map z 7! z� b0, we get a function g0 in S0. As
their counterpart, we consider another three classes of formal power series:

~S ¼ f ðzÞ ¼ a1zþ a2z
2 þ a3z

3 þ � � � ¼
X1
n¼1

anz
n; a1 6¼ 0

( )
;

S ¼ f 2 ~S; a1 ¼ 1
n o

; S0 ¼
n
f 2 S; a2 ¼ 0

o
:

~S can be considered as the completion of the space of analytic functions fixing the

point 0 and univalent in a neighbourhood of 0. S and S0 are subspaces of ~S consist

of formal power series subjecting to additional normalization conditions. By post-

composing ~f 2 ~S with the linear map z 7! ð1= ~a1Þz, we get a function f 2 S. Further

?The completion is with respect to the filtration

~SN ¼ gðzÞ ¼ bz þ
X1
n¼N

bnz
�n; b 6¼ 0

( )

on ~S.
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post-composition with the Möbius transformation z 7! z=ð1þ a2zÞ, we get a function

f0 2 S0. Observe that the map

f 7! gðzÞ ¼
1

f
1

z

� �

is a bijection between ~S and ~S, S and S, S0 and S0, respectively.

2.2. GENERALIZED FABER POLYNOMIALS AND GRUNSKY COEFFICIENTS

We review and generalize some concepts from classical complex analysis. For details,

see [11, 16].

One of the important problems in classical complex analysis is the determination

of the upper bound satisfied by the coefficients an’s in order that f 2 S is univalent

on the unit disc. A lot of effort has been devoted to the proof of the famous

Bieberbach conjecture (1916): If f 2 S is univalent on the unit disc, then janj4 n?.

In the early attempts of the proof, one of the important tools is the Grunsky’s

inequality and its generalization. In 1939, Grunsky found a sequence of inequalities

that should be satisfied by the so called Grunsky coefficients in order that g 2 S is
univalent on fz

�� jzj > 1g. Surprisingly, we found this Grunsky coefficients appear
everywhere in dispersionless limit of integrable hierarchies (especially in association

with tau functions) without being realized its connection to complex analysis. This is

the purpose of this paper to point out this connection and, thus, give simplified

proofs of some of the facts related to dispersionless integrable hierarchies.

First, we introduce the Faber polynomials. For g 2 ~S that is analytic in a

neighbourhood of 1 and w 2 C, consider the function log ðgðzÞ � wÞ=bz. It defines

an analytic function for large jzj and vanishes at 1. Hence it has an expansion at

1 which can be written as

log
gðzÞ � w

bz
¼ �

X1
n¼1

FnðwÞ
n

z�n: ð2:1Þ

Fn is called the nth Faber polynomial of g. Differentiate (2.1) with respect to z and
define F0ðwÞ � 1, we have

g0ðzÞ

gðzÞ � w
¼
X1
n¼0

FnðwÞz�n�1: ð2:2Þ

From this, we can deduce the recursion formula

Fnþ1ðwÞ ¼
w� b0
b

FnðwÞ �
1

b

Xn�1
k¼1

bn�kFkðwÞ � ðnþ 1Þ
bn
b
;

which implies that FnðwÞ is a polynomial of degree n.
?This conjecture was completely proved by de Branges in 1984 [6].
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Next we introduce the Grunsky coefficients. If g 2 ~S is univalent in a neighbour-
hood U of1, the function log ðgðzÞ � gðzÞÞ=ðz� zÞ is analytic in the neighbourhood
U�U of ð1;1Þ. Its expansion about ð1;1Þ has the form

log
gðzÞ � gðzÞ
z� z

¼ log b�
X1
m¼1

X1
n¼1

bmnz
�mz�n: ð2:3Þ

bmn’s are known as Grunsky coefficients of g. They are symmetric, i.e. bmn ¼ bnm.

Putting w ¼ gðzÞ into (2.1) and compare with (2.3), we have

FnðgðzÞÞ ¼ zn þ n
X1
m¼1

bnmz
�m: ð2:4Þ

There is a characterization of the Faber polynomials which plays an important

role in our discussion later. Let z ¼ GðwÞ ¼ w=bþ
P1

n¼0 cnw
�n be the inverse func-

tion of w ¼ gðzÞ in the neighbourhood U where g is univalent. From (2.2), we have

FnðwÞ ¼ Res
z¼1

g 0ðzÞzn

gðzÞ � w
dz ¼ Res

z¼1

GðzÞn

z� w
dz:

Using the expansion about z ¼ 1,

GðzÞn ¼
Xn
m¼�1

cn;mz
m and

1

ðz� wÞ
¼
X1
k¼0

wkz�k�1;

we obtain immediately FnðwÞ ¼
Pn

m¼0 cn;mw
m. Namely, FnðwÞ is the polynomial part

of GðwÞn, which we denote by ðGðwÞnÞ50, i.e.

