
Int. J. Human-Computer Studies 58 (2003) 415–445

A unifying framework for intelligent DNS
management

Chang-Sheng Chen*, Shian-Shyong Tseng, Chien-Liang Liu

Department of Computer and Information Science, Computer and Network Center, National Chiao-Tung

University 1001, Ta Hsueh Road, HsinChu, Taiwan 300

Received 20 October 2002; accepted 17 December 2002

Paper accepted for publication by Editor, B. Gaines

Abstract

The Domain Name System (DNS) is a special kind of distributed directory service for

people to create and access the network information systems by (1) allowing local control of its

segments and (2) making each segment’s data available on the Internet using a client–server

scheme. However, few administrators have the expertise to do the jobs well since this

distributed mechanism is a double-edged sword; it allows DNS not only to scale to Internet

size but also allows for incredible mis-configurations. The presented study is an analysis of

what problems and difficulties most DNS administrators might encounter and provides the

insights into how various DNS assistant sub-systems could be designed and deployed to solve

the complex problems or alleviate these DNS administration job loadings. Ontologies become

an important mechanism to build information systems. The role of ontologies is to capture

domain knowledge and provide a commonly agreed upon understanding of a domain. The

advantages include the sharing and re-use of knowledge, and the better engineering of

knowledge-based systems with respect to acquisition, verification and maintenance. In this

paper, we propose a unifying framework (e.g. including configuration, outstanding traffic

monitoring and analysis, planning and management, tutoring, etc.) for supporting intelligent

DNS management using web interface and expert system technology to help inexperienced

administrators in insuring the smooth operation of their DNS systems. To help extract

knowledge, we propose an efficient DNS Ontology Construction Algorithm to fast

conceptualize DNS domain knowledge through a hybrid method of brainstorming and use

cases modeling. While some sub-systems are still under development, others have been

prototyped and deployed for everyday use. As our experience with a first simple prototype has

shown, the paradigm of using DNS ontology to build a unifying framework for intelligent

*Corresponding author. Tel.: +886-3-573-1721; fax: +996-3-571-4031.

E-mail address: cschen@mail.nctu.edu.tw (C.-S. Chen).

1071-5819/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S1071-5819(03)00012-0



DNS management works good and effective. It is supposed that all these might become an

integral part of the DNS administration activities of an organization in the near future.

r 2003 Elsevier Science Ltd. All rights reserved.

Keywords: DNS; Knowledge sharing and re-using; Ontology; Use case modeling

1. Introduction

The Domain Name System (DNS) is an essential part of the Internet
infrastructure. Currently, with the exception of some specific applications (e.g.
peer-to-peer applications, etc.), most internet services are based on the working
model that there will be some DNS queries before the communication activities.
Therefore, even if your web servers are in good shape, the firewalls are doing their
jobs, and your backend application servers and databases are in perfect order, none
of these matters. All might seem to fail if your DNS servers do not work properly as
expected.

Technically speaking, the DNS is a special kind of distributed directory service
that people use to create (for accessing) and access other network information
systems. In essence, DNS is a distributed database which (1) allows local control of
its segments and (2) makes data in each segment available across the entire network
using a client–server scheme. Robustness and adequate performance are achieved by
replication and caching (Albitz and Liu, 2001).

However, this distributed control and configuration is a double-edged sword; it
allows the system to scale to Internet size, but it also allows for incredible mis-
configurations. The phenomenon is especially obvious between novice adminis-
trators and inexperienced administrators that manage a small scale of network.
Hence, this is the main reason that even though DNS is so important to network
operation today, some latest DNS survey in November 2002 (Man-Mice Company,
2002) showed that over 70% of the DNS servers of commercial sites (e.g. ‘‘.COM’’
Zones) have some configuration errors.

The objectives of the work reported in this paper are to use the World Wide Web
as a continuing base to support intelligent DNS management in which essential DNS
issues (e.g. DNS configuration and maintenance, outstanding DNS traffic
monitoring and analysis, DNS debugging, DNS planning and management, DNS
tutoring, etc.) become an integral part of the DNS administration activities of an
organization.

How could a DNS administrator tell if her/his systems work as expected? Table 1
summarizes common issues that could often be identified at typical DNS servers. On
considering these problems, one notes immediately that the DNS problem domain is
rather complex and varies greatly on different sites because too many things, like
management strategies and resources, need to be considered. For example, we could
often find that there are unfixed bugs on some systems. The system administrators
might make mistakes in the deployment phase or in doing maintenance jobs from

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445416



time to time. For years, BIND (Albitz and Liu, 2001) was the basis for most vendors’
DNS implementations, but recent independent implementations by Microsoft and
others have introduced interoperability issues that were largely invisible before. Or,
there is always the possibility of an authorized user misusing his or her privileges. Of
all these problems, some will be found quickly as the system(s) can no longer provide
normal services. Other cases may be ignored at first for a long time (i.e. before the
buggy information query is triggered.) since the DNS system(s) can still provide most
of the normal services in a degraded mode.

On the other hand, the DNS system architecture of a site can be a very simple one
(e.g. with only two standard-type DNS servers) or it could be a very complex one,
with a few standard-type DNS servers and lots of caching-only servers for special
considerations, etc. Due to many factors such as the cost–performance issue or
security issue, sometimes it is necessary for a site to change its DNS system
architecture from a simple type into a more complex one. However, this is not an
easy job for most inexperienced administrators. On many occasions, it needs the
guidance of the DNS domain experts. But, it is a pity that domain experts are so
hard to find and cannot always stand by for those inexperienced administrators
under emergency conditions.