FnðwÞ ¼ ðGðwÞnÞ50: ð2:5Þ

In general, if A ¼
P1

n¼�1 Anw
n is a formal power series, and S a subset of integers,

we define ðAÞS ¼
P

n2S Anw
n.

The Grunsky coefficients are generalized to a pair of functions f and g as follows.

Let f 2 ~S be univalent in a neighbourhood V of 0 and g 2 S be univalent in a

neighbourhood U of 1. We say that ð f; gÞ are disjoint relative to ðU;VÞ if the sets

f ðVÞ and gðUÞ are disjoint. In this case, the functions

log
gðzÞ � gðzÞ
z� z

; log
gðzÞ � f ðzÞ

z
; log

f ðzÞ � f ðzÞ
z� z

are analytic in U�U, U�V and V�V respectively. Hence, we can write down their

series expansion about ð1;1Þ, ð1; 0Þ and ð0; 0Þ respectively:

log
gðzÞ � gðzÞ
z� z

¼ �
X1
m¼1

X1
n¼1

bmnz
�mz�n; ð2:6Þ

log
gðzÞ � f ðzÞ

z
¼ �

X1
m¼1

X1
n¼0

bm;�nz
�mzn; ð2:7Þ
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log
f ðzÞ � f ðzÞ
z� z

¼ �
X1
m¼0

X1
n¼0

b�m;�nz
mzn: ð2:8Þ

Obviously, when m; n are both positive or both negative, bmn ¼ bnm. Hence, for

m5 0, n > 0, we define b�m;n ¼ bn;�m. Letting z ¼ 0 in (2.7) and (2.8), we obtain

log
gðzÞ

z
¼ �

X1
m¼1

bm;0z
�m; log

f ðzÞ

z
¼ �

X1
m¼0

b�m;0z
m: ð2:9Þ

In particular, b00 ¼ � log a1. We define the generalized Faber polynomials CnðwÞ

for f by

log
w� f ðzÞ

w
¼ log

f ðzÞ

a1z
�
X1
n¼1

CnðwÞ

n
zn: ð2:10Þ

To see the relations of Cn with the Grunsky coefficients, we define the function

gf 2 ~S by

gf ðzÞ ¼
1

f
1

z

� � ¼
z

a1
�
a2

a21
þ � � � :

Using the second equation in (2.9), equations (2.7), (2.8) and (2.10) can be rewritten

in terms of gf:

log 1�
1

gðzÞgf ðzÞ

� �
¼ �

X1
m¼1

X1
n¼1

bm;�nz
�mz�n; ð2:11Þ

log
gf ðzÞ � gf ðzÞ

z� z
¼ � log a1 �

X1
m¼1

X1
n¼1

b�m;�nz
�mz�n; ð2:12Þ

log
gf ðzÞ �

1
w

z
¼ � log a1 �

X1
n¼1

CnðwÞ

n
z�n: ð2:13Þ

Hence, b�m;�n’s are Grunsky coefficients of gf and CnðwÞ is a polynomial of degree n

in 1=w. If we denote by z ¼ Gf ðwÞ the inverse of w ¼ gf ðzÞ, and by z ¼ FðwÞ the

inverse of w ¼ f ðzÞ, equation (2.5) implies that

CnðwÞ ¼ ðGf ðw
�1Þ

n
Þ40 ¼ ðFðwÞ�nÞ40: ð2:14Þ

Now we derive the counterparts of (2.4). First, compare (2.13) to (2.1) and (2.4),

we get

Cnð f ðzÞÞ ¼ z�n þ n
X1
m¼1

b�n;�mz
m: ð2:15Þ

Next, we put w ¼ f ðzÞ into (2.1) and compare with (2.7). We obtain

Fnð f ðzÞÞ ¼ n
X1
m¼0

bn;�mz
m: ð2:16Þ
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Finally, putting w ¼ gðzÞ into (2.10), compare with (2.7) and using equations in (2.9),
we have

CnðgðzÞÞ ¼ �nb�n;0 þ n
X1
m¼1

bm;�nz
�m: ð2:17Þ

For the convenience of next section, we gather again the formulas (2.9), and the

formulas of the Faber polynomials in terms of the Grunsky coefficients (2.4),

(2.15), (2.16), (2.17).

log
gðzÞ

z
¼ �

X1
m¼1

bm;0z
�m; log

f ðzÞ

z
¼ �

X1
m¼0

b�m;0z
m

FnðgðzÞÞ ¼ zn þ n
X1
m¼1

bnmz
�m; Fnð f ðzÞÞ ¼ nbn;0 þ n

X1
m¼1

bn;�mz
m; ð2:18Þ

CnðgðzÞÞ ¼ �nb�n;0 þ n
X1
m¼1

bm;�nz
�m; Cnð f ðzÞÞ ¼ z�n þ n

X1
m¼1

b�n;�mz
m:

The analysis above can be extended formally to the whole space ~S and ~S. All the

Taylor (Laurent) expansions are considered as formal power series expansions. All

the identities hold formally.

3. Dispersionless Hierarchies and Tau Functions

We quickly review dispersionless Toda (dToda), dispersionless coupled modified KP

(dcmKP) and dispersionless KP (dKP) hierarchies and their tau functions. For

details, see [20–22, 24]. For each of these dispersionless hierarchies, we give a new

derivation of the dispersionless Hirota equation satisfied by the tau function, using

the algebraic analysis we discussed in the previous section. We also prove that the

dispersionless Hirota equations uniquely characterize the tau functions.

3.1. DISPERSIONLESS TODA HIERARCHY

The fundamental quantities in dToda hierarchy are two formal power series in p:

Lð pÞ ¼ pþ
X1
n¼0

unþ1ðtÞp
�n; ~L�1

ð pÞ ¼ ~u0ðtÞp
�1 þ

X1
n¼0

~unþ1ðtÞp
n:

Here unðtÞ and ~unðtÞ are functions of the independent variables tn; n 2 Z, which we

denote collectively by t. The Lax representation is?

@L
@tn

¼ fðLnÞ50;LgT;
@L
@t�n

¼ fð ~L�n
Þ<0;LgT;

@ ~L
@tn

¼ fðLnÞ50; ~LgT;
@ ~L
@t�n

¼ fð ~L�n
Þ<0;

~LgT: ð3:1Þ

?Here it is understood that p is a variable and does not depend on t.
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Here f�; �gT is the Poisson bracket for dToda hierarchy

f f; ggT ¼ p
@f

@p

@g

@t0
� p

@f

@t0

@g

@p
:

There exists a tau function tdToda which generates the coefficients of L and ~L.
More precisely, we have the following identities:

log p ¼ logL�
X1
m¼1

1

m

@2F
@t0@tm

L�m;

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tn@tm

L�m
¼

@2F
@t0@tn

�
X1
m¼1

1

m

@2F
@t�m@tn

~Lm
;

log p ¼ log ~Lþ
@2F
@t20

�
X1
m¼1

1

m

@2F
@t�m@t0

~Lm
; ð3:2Þ

ð ~L�n
Þ<0 ¼ �

X1
m¼1

1

m

@2F
@tm@t�n

L�m

¼ ~L�n
þ

@2F
@t0@t�n

�
X1
m¼1

1

m

@2F
@t�m@t�n

~Lm:

Here F ¼ log tdToda is called the free energy. Now we identify p with w, L with z, then
the first equation defines a function w ¼ gðzÞ 2 S. Lð pÞ corresponds to z ¼ GðwÞ, the

inverse of g. The third equation defines a function w ¼ �f ðzÞ 2 ~S and ~Lð pÞ corresponds
to z ¼ FðwÞ, the inverse of f. Under these identifications, we see that the Faber poly-

nomials FnðwÞ’s are identified with ðLnðwÞÞ50, and CnðwÞ’s are identified with

ð ~L�n
ðwÞÞ4 0. Now compare (3.2) with (2.18), we find that the Grunsky coefficients

bnm of the pair ðg ¼ wðLÞ; f ¼ wð ~LÞÞ are related to the tau function or free energy by

b00 ¼ �
@2F
@t20

; bn;0 ¼
1

n

@2F
@t0@tn

; b�n;0 ¼
1

n

@2F
@t0@t�n

; n5 1;

bm;n ¼ �
1

mn

@2F
@tm@tn

; b�m;�n ¼ �
1

mn

@2F
@t�m@t�n

; n;m5 1; ð3:3Þ

b�m;n ¼ bn;�m ¼ �
1

mn

@2F
@t�mtn

; n;m5 1:

From (3.2), we can express f and g in terms of the tau function or free energy:

gðzÞ ¼ z exp �
X1
m¼1

1

m

@2F
@t0@tm

z�m

 !
;

f ðzÞ ¼ z exp
@2F
@t20

�
X1
m¼1

1

m

@2F
@t�m@t0

zm

 !
:
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As before, we define gf ðzÞ ¼ f ðz�1Þ�1, then

gf ðzÞ ¼ z exp �
@2F
@t20

þ
X1
m¼1

1

m

@2F
@t�m@t0

z�m

 !
:

Hence rewriting the definition of the generalized Grunsky coefficients in terms of the

tau function or free energy, we obtain the Hirota equation for dispersionless Toda

hierarchy. Namely, from (2.6), (2.11), (2.12), we have

z1 exp �
X1
m¼1

1

m

@2F
@t0@tm

z�m1

 !
� z2 exp �

X1
m¼1

1

m

@2F
@t0@tm

z�m2

 !