As mentioned in Ou (2002), many companies and people develop assistance
software to help DNS administrators manage their DNS systems. However, most of
these software packages are built by using conventional methodology. Basically, they
are mainly used to solve syntax problems and provide user friendly interface, help
domain zone management, find domain zone configuration errors, etc. Few, if any,
address the DNS semantics issues or the complex DNS management problems.

It is now widely recognized that constructing a domain model, or ontology, is an
important step in the development of a knowledge-based system (KBS) (Chan-
drasekaran et al., 1999). The advantages include the sharing and re-use of
knowledge, and the better engineering of KBSs with respect to acquisition,
verification and maintenance (Musen, 1992). The role of ontologies is to capture
domain knowledge and provide a commonly agreed upon understanding of a
domain (Studer et al., 1998). The common vocabulary of an ontology, defining the
meaning of terms and their relations, is usually organized in a taxonomy and
contains modeling primitives such as concepts, relations and axioms. With the help
of ontology, the knowledge is not only human readable but also machine readable.

Table 1

Typical DNS management issues

Issues Descriptions

Configuration Delegations of domain zones, illegal setting of DNS entries, etc.

Availability Master/slave architecture, data synchronization among deleted servers, etc.

Performance DNS caching, forwarding, etc.

Security Access control, dynamic update, intrusion detection, etc.

Interoperability BIND (version 4, 8, 9, etc.), Microsoft DNS, etc.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 417



There are at least two ways in which explicit DNS ontology can be used
during knowledge engineering: for knowledge elicitation and for compu-
tational design. Because the DNS ontology specifies which constraints
domain knowledge should satisfy, it can be used to direct the knowledge
elicitation process. During computational design application, the ontology
can be used to determine the suitability of problem solvers for the DNS
application.

In Chen et al. (2002c), we built a DNS ontology using the METHONTOLOGY
(Fernandez et al., 1997) methodology and Prot!eg!e-2000 (Noy et al., 2000)
system from scratch. The DNS ontology is used for helping build the sub-
systems proposed in this paper. To help extract knowledge from experts and
construct the DNS ontology, we proposed a knowledge acquisition (KA)
algorithm, DNS Ontology Construction Algorithm, to fast conceptualize DNS
domain knowledge through the traditional brainstorming-and-trimming
approach. The DNS ontology has been verified by the experts and shown to be
useful. However, since the DNS is still evolving, there is a need for updating the
DNS ontology by adding new entries (e.g. concepts, relations, etc.) from
time to time. To incorporate this fact, in this paper, we try to redesign the same
algorithm by using a hybrid method of brainstorming and use cases modeling. Our
experience has shown the effectiveness of this revised method. In fact, with a
little modification, the same algorithm could be applied to other domains for
ontology construction.

In this paper, we propose a unifying framework (e.g. including configuration,
outstanding traffic monitoring and analysis, planning and management, tutoring,
etc.) for intelligent DNS management using web interface and expert system
technology to help inexperienced administrators in insuring the smooth operation of
their DNS systems. The DNS ontology can be used for facilitating inexperi-
enced administrators in DNS planning and management issues: (1) to re-organize
the resources of the DNS systems in the organization to make them become
more efficient, (2) to upgrade with the scale of the DNS systems when the
environment is changed, (3) to make sure that each DNS server is configured
correctly and properly to avoid those common problems that come from
configuration errors and (4) most importantly to provide expertise to those
administrators whenever they need it. As our experience with a first simple
prototype has shown, the paradigm of using DNS ontology to build a unifying
framework for intelligent DNS management works good and effective; in the near
future, it is supposed that all these might become an integral part of the DNS
administration activities of an organization.

The rest of the paper is organized as follows. Section 2 gives an overview
of the DNS system. Section 3 describes the awareness issue of the DNS
traffic. In Section 4, we describe the system architecture of the unifying
framework. Section 5 briefs on the DNS ontology. Section 6 describes the
DNS KA process. In Section 7, we give some discussions about the system
implementation and evaluation. Finally, in Section 8, we provide some concluding
remarks.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445418



2. Preliminaries

DNS problems (e.g. configuration, planning and management, etc.) are rather
complex and not easy to solve for most administrators. Furthermore, the shortage of
DNS domain experts makes the situation worse.

2.1. Basics of the DNS

The DNS (Albitz and Liu, 2001) is responsible for translation between hostnames
and the corresponding IP addresses needed by software. The mapping of data is
stored in a tree-structured distributed database where each name server is
authoritative (responsible) for a portion of the naming hierarchy tree. The client
side query process typically starts with an application program on the end user’s
workstation, which contacts a local name server via a resolver library. That client
side name server queries the root servers for the name in question and gets back a
referral to a name server who should know the answer. The client’s name server will
recursively follow referrals re-asking the query until it gets an answer or is told there
is none. Caching of that answer should happen at all name servers except those at the
root or top-level domains (e.g. ‘‘.com’’, ‘‘.tw’’, etc.). The working paradigm can be
illustrated as shown in Fig. 1.

2.2. Overview of uses cases modeling

The Unified Modeling Language (UML) is the industry-standard language for
specifying, visualizing, constructing and documenting the artefacts of software

Fig. 1. DNS operation model.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 419



systems (Kobryn, 1999). It simplifies the complex process of software design, making
a ‘‘blueprint’’ for construction. An important part of the UML is the facilities for
drawing use case diagrams. Use cases are powerful tools for analysts to use during
the analysis phase to identify and partition system functionality (Cockburn, 1997).
The methodology separates the system into actors and use cases. The basic model of
uses cases is that actors interact to achieve their goals. Every path in use cases
indicates a scenario and how a goal succeeds or fails.