¼ ðz1 � z2Þ exp
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2

 !
;

1�
1

z1z2
exp

@2F
@t20

þ
X1
m¼1

1

m

@2F
@t0@tm

z�m1 �
X1
m¼1

1

m

@2F
@t�m@t0

z�m2

 !

¼ exp
X1
m;n¼1

1

mn

@2F
@tm@t�n

z�m1 z�n2

 !
;

z1 exp
X1
m¼1

1

m

@2F
@t�m@t0

z�m1

 !
� z2 exp

X1
m¼1

1

m

@2F
@t�m@t0

z�m2

 !

¼ ðz1 � z2Þ exp
X1
m;n¼1

1

mn

@2F
@t�m@t�n

z�m1 z�n2

 !
: ð3:4Þ

We should understand these identities as defining a sequence of relations satisfied by

the second derivatives of F by comparing the coefficients of z�m1 z�n2 on both sides.

Conversely, the tau function is uniquely characterized by these Hirota equations.

PROPOSITION 3.1. If F ¼ log t is a function of tn, n 2 Z that satisfies the Hirota

equations ð3:4Þ, then t is a tau function of a solution of the dToda hierarchy. More
explicitly, if we define Lð pÞ and ~Lð pÞ by formally inverting the functions pðLÞ and ~pð ~LÞ
defined by

log pðLÞ ¼ logL�
X1
m¼1

1

m

@2F
@t0@tm

L�m;

log ~pð ~LÞ ¼ log ~Lþ
@2F
@t20

�
X1
m¼1

1

m

@2F
@t�m@t0

~Lm; ð3:5Þ

then ðL; ~LÞ satisfies the Lax equations ð3:1Þ for dToda hierarchy.
Proof. In the first part of the proof, we trace the reasoning above backward. We

define the function g 2 S and f 2 ~S by

log
gðzÞ

z
¼ �

X1
m¼1

1

m

@2F
@t0@tm

z�m; log
f ðzÞ

z
¼

@2F
@t20

�
X1
m¼1

1

m

@2F
@t�m@t0

zm:
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The generalized Grunsky coefficients of the pair ð f; gÞ are defined by Equations

(2.6), (2.7), (2.8). We also define gf ðzÞ ¼ 1=f ðz
�1Þ, then

log
gf ðzÞ

z
¼ �

@2F
@t20

þ
X1
m¼1

1

m

@2F
@t�m@t0

z�m:

In terms of g and gf, the Hirota equations (3.4) read as

log
gðz1Þ � gðz2Þ

z1 � z2
¼
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2 ;

log 1�
1

gðz1Þgf ðz2Þ

� �
¼
X1
m;n¼1

1

mn

@2F
@tm@t�n

z�m1 z�n2 ;

log
gf ðz1Þ � gf ðz2Þ

z1 � z2
¼ �

@2F
@t20

þ
X1
m;n¼1

1

mn

@2F
@t�m@t�n

z�m1 z�n2 :

Comparing with (2.6), (2.9), (2.11), (2.12), we find the Grunsky coefficients in terms

ofF are given by the equations in (3.3). Hence if we define Lð pÞ to be the inverse func-
tion of w ¼ gðzÞ, and ~Lð pÞ to be the inverse function of w ¼ f ðzÞ by replacing w with p,

then the identities satisfied by the Faber polynomials of f and g (2.18) say that

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tn@tm

L�m
¼

@2F
@t0@tn

�
X1
m¼1

1

m

@2F
@t�m@tn

~Lm;

ð ~L�n
Þ<0 ¼ �

X1
m¼1

1

m

@2F
@tm@t�n

L�m
¼ ~L�n

þ
@2F

@t0@t�n
�
X1
m¼1

1

m

@2F
@t�m@t�n

~Lm:

Now from (3.5) and (3.6), we have

1

pðLÞ
@pðLÞ
@tn





L fixed

¼
@ðLnÞ50

@t0





L fixed

;

1

pðLÞ
@pðLÞ
@t�n





L fixed

¼
@ð ~L�n

Þ<0

@t0





L fixed

;

1

~pð ~LÞ
@ ~pð ~LÞ
@tn





~L fixed

¼
@ðLnÞ50

@t0





~L fixed

;

1

~pð ~LÞ
@ ~pð ~LÞ
@t�n





~L fixed

¼
@ð ~L�n

Þ<0

@t0





~L fixed

:

ð3:7Þ

On the other hand, since p � L is the identity function in p, by chain rule, we have

@pðLÞ
@L

@L
@t





p fixed

þ
@pðLÞ
@t





L fixed

¼ 0; ð3:8Þ
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and similarly for ~L. Here t is any of the independent variables. Hence

@L
@tn

¼ �
@L
@p

@pðLÞ
@tn





L fixed

¼ �p
@L
@p

@ðLnÞ50
@t0





L fixed

¼ �p
@L
@p

@ðLnÞ50
@t0

�
@ðLnÞ50

@L
@L
@t0

� �
¼ fðLnÞ50;LgT;

which is the first one of the Lax equations (3.1). The other equations are derived in

the same way from (3.7). &

There are two variants of the dToda hierarchy that we would like to discuss here.

Let ðL; ~LÞ be a solution of the dToda hierarchy and f ¼ @F=@t0. We make a Miura-

type transformation (Lemma 2.1.3 in [22]) and define L0
¼ e�adfL, ~L0

¼ e�adf ~L.
They are of the form

L0
ð pÞ ¼ ~u0pþ

X1
n¼0

u0nþ1ðtÞp
�n ¼ ~u0pþ

X1
n¼0

unþ1ðtÞð ~u0pÞ
�n;

~L0�1
ð pÞ ¼ p�1 þ

X1
n¼0

~u0nþ1ðtÞp
n ¼ p�1 þ

X1
n¼0

~unþ1ðtÞð ~u0pÞ
n;

and satisfy the Lax equations

@L0

@tn
¼ fððL0

Þ
n
Þ>0;L0

gT;
@L0

@t�n
¼ fðð �L0

Þ
�n
ÞÞ40;L0

gT;

@ ~L0

@tn
¼ fððL0

Þ
n
Þ>0;

~L0
gT;

@ ~L0

@t�n
¼ fðð ~L0

Þ
�n
Þ40;

~L0
gT:

From the point of view of conformal maps, this transformation amounts to the

pre-composition of z ¼ GðwÞ and z ¼ FðwÞ with the linear map w 7! ~u0w ( ~u0 ¼ a1,

the leading coefficient of f ðzÞ). Hence for the inverse function, we have

g 0ðzÞ ¼
gðzÞ

~u0
; f 0ðzÞ ¼

f ðzÞ

~u0
:

From these and the definition of the Grunsky coefficients, it is quite obvious that the

Grunsky coefficients bmn,mn 6¼ 0 of ð f; gÞ and ð f
0; g 0Þ are the same. Hence, the Hirota

equations for ðL0; ~L0
Þ assume the same form (3.4). However, now L0; ~L0 are defined

by inverting the functions

pðL0
Þ ¼ g 0ðL0

Þ ¼ L0 exp �
@2F
@t20

�
X1
m¼1

1

m

@2F
@t0@tm

ðL0
Þ
�m

 !
;

~pð ~L0
Þ ¼ f 0ð ~L0

Þ ¼ ~L0 exp �
X1
m¼1

1

m

@2F
@t�m@t0

ð ~L0
Þ
m

 !
:
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Another variant of the dToda hierarchy is the one favored by Wiegmann and

Zabrodin in association with conformal maps [12, 15, 25]. Now the Miura type

transformation is defined as L0
¼ e�ad

f
2L; ~L0

¼ e�ad
f
2 ~L. Then they are of the form

L0
ð pÞ ¼ rpþ

X1
n¼0

u 0nþ1ðtÞp
�n ¼ rpþ

X1
n¼0

unþ1ðtÞðrpÞ
�n

~L0�1
ð pÞ ¼ rp�1 þ

X1
n¼0

~u0nþ1ðtÞp
n ¼ rp�1 þ

X1
n¼0

~unþ1ðtÞðrpÞ
n;

where r is a square root of ~u0. The Lax equations become
?