An actor represents a role that an external entity such as a user, a hardware device
or another system plays in interacting with the system. Actors must be external to the
part of the system. They must supply stimuli to that part of the system, and receive
outputs from it. Use cases describe the behavior of the system when one of these
actors sends one particular stimulus. It describes the nature of the stimulus that
triggers the use case; the inputs from and outputs to other actors, and the behaviors
that convert the inputs to the outputs. Instead of showing ‘‘how to do’’, a use case
shows ‘‘what to do’’ to reveal the functional requirements.

Since use case has been a standard notation, the using of use cases modeling might
not only help us communicate with others, but also simplify the process of
requirement gathering. We applied use cases modeling to help extract DNS
knowledge while building the DNS ontology in the work of this paper.

2.3. The needs of ontologies

Ontologies are useful in a range of applications, where they provide a source of
precisely defined terms that can be communicated across people and applications
(Chandrasekaran et al., 1999). The role of ontologies is to capture domain
knowledge and provide a commonly agreed upon understanding of a domain.
Ontology defines the concepts, the attributes of the concepts, and the relationships
among concepts. With the help of ontology, the knowledge is not only human
readable but also machine readable.

As mentioned in Fernandez (1999), the ontology building process is still a craft
rather than an engineering activity. Each development team usually follows its own
set of principles, design criteria and phases on the ontology development process. In
Fernandez et al. (1997), the authors of METHONTOLOGY explain that the life of
an ontology moves on through the following states: specification, conceptualization,
formalization, integration, implementation and maintenance. KA, documentation
and evaluation are supporting activities that are carried out during the majority of
these states. Since the DNS is still evolving, we have to update the DNS ontology
whenever possible. The evolving prototype life cycle of METHONTOLOGY allows
the ontologist to go back from one state to another if some definition is missed or
wrong. So, this life cycle permits the inclusion, removal or modification of definitions
at anytime of the ontology life cycle.

Tools aid ontologists in constructing ontologies, and merging multiple ontologies
since such conceptual models are often complex, multi-dimensional graphs that are
difficult to manage. These tools also usually contain mechanisms for visualizing and
checking the resulting models—over and above the logical means for checking the

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445420



satisfiability of the specified models. Prot!eg!e-2000 (Noy et al., 2000) is an easy-to-use
KA tool that could construct the domain ontology and achieve the interoperability
with other knowledge-representation systems. In Chen et al. (2002c), we built a DNS
ontology using the METHONTOLOGY methodology and Prot!eg!e-2000 system
from scratch. The DNS ontology has been verified by the experts and shown to be
useful for helping build the sub-systems proposed in this paper.

3. DNS metrics: awareness of traffic distribution

How could a DNS administrator tell if her/his systems work as expected? Is there a
set of golden metrics for checking? It seems that there is no easy answer. Any
reasonable answer should depend heavily on the working environment of each site.
With this mind, let us first check some DNS statistical data collected on Taiwan
Academic Network in the past year to get the intrinsic ideas (MOECC, 2001).

3.1. Some DNS metrics from TANet

Taiwan Academic Network (TANet), the national teaching and research network
co-developed by major universities and the Ministry of Education in July of 1990, is
one of the major parts of the Taiwan Internet community (Tseng et al., 1996).
TANet has backbone, regional network structure, and research-related information
infrastructure to share information and offer co-operated opportunities that connect
schools and research institutes at all levels.

Fig. 2 shows the distribution of the total traffic volume in bytes transferred
between TANet and Internet in November 2001, in which the aggregation of DNS
traffic occupies about 5.7% of the total. On the other hand, Fig. 3 gives a brief

Fig. 2. Monthly traffic distribution on TANet, November 2001.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 421



summary on the monthly DNS traffic statistical data for the nine regional centers on
TANet, in the 3-month interval in September, October and November 2001. As
shown in item 1 of Fig. 3, the average values of the DNS traffic distributions (as
compared to the total traffic including WWW, SMTP, etc.) of the sites center around
5%. However, on some regional centers (e.g. RC-4 and RC-9), the monthly average
values are more than 10% (or even bigger) and their traffic distributions obviously
have larger variations than the others during the summary interval. In short, there
might be some DNS configuration problems, network abusing, DNS anomalous
activities or a mixture of the above, running on these sites during these time intervals.

3.2. Unwelcome DNS traffic and other related problems

According to domain expertise, the DNS traffic distributions vary from site to site
and slightly from time to time on the same site. This makes sense for at least two
reasons since (1) different time-to-live (TTL) values for domain entries and (2)
different kinds of interesting Internet applications are deployed on each site. In
general, DNS traffic consists of independent queries from different sources and of
different types (though the number of different types is limited). However, in

Fig. 3. DNS traffic distribution.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445422



practice, most of the DNS queries are conducted on some major hosts in daily use.
For example, Table 2 shows some potential top users (or programs) of a typical DNS
server of our campus network. Under normal conditions, the servers listed in
categories 1 and 2 are usually recognized and acceptable. According to our
observations, the total traffic (of the above two) might occupy over 70–80%.
However, on the other hand, the traffic introduced by hosts in categories 3 and 4 are
usually not welcome. Either they are malicious programs or they are underground
server processes. All of these might consume lots of network and system resources. If
the administrators could not recognize the problem sources in time and handle them
properly, under severe emergent situations, some may even crash the entire network
or related systems.

According to the above reasoning, it seems that there might be something wrong on
the sites with distribution values more than 10% as shown in Fig. 3. It is more than
double (even triple) of the lowest value in the collected data sets and its traffic
distribution has a far larger variation than the others. Assuming no configuration
problems on the servers of the sites, there must be some anomalous activities going on
during these time intervals unless there are some errors in the statistic data collected.