@L0

@tn
¼ fHn;L0

gT;
@L0

@t�n
¼ f ~Hn;L0

gT;

@ ~L0

@tn
¼ fHn; ~L0

gT;
@ ~L0

@t�n
¼ f ~Hn; ~L0

gT

Hn ¼ ððL0
Þ
n
Þ>0 þ

1

2
ððL0

Þ
n
Þ0; ~Hn ¼ ðð ~L0

Þ
�n
Þ<0 þ

1

2
ðð ~L0

Þ
�n
Þ0:

This version has the advantage that the roles of L and L0 are symmetric. The same

discussion above shows that the tau function and dispersionless Hirota equations

assume the same form but now, L0; ~L0 are defined by inverting the functions

pðL0
Þ ¼ g 0ðL0

Þ ¼ L0 exp �
1

2

@2F
@t20

�
X1
m¼1

1

m

@2F
@t0@tm

ðL0
Þ
�m

 !
;

~pð ~L0
Þ ¼ f 0ð ~L0

Þ ¼ ~L0 exp
1

2

@2F
@t20

�
X1
m¼1

1

m

@2F
@t�m@t0

ð ~L0
Þ
m

 !
:

We can also view the dispersionless Hirota equations as a consequence of the

definition of the Grunsky coefficients for the pair ðg; gfÞ. From this point of view

and our discussion above, we readily see that if ðL; ~LÞ is a solution to the first version
of the dToda hierarchy, then the pair ðL0; ~L0

Þ, where L0
ð pÞ ¼ ~Lð1=pÞ�1; ~L0

ð pÞ ¼

Lð1=pÞ�1 is a solution to the second version of the dToda hierarchy, if we redefine
the independent variables as t 0n ¼ t�n and t

0
�n ¼ tn.

3.2. DISPERSIONLESS (COUPLED) MODIFIED KP HIERARCHY

We define the dispersionless coupled modified KP hierarchy (demKP) in [24]. Here

we are only interested in a special case. (In the notation in [24], it is the case where

P ¼ k.)

The fundamental quantity is a formal power series

L ¼ kþ
X1
n¼0

unþ1ðtÞk
�n;

?Notice that the �tn in [25] is the complex conjugate of tn. Here it amounts to �t�n.
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with coefficients depending on the parameters t ¼ ðx; t0; t1; t2 . . .Þ. The Lax represen-

tation of the dcmKP in our special case here is

@L
@tn

¼ fðLnÞ>0;Lg; n5 1;
@L
@t0

¼
1

k

@L
@x

: ð3:9Þ

Here f�; �g is the Poisson bracket defined as

f f; gg ¼
@f

@k

@g

@x
�

@f

@x

@g

@k
:

.All the dependence on t1 and x appears in the form t1 þ x. There exists a tau func-

tion t which satisfies the following identities:

log k ¼ logL�
X1
m¼1

1

m

@2F
@tm@t0

L�m;

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tn@tm

L�m;
@2F
@t0@tn

¼ ðLnÞ0:
ð3:10Þ

Here F ¼ log t. Now we identify k with w and L with z. The first equation in (3.10)
defines w as a function of z, which we denote by gðzÞ:

gðzÞ ¼ z exp �
X1
m¼1

1

m

@2F
@tm@t0

z�m

 !
: ð3:11Þ

Obviously, g 2 S. The Faber polynomials Fn for g are then identified with ðLnÞ50.
Comparing (2.4) to (3.10), we find that the Grunsky coefficients of gðzÞ are related

to the tau function or the free energy by

bmn ¼ �
1

mn

@2F
@tm@tn

: ð3:12Þ

Together with (3.11), we can rewrite the definition of the Grunsky coefficients (2.3) as

z1 exp �
X1
m¼1

1

m

@2F
@t0@tm

z�m1

 !
� z2 exp �

X1
m¼1

1

m

@2F
@t0@tm

z�m2

 !

¼ ðz1 � z2Þ exp
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2

 !
;

ð3:13Þ

which is the dispersionless Hirota equation for this special case of dcmKP hierarchy.

Conversely, we can characterize the tau function for dcmKP hierarchy as:

PROPOSITION 3.2. If F ¼ log t is a function of tn, n5 0 that satisfies the Hirota

equation ð3:13Þ and @3 log t=@t20@t1 ¼ 0, then t is a tau function of a solution of the
dcmKP hierarchy. More explicitly, if we define LðkÞ by formally inverting the function
kðLÞ defined by
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log kðLÞ ¼ logL�
X1
m¼1

1

m

@2F
@t0@tm

L�m; ð3:14Þ

and replacing t1 by t1 þ x, then L satisfies the Lax equations ð3:9Þ for dcmKP.
Proof. Identifying L with z, we define the function gðzÞ 2 S by

log gðzÞ ¼ log z�
X1
m¼1

1

m

@2F
@t0@tm

z�m:

The dispersionless Hirota equation (3.13) then read as

log
gðz1Þ � gðz2Þ

z1 � z2
¼
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2 :

Comparing with the definition of the Grunsky coefficients of g given by equation

(2.3), we find that the relation between the Grunsky coefficients and free energy is

given by (3.12). Let z ¼ GðwÞ be the inverse of gðzÞ. Then GðwÞ is the function

LðkÞ defined by (3.14) if we identify k with w. The Faber polynomials of gðzÞ is then
identified with ðLðwÞÞ50. We can then rewrite the identity satisfied by the Faber
polynomials (2.4) in terms of the free energy by

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tm@tn

L�m:

From (3.14), we also have

@2F
@tn@t0

¼ Res Lnd log k ¼ ðLnÞ0:

Hence

ðLnÞ>0 ¼ Ln � @2F
@tn@t0

�
X1
m¼1

1

m

@2F
@tm@tn

L�m: ð3:15Þ

From (3.14) and the n ¼ 1 case in (3.15), we have

1

k

@k

@t1





L fixed

¼ �
X1
m¼1

1

m

@3F
@tm@t0@t1

¼
@k

@t0





L fixed

:

Identity (3.8) (with p replaced by k) then gives the second equation in the Lax

equations (3.9). From (3.15) again, we have

@k

@tn





L fixed

¼
@ðLnÞ>0
@t1





L fixed

;

which by (3.8) is equivalent to the first equation of the Lax equations (3.9). &

Compare the dispersionless Hirota equations for dToda and dcmKP hierarchies,

we immediately have
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COROLLARY 3.3. If ðL; ~LÞ is a solution to the dToda hierarchy ð3:1Þ, and

@ðLÞ0=@t0 ¼ 0, then L is a solution to the dcmKP hierarchy ð3:9Þ, when we replace t1 by
t1 þ x and regard the t�n’s, n5 1 as parameters. The tau function for the dToda

hierarchy is the tau function for the corresponding dcmKP hierarchy.

Proof. In [24], we proved this proposition by comparing the Lax equations. Here

we just notice that the first equation in the Hirota equations for dToda (3.4) is

identical with the Hirota equation for dcmKP (3.13). The result follows from the

proposition above. &

3.3 DISPERSIONLESS KP HIERARCHY

This is the most well known case. The dispersionless Hirota equation for dKP

hierarchy was first derived as the quasi-classical limit of the differential Fay identity

by Takasaki and Takebe in [22], see also the work of Carroll and Kodama [5]. Here

we derive the Hirota equation along the same line as we do for dToda and dcmKP

hierarchies.

The fundamental quantity in dKP hierarchy is a formal power series

L ¼ kþ
X1
n¼1

unþ1ðtÞk
�n

with coefficients depending on the independent variables t ¼ ðx; t1; t2; . . .Þ. The Lax

equation is

@L
@tn

¼ fðLnÞ50;Lg: ð3:16Þ

Here the Poisson bracket is the same as in the dcmKP hierarchy. The dependence on

t1 and x appears in the combination t1 þ x.

There exists a tau function t which satisfies the following identities:

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tm@tn

L�m: ð3:17Þ

Here F ¼ log t. Now we identify k with w and L with z, the function z ¼ GðwÞ is

defined to be LðkÞ, and the function w ¼ gðzÞ 2 S0 the inverse of GðwÞ. Then the
Faber polynomials FnðwÞ of g are identified with ðLnðwÞÞ50. Define the Grunsky
coefficients of g by Equation (2.3), then comparing (2.4) with (3.17), we find the rela-

tion between the Grunsky coefficients and the free energy is given by

bmn ¼ �
1

mn

@2F
@tm@tn

: ð3:18Þ

From the n ¼ 1 case of Equation (3.17) and the fact that ðLÞ50 ¼ k, we have

gðzÞ ¼ z�
X1
m¼1

1

m

@2F
@tm@t1

z�m:
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Using this, and (3.18), we can rewrite the definition of the Grunsky coefficients (2.3)

in terms of the free energy:

1�
1

z1 � z2

X1
m¼1

z�m1 � z�m2
m

@2F
@tm@t1

¼ exp
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2

 !
; ð3:19Þ

which is the dispersionless Hirota equation for dKP.