4. System architecture of the unifying framework

In principle, the hierarchical and distributed properties of the DNS system make
the administration duties to be distributed among different organizations and
departments, and these make the whole system more scalable and robust. However,
they also make the whole system more difficult for debugging and tracing some
network system issues.

4.1. Traditional approaches for fixing DNS problems

Table 3 shows a simple classification of DNS problems that most DNS
administrators might encounter (Chen et al., 2002a). Many factors contribute to
these and the important ones are listed below.

(1) Lots of novice DNS administrators do not know the theoretical and practical
knowledge of DNS system very well. It takes a long time for them to gain the
related knowledge without the assistance of experts.

Table 2

Potential top users/programs of a typical DNS server

Category Examples

1. Normal server Mail, proxy applications, etc.

2. DNS server Downstream DNS forwarding servers

3. Malicious program PC/network virus (mail, web, etc.), intrusion attempts, etc.

4. Underground servers EDonkey (p2p), etc.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 423



(2) Many administrators who manage a small scale of network lack the experiences
of dealing with global Internet traffic. Some serious problems (e.g. using buggy
versions of DNS software, inappropriate configuration or planning problems,
etc.) had not been identified or even been ignored on these sites. Initially, these
small-scale anomalous activities may seen immaterial on the sites; however, these
issues can become fatal problems when the overall traffic grows larger and larger.

(3) Moreover, given the importance of DNS servers, direct or indirect attacks on
the DNS systems are common. The shutdown of Microsoft web sites on January
24, 2001 through the use of DoS attacks on their DNS servers (rather than their
web servers) may be the beginning of a new wave of attacks against vulnerable
DNS server infrastructures (Koh, 2001).

When inexperienced administrators find that there seems to be something wrong
with their DNS servers, the traditional way for them to solve the problem is trying to
find a domain expert who can offer expertise, or find some documents that describe
similar situations, and then try to modify the solutions to satisfy their own situation.
Usually, the domain expert will first try to make a tentative diagnosis according to
the facts that the inexperienced administrator provides, and try to verify the guess.
Once the tentative diagnosis is verified to be correct, a plausible solution is proposed
to fix the problem. If the tentative diagnosis is shown to be wrong, another tentative
diagnosis will be proposed and it will be verified again. This cycle will be repeated
until a final diagnosis can be made or confirmed. On the other hand, when
inexperienced administrators need to re-organize the resources of their DNS systems
or design new DNS systems, they might want the experts to help design the DNS
systems and teach them some management skills. Fig. 4 shows the traditional way
when an administrator asks an expert for help. The expert needs to consider a lot of
conditions; each of them depends upon the resources and requirements. In practice,
the expert will solve these kinds of DNS planning or management problems by
reusing domain knowledge. Usually, the first model comes into the expert’s mind is
the basic DNS model. The expert will ask the inexperienced administrator what kind
of resources she/he has and what requirements she/he wants in order to extend the
basic model to a more complex one. After a thorough brainstorming, the expert
makes decisions according to the resources and the importance of the requirements.
Finally, a suitable DNS system plan is made for the administrator and the process is
finished.

Table 3

A simple classification of typical DNS problems

Category Examples

1. Configuration errors Improper defaults, Lame Server, etc.

2. Planning and management Invalid DNS dynamic update, WINS-to-DNS forwarding, etc.

3. Buggy software Not immune to DNS spoofing, server vulnerability exploited, etc.

4. Attacks to the DNS systems DDoS, forwarding attacks, etc.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445424



4.2. A standard architecture of a DNS system

Fig. 5 shows a standard configuration of a single DNS system. In practice, to
insure the proper operation, there are many issues that should be carefully designed
and deployed. For example, according to domain expertise, the DNS-related security

Fig. 4. Traditional ways for DNS planning and management.

Application
Server

DNS

External
firewall

•Ipfw, ipchain, ipf

Internet

MRTG
Traffic 
monitor

NIDS
(e.g. snort)

•Misuse Detection
--Port scan, CGI attacks, etc

•Statistic Analysis
•Aguri, Netflow, etc.

Two-phase
Anomaly
Detection

Internal
firewall

•SMTP, WWW, etc

•DNS Server Host

•client

LAN

Fig. 5. A standard configuration of a DNS system.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 425



issues include: the protection of network segments (e.g. firewall), protection of DNS
server hosts and DNS zone data (e.g. ACL). Moreover, these could be further turned
into topics including DNS anomalies detection and identification, DNS dynamic
update protection, etc. In theory, firewalls and ACL configuration on DNS servers
could help block the intrusion attempts from outsiders. However, they might help
little if the abusing activities are from insiders. In principle, network abusing or
anomaly attempts from insiders could mainly be detected by the deployment of
hybrid systems (e.g. Intrusion Detection System, analysis of the offline traffic
statistics, mining of the trace log of the DNS servers, etc.). Finally, there are always
cases that are undiscovered or missed by the local security system. The proper
operation of a generic contact e-mail address like abuse@your.organization (or
security@your.organizaion) could always help collect timely valuable messages from
related remote sites for fighting these abusers. In short, these might not be easy jobs
for most inexperienced DNS administrators.

4.3. Overall system architecture

In this paper, we propose a unifying framework as shown in Fig. 6 (e.g. including
configuration, debugging, outstanding traffic monitoring and analysis, planning and
management, tutoring, etc.) for supporting intelligent DNS management using web
interface and expert system technology.