Conversely, we can characterize the tau function for the dKP hierarchy as follows:

PROPOSITION 3.4. If F ¼ log t is a function of tn, n5 1 that satisfies the Hirota

equation ð3:19Þ, then t is a tau function of a solution of the dKP hierarchy. More

explicitly, if we define LðkÞ by formally inverting the function kðLÞ defined by

kðLÞ ¼ L�
X1
m¼1

1

m

@2F
@t1@tm

L�m; ð3:20Þ

and replacing t1 by t1 þ x, then L satisfies the Lax equations ð3:16Þ for dKP.
Proof. We define the function g 2 S0 by identifying L with z in (3.20), the

dispersionless Hirota equation (3.19) says that

log
gðz1Þ � gðz2Þ

z1 � z2
¼
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2 : ð3:21Þ

Compare with the definition of the Grunsky coeffcients bmn (2.3) of g, we find that

the bmn can be expressed in terms of the free energy by (3.18). Now define z ¼

GðwÞ to be the formal inverse of w ¼ gðzÞ. In other words, GðwÞ is LðkÞ if we ide-
ntify k with w. Then the Faber polynomials FnðwÞ of g are identified with ðLnðkÞÞ50.
Hence, the identities satisfied by the Faber polynomials (2.4) can be rewritten as

ðLnÞ50 ¼ Ln �
X1
m¼1

1

m

@2F
@tm@tn

L�m: ð3:22Þ

The same argument as in Proposition 3.2 gives the Lax equation (3.16) of dKP. &

From this characterization of the tau functions, we can also see that a solution of

the dcmKP hierarchy will give rise to a solution of the dKP hierarchy.

COROLLARY 3.5. If

L ¼ kþ
X1
n¼0

unþ1k
�n

is a solution of the dcmKP hierarchy, then the Miura transform of L,

L0
¼ kþ

X1
n¼1

u 0nþ1k
�n ¼ kþ

X1
n¼1

unþ1ðk� u1Þ
�n

ð3:23Þ
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is a solution of the dKP hierarchy, where we regard t0 as a constant. Moreover, L and
L0 have the same tau function.

Proof. Since L ¼ kþ
P1

n¼0 unþ1k
�n is a solution of the dcmKP hierarchy, the free

energy of F satisfies the dispersionless Hirota equation (3.13). Taking the limit

z2 ! 1 in (3.13), we obtain the relation

z exp �
X1
m¼1

1

m

@2F
@t0@tm

z�m

 !
¼ z�

@2F
@t0@t1

�
X1
m¼1

1

m

@2F
@tm@t1

z�m:

Substituting this into the Hirota equation (3.13) again, we obtain

z1 � z2 �
X1
m¼1

zm1 � zm2
m

@2F
@tm@t1

¼ ðz1 � z2Þ exp
X1
m;n¼1

1

mn

@2F
@tm@tn

z�m1 z�n2

 !
;

which is equivalent to the dispersionless Hirota equation for dKP (3.19). Hence,

from Proposition 3.4 above, the function L0 defined by inverting

kðL0
Þ ¼ L0

�
X1
m¼1

1

m

@2F
@tm@t1

ðL0
Þ
�m

is a solution of the dKP hierarchy. Comparing with (3.14) and using the fact that

@2F=@t0@t1 ¼ u1 give (3.23). &

Remark 3:6: The proof of this corollary also shows that the dispersionless Hirota

equation for dcmKP implies the dispersionless Hirota equation for dKP.

4. Concluding Remarks

We rederive the dispersionless Hirota equations for dToda, dcmKP and dKP hier-

archies and prove that they uniquely characterize the tau functions associated to a

solution of the hierarchies. This might be helpful in classifying the solutions of the

hierarchies. The transformation that relate the three versions of the dToda hier-

archies and the Miura map that transform a solution of the dcmKP hierarchy to a

solution of the dKP hierarchy are just the linear maps that relate the three spaces

of formal power series we discuss in Section 2.

Given any formal power series f 2 ~S, g 2 S, if we define Fmn’s as

Fm;n ¼ �jmnjbm;n; m 6¼ 0; n 6¼ 0;

Fm;0 ¼ F 0;m ¼ jmjbm;0; m 6¼ 0; F 0;0 ¼ �b0;0;

where bm;n’s are the Grunsky coefficients associated to the pair ð f; gÞ, then Fm;n’s

satisfy the dispersionless Hirota equations (3.4), (3.13) and (3.19) if we replace

@2F=@tm@tn by Fm;n. In [3], Sorin and Bonora proved that the Neumann coefficients

that appear in string field theory satisfy the dispersionless Hirota equations. By

definition, the Neumann coefficients coincide with the Grunsky coefficients bm;n
defined above. This explain their results.
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However, it is still an open question to find a function F such that

@2F
@tm@tn

¼ Fm;n:

In [25], Wiegmann and Zabrodin provided a solution to this problem (see also

[12, 15, 26]) when G, the inverse function of g is an analytic function that maps

the outer disc fjzj > 1g to the exterior of an analytic curve, and f ðzÞ ¼ ~gðz�1Þ�1. It

will be interesting to solve the general problem.
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