With the complexity of software development, the concept of software IC (i.e.
Integrated Circuit) has been proposed for a long time. In principle, just like the design
and deployment of the IC components in physical hardware systems, we can view some
software components as the basic elements of the software systems under development.
Therefore, people need not re-invent the wheel from scratch. For example, according to
domain expertise (e.g. through use case analysis, etc.), the DNS management jobs could
further be classified into the following main sub-domains: DNS configuration and
maintenance, DNS debugging, DNS outstanding traffic monitoring and anomaly
detection, DNS planning, DNS registration, DNS tutoring, etc. We can reuse the
components and generate a new application by the combination of these components

Fig. 6. Functional requirement analysis of the unifying system.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445426



whenever possible. To achieve the goal of re-using components, Object-Oriented
Programming is an important roadmap. Before a software component comes out, we
must test and debug the component first to make sure it works well. The OOP paradigm
makes use of the concept of class, inheritance, polymorphism, etc. and follows the
software engineering process to iteratively build and test software modules. These
properties help the developers to abstract the problems and make high cohesion and low
coupling software components possible. Therefore, we can ensure that the combination
of these software components is bug free.

On the other hand, with the population of the World Wide Web, the web interface
has been conceived and expected as a standard way for accessing typical information
systems by most people. With these in mind, the objectives of the work reported in
this paper are to use the World Wide Web on a continuing basis to support
intelligent DNS management in which essential DNS issues (e.g. DNS configuration
and maintenance, outstanding DNS traffic monitoring and analysis, DNS
debugging, DNS planning and management, DNS tutoring, etc.) become an integral
part of the DNS administration activities of an organization.

5. The DNS ontology

This DNS ontology is used as a basis to enhance the operation, planning and
management of the DNS systems reported in this paper.

5.1. Building of a DNS ontology

As described in Gomez-Perez (1999), Fig. 7 shows problems in building a KBS
from scratch. It is well known that KA is usually the bottleneck of building a KBS.

Conceptualization

Knowledge Acquisition

Formalization

Implementation

Maintenance

Fig. 7. Problems in building a knowledge-based system from scratch.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 427



The process of the KA is to transfer domain knowledge into knowledge bases. The
problems that we are faced with during the KA process are usually very hard. In
general, KA involves: (1) elicitation (gathering) of data from the expert, (2)
interpretation of the data to infer the underlying knowledge or reasoning procedure
and (3) guided by this interpretation, creation of a model of the expert’s domain
knowledge and performance. In essence, each knowledge base is an extension of
some application domain ontology, where the ontology provides a roadmap for the
class of the concepts that will comprise the knowledge base. Just as a schema
provides the organizing framework for a database, an ontology provides the
framework for the domain knowledge base (Shadbolt et al., 2000). With the help of
ontology, the knowledge is not only human readable but also machine readable.
Having developed a formal specification for a domain ontology, it is possible for
database and software developers to agree on its use.

In the following, we will brief on some main points of the DNS ontology. From
Fig. 8, we could find that there are mainly four types of relationships defined and
several constraints identified:

* Four types of relationships: (1) ‘‘is a’’ is generalization relationship, which can be
used to describe the is a relationship in the class hierarchy. For example, a master

Fig. 8. Partial DNA ontology.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445428



DNS server is a DNS server; (2) ‘‘Syn’’ is synonym relationship, which could be
used to denote two or more terms with the same meaning; (3) ‘‘Rel’’ is ‘‘related
to’’ relationship, which denotes that there exists some relationship between these
terms. For example, ‘‘Rel’’ relationship exists between the DNS server class and
the DNS security class (of issues) and (4) ‘‘Opt’’ is optional relationship. For
example, when we want to register a DNS server, the DNS-MX record is optional.
According to domain expertise, while delivering a mail, a mail server would first
try to look up some explicit MX record(s) corresponding to the destination of the
message. But, if there is no explicit MX record found, the mail server would then
try to find the implicit MX record by using its DNS-A record instead. In this way,
if there is a corresponding A record, the mailing operation could still work;
however, without explicit MX records defined, you cannot deploy the important
mechanism of having relay sites for the smooth operation of delivering mails to
your site.

* Identification of Constraints: (1) Pre-requisite constraint: one term/relationship
depends upon another. For example, currently, if we would like to have a BIND
DNS server with multi-threading capability support, we have to deploy BIND
version 9. (2) Temporal constraint: one term/relationship must occur before
another. For example, DNS registration is needed before a delegated DNS server
exists. (3) Mutually inclusive constraint: one term/relationship requires another
for its existence. For example, if we want to install a DNS server running BIND
software packages, we need to choose from a list of available versions as well; (4)
Mutually exclusive constraint: one term/relationship must not co-exist with
another. For example, a caching-only DNS server is not an authoritative-only
DNS server and vice versa.

5.2. Knowledge hierarchy of the DNS ontology

Fig. 9 shows the knowledge hierarchy of the DNS Ontology. The root of DNS
ontology is DNS Environment; it covers four major sub trees: DNS group,
management strategies, events, and resources. Each of them is described in the
following:

(1) DNS group: The DNS Server Host class shows the related ontology structure
concerning a DNS server. The servers within some Related DNS hosts class
might have some close interactions with one another, e.g. relationship between a
master and its slave DNS servers. The Other DNS hosts class is referred to the
other DNS systems all over the Internet. The Root DNS hosts class is a very
special sub-class of the Other DNS server class. It plays an important role in the
hierarchical and distributed DNS systems. As described above, all the DNS
servers without DNS forwarding capability are supposed to consult some
server(s) in the Root DNS hosts class first whenever they have no idea about
some DNS queries.

(2) Resources: In DNS ontology hierarchy, there are some components that do not
belong to DNS group or management strategies. They can affect the

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 429



management plans and some configurations; e.g. when budget is sufficient,
hardware can be upgraded to high level to improve the efficiency.

(3) Management strategies: Management strategies are very important when we
plan and manage the DNS systems. According to the different requirements of
each DNS system’s management strategies, not only are configurations in each
DNS host different but also many tradeoffs need to be considered. Availability,
performance, and security are major issues in this field.

(4) Events: Events are those activities that can affect the DNS systems, e.g. DoS
attacks can overload the DNS system.

6. DNS Knowledge acquisition

It is important to bear in mind that KA is an independent activity in the ontology
development process (Fernandez et al., 1997). However, it is coincident with other
activities. Most of the acquisition is done simultaneously with the requirement
specification phase, and decreases as the ontology development process moves forward.

Fig. 9. Knowledge hierarchy of the DNS ontology.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445430



6.1. DNS KA process

Expert, books, Internet experimental results, etc. are sources of knowledge
from which knowledge can be elucidated using conjunction techniques such
as: brainstorming, interviews, formal and informal analysis of texts, and KA
tools. Since ontologies specify the constraints that domain knowledge should
satisfy, they can be used to direct the acquisition of domain knowledge
(Heijst et al., 1997).

In this paper, to help extract knowledge from experts and construct the DNS
ontology hierarchy, we propose an efficient KA algorithm (e.g. DNS Ontology
Construction Algorithm) to fast conceptualize DNS domain knowledge by using a
hybrid method consisting of the brainstorming and use case modeling. A simplified
scheme can be illustrated as shown in Fig. 10 and the operation details will be
described later. In fact, with a little modification, the same algorithm could be
applied to other domains for ontology construction.

6.2. Use case modeling for DNS KA

As described in Sugumaran and Storey (2002), domain knowledge could typically
be captured in use cases. In principle, the primary motivations for use case creation:
(1) gaining an understanding of the problem, (2) capturing an understanding of the

Fig. 10. DNS knowledge acquisition process.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 431



proposed solution and (3) identifying candidate objects. Thus, we can derive
important terms from use cases and view these terms as concepts. In other words, we
can construct ontology classes. Moreover, use case relationships and the
corresponding diagrams could help analysts to structure use cases; thus making
them easier to maintain. Usually, as shown in Fig. 11, there are three relationships
existing in use case diagrams.

(1) Include: One use case may include the functionality of another use case as
parts of its normal processing. For example, we know that each time we
call UseCaseX, we would call UseCaseA as well. In other words, we could
build the ‘‘composition’’ relationship between these two classes. The compo-
sition relationship is like ‘‘Rel’’ relationship of an ontology diagram.
Furthermore, the ordering of use cases can also help us set up the pre-
requisite, temporal, mutually inclusive and mutually exclusive constraint
relationships as well.

(2) Use: A specific use case may be used by one or more use cases, so it helps to
reduce duplication of functionality by factoring out common behavior into use
cases that are re-used many times. After some abstraction, this introduces the
‘‘is a’’ relationships of an ontology diagram. For example, as shown in Fig. 11,
there exists ‘‘use’’ relationship between UseCaseX and UseCaseZ, we know that
UseCaseZ might be used by many use cases, which include UseCaseX. Based on
the observation, we know that UseCaseZ might be a ‘‘critical case’’ in our

UseCaseA

UseCaseZ

UseCaseY

UseCaseX

UseCaseB

<<extend>>

<<include>>

<<use>>

<<use>>

Fig. 11. Typical relationships of use cases.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445432



system, and useCaseZ can be reused in many use cases (e.g. UseCaseX,
UseCaseY, etc.). If we view each use case as a class, we can make use of the
concept of OOP to construct our ontology hierarchy. Because of the reuse
property, the abstraction of class Z is needed, such that we can generate many
reused classes based on class Z. Hence, for utilizing the reuse property, we
should first establish an abstraction class, and then the concrete classes could
inherit the abstraction class. In this way, we could establish the ‘‘is a’’
relationships of an ontology diagram.

(3) Extend: One use case may extend the behavior of another use case to
accommodate for more complex problems. It is typically used when
exceptional circumstances are encountered. For example, as shown in
Fig. 11, there exists ‘‘extend’’ relationship between UseCaseB and UseCaseY,
it means that UseCaseB is an exceptional case of UseCaseY. We can view
UseCaseB as an extension of UseCaseY, and then concept B would ‘‘inherit’’
concept Y. The inheritance relationship is like the ‘‘is a’’ relationship of an
ontology diagram.

6.3. Use case modeling and DNS ontology building

As mentioned in Gaines and Shaw (1993), personal construct psychology (PCP),
developed by George Kelly in the early 1950s, has wide application in modeling
human knowledge processes. PCP gives an account of how people experience the
world and makes sense of that experience. The repertory grid was an instrument
designed by Kelly to bypass cognitive defenses and give access to a person’s
underlying construction system by asking the person to compare and contrast
relevant examples. The repertory grid methodology has evolved in the light of
application experiences and a lot of related research applications have been
developed. However, as different from the repertory grid methodology, we propose
another approach for extracting the concepts and attributes by using a hybrid
method consisting of the brainstorming and use case modeling.

The power of a few critical cases described in terms of relevant attributes to
build domain ontology is remarkable. This is because it is often easier and more
accurate for the experts to provide critical cases rather than domain ontology.
Hence, UML use cases analysis is adequate for our DNS KA algorithm because it is
usually not hard for experts to enumerate critical cases and will not take too
much time from them. In addition, we could also get lots of use cases from many
well-known domain-related mailing lists that contain enough and not too much
information, so the knowledge engineers can modify the ontology hierarchy
easily. After the extractions, we would then decompose these concepts into a lot
of sub-components by class abstraction and inheritance. A simplified scheme is
outlined in Fig. 12.

In the following, we will give the details of the DNS ontology construction
algorithm. The descriptions about the use relationships listed below follow the ones
mentioned in Section 6.2.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 433



6.3.1. DNS ontology construction algorithm

Input: Every kind of DNS case.
Output: DNS Ontology.
Step 1. Build the skeleton DNS ontology (top-down).
Step 1.1: Interview with DNS domain experts (or read the DNS books, etc.) for

extracting primary DNS concepts from scratch.
Step1.2: Build the skeletal concept model of the DNS ontology by following a top-

down brainstorming method.
Step 2. Initiates (or conducts) use case modeling.
Step 2.1: Case Input from the email, newsgroup, or system administrators, etc.
Step 2.2: Transform these cases into UML Use Cases by following the principles

below.
Step 2.2.1: Actors Identification.
Step 2.2.2: Define what the actors want to do with the system.
Step 2.2.3: Define (draw) the internal state transition diagram.
Step 2.2.4. Define what the actors would receive from the system.
Step 3: Conduct the attributes and relation extraction. After the transformation,

attribute and relationship extraction is required.
Step 3.1: Analyse and decompose the cases into small components (e.g.

availability, security, performance, etc.). Each use case, we could view as a concept
(class).

Step 3.2: Define or identify the relationships between the use cases.
Step 3.2.1: If there exists some ‘‘include’’ relationship between UseCaseX and

UseCaseY, build the ‘‘composition’’ relationship between these two classes.

* As described in Section 6.2, the composition relationship is like ‘‘Rel’’ relationship
of the ontology diagrams. Furthermore, the ordering of use cases could also help
set up the pre-requisite, temporal, and mutually inclusive constraints as well.

Fig. 12. DNS modeling and DNS ontology construction.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445434



Step 3.2.2: If there exists some ‘‘use’’ relationship between UseCaseX and
UseCaseZ, we could infer that UseCaseZ is used by many use cases, which include
UseCaseX. After some abstraction, this introduces the ‘‘is a’’ relationship of an
ontology diagram as described in Section 6.2.

Step 3.2.3: If there exists some ‘‘extend’’ relationship between UseCaseX and
UseCaseY, we can view UseCaseX as an extension of UseCaseY, and then concept X
would ‘‘inherit’’ concept Y. The inheritance relationship is like the ‘‘is a’’
relationship of an ontology diagram.

Step 4: Merge the ontological components collected in steps 1 and 3 above.
Step 4.1: Associate the results (e.g. concepts) of step 3 with the concepts of step 1

by consulting the synonym table first. If there are some matches, we could establish
‘‘Syn’’ relationships of the ontology diagram and go to step 5.

* We should have a synonym table that describes whether two different terms
indicate the same meaning.

Step 4.2: If we can find the appropriate concept(s) from the concepts of Step 1, we
have to identify the related parts in the ontology tree under construction and
associate the concepts from step 3 to the concept from Step1 by putting the former in
the lower level of the ontology hierarchy and link them to that component related to
the concept from Step1. After that, go to step 5.

Step 4.3: If we could not find any appropriate known concept, we have to create a
new concept for step 3 and link it to the ontology sub-trees.

* Since it is usually impossible to define a complete concept hierarchy from the
beginning, we need to create new concepts whenever necessary.

Step 5: Experts verify the ontology under constructing.
Step 5.1: Verify the correctness of the skeletal ontology under construction,

including those new created components and the hierarchical structure.
Step 5.2: If the experts find any ontological components not covered by the

constructed skeletal ontology, then the construction process will go back to step 2.
Step 6: After experts’ verification, the DNS ontology is constructed to cover DNS

domain knowledge.

6.3.2. Examples for illustrating the DNS ontology construction algorithm

As shown in Fig. 12, the whole DNS KA process could be roughly divided into
three parts, namely, Part 1={Step 1}, Part 2={Steps 2 and 3}, Part 3={Steps 4, 5,
and 6}.

(1) Part 1: In essence, it is impossible for us to construct a complete ontology
hierarchy from the beginning. In part 1, all we have to do is simply extract
important concepts. After some brainstorming process, we could construct a
rough skeletal concept model of the DNS ontology as shown in Fig. 13. We
might lose some concepts, but that does not matter. We will have a more
complete model after the whole process.

Step 1: Build the Skeleton DNS ontology (top-down).

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 435



In step 1, we interviewed with the domain experts for extracting DNS
knowledge. The domain experts can help extract concepts. In additional, they
can also help define or identify the relationships between these concepts as well
(e.g. ConceptX should be performed before ConceptY, ConceptX would occur
with the ConceptZ, etc.). Step 2 initiates (or conducts) use case modeling.

(2) Part 2: Since the skeletal concept model constructed in step 1 is not complete, it
needs a refinement process to increase its completeness.

Step 2. Initiates (or conducts) use case modeling.
Step 3. Conduct the attributes and relationships extraction.

(3) Part 3: Part 1 is top-down and part 3 is bottom-up. Now we have to merge them
in step 4. After that, the domain experts help verify the DNS ontology tree built
up until now {e.g., steps 5 and 6}.

Step 5: Experts verify the ontology under construction.
Step 6. The ontology generated is confirmed OK.

In the following, we would give two examples for helping to demonstrate the
operation details of the KA process during Steps 2–4.

* Example 6.1: How to register a DNS entry (e.g. NS server record, address record,
etc.)?

Step 2: Fig. 14 indicates the DNS registration concept.
Step 3: As shown in Fig. 14, we can easily extract the DNS registration concept.
Step 4: We could not find any appropriate concept to relate the DNS Registration

concept with Fig. 13 (e.g. the rough DNS skeletal concept model). Hence, as shown
in Fig. 15, we have to create a new concept, which might be named ‘‘DNS
Registration’’, for relating with DNS server concept.

* Example 6.2: We have a use case consisting of DNS Security class that contains
many issues including: DNS zone data protection, DNS anomaly identification,
DNS server host protection, and DNS Dynamic update protection, etc.

Step 2: Fig. 16 shows the concepts and relationships about the DNS security
class.

Step 3: As shown in Fig. 16, we can first extract six concepts, namely, DNS
security, DNS dynamic update, DNS zone data protection, DNS anomaly detection,

Fig. 13. An initial skeletal concept model of DNS.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445436



and DNS anomaly identification. Moreover, besides the concepts of extraction, we
could find that the ‘‘include’’ relationship exists between the DNS security concept and
other concepts. Therefore, by following our former heuristics, we can construct a part
of the ontology hierarchy concerning the DNS security class as shown in Fig. 17.

Step 4: We find that there is a ‘‘DNS Security’’ concept related with ‘‘DNS Server’’
concept. Hence, we could connect these two concepts directly. After the operation,
the DNS ontology could be illustrated as shown in Fig. 18.

7. Experiments and evaluations

In this paper, we propose a unifying framework for supporting intelligent DNS
management using web interface and expert system technology. Fig. 19 shows the

Fig. 14. A use case indicating the DNS registration concept.

Fig. 15. The DNS ontology after the adding of the DNS registration concept.

Fig. 16. Concepts and relationships about the DNS security class.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 437



web page of our ongoing iDNS-MS (e.g. intelligent DNS Management System)
project. Interested users could refer to the web site (e.g. http://idns-ms.nctu.edu.tw).
For supporting local users’ access, some of the diagrams listed below are shown in
our native language (e.g. Traditional Chinese Big5 code, mainly used in Taiwan and
Hong-Kong).

7.1. Overview of the iDNS-MS project

Fig. 20 shows the current status of the project. In practice, the daily DNS
management jobs could be partitioned into the following main sub-domains: DNS
configuration and maintenance, DNS debugging, DNS outstanding traffic monitor-
ing and anomaly detection, DNS planning, DNS registration, DNS tutoring, etc. In
essence, the DNS systems involved are distributed in nature and deployed across
different network segments and different platforms. At the time of the writing:
(1) the main operating systems deployed are FreeBSD 4.6.2, and Solaris 2.5 with
necessary patches; (2) the primary DNS software package deployed are BIND 8.3.3

Fig. 17. A concept model of the DNS security class.

Fig. 18. The DNS ontology after the adding of six more DNS security-related concepts.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445438

http://idns-ms.nctu.edu.tw


and 9.2.2rc1 and (3) the web server packages deployed is Apache 2.043. Some sub-
systems have been prototyped and deployed for everyday use. Others are under
development. For example: (1) Fig. 21 shows a scenario on the observed DNS server,
it seems that there were anomalous DNS traffic. We implemented a set of simple
PERL script for running with MRTG (Oetiker, 1998) to interpret the DNS traffic
(i.e. port 53) statistics captured by the packet filtering program, or firewall; (2)
Fig. 22 shows a snapshot of the inference result of the experimental DNS Planning
and Management sub-system while it is used to help debug some configuration errors
in the zone file upload and (3) Fig. 23 shows the home page of the Chinese DNS
tutoring sub-system.

7.2. Evaluation and discussion

Table 4 shows a list of ideal DNS administration tools or sub-systems that could
be useful for everyday use and hope to become an integral part of the DNS
administration activities of an organization in the future. In the following, we will
give some more descriptions about each of them.

(1) For some categories (e.g. categories 2, 3, etc.), there are many commercial
products (e.g. DNS configuration tools like DNSexpert, or DNS debugging

Fig. 19. Overview of the iDNS-MS project.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 439



web-site, http://www.dnsreport.com, etc.). However, we can also find some free
command-line text tools (e.g. dnswalk, doc, etc.) from public domain or on the
system by default (e.g. ping, etc.) with similar functions. Usually only with some
minor modifications, we can easily have such a set of similar tools with web
interface.

(2) On the other hand, we could get some specific program sources from public
domain or vendors and modify them to fit our own requirement. For example,
* As mentioned in (Chen et al., 2002b), we have designed and deployed the

online DNS monitoring system (e.g. category 4) as shown in Fig. 21, and the
online DNS outstanding traffic identification sub-system (e.g. category 1).

Fig. 20. Project status.

Fig. 21. Online passive DNS monitoring.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445440

http://www.dnsreport.com


Fig. 22. An inference (e.g. debugging) result of our iDNS-PMS.

Fig. 23. Online DNS tutoring system with FAQ, case studies, etc.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 441



* The network administration team at our campus had implemented an offline
network traffic statistic engine (e.g. category 6). With proper input selections,
we can get the functionality in category 6 above.

(3) Finally, for some sub-systems (e.g. especially the ones in category 1, 5, or 7), we
have no better choice but to try developing them ourselves.

* Either there are no successful systems known to the public yet, or there are
some obvious social barriers (e.g., languages supporting issues in DNS
tutoring systems).

In the near future, it is supposed that all these might become an integral part of the
DNS administration activities of an organization.

8. Concluding remarks

In this paper, we have shown two ways in which explicit DNS ontology can be
used during knowledge engineering: for knowledge elicitation and for computational
design. Our main contributions are: (1) to present the characteristics of the various
DNS administration activities; (2) to propose a unifying framework of intelligent

Table 4

Overview of important DNS administration activities

Category Modules/sub-systems in need

1. DNS anomaly detection Online DNS summary report (modified aguri) as in Chen et al.

(2002b).

Our experimental anomaly detection engine as mentioned in Chen et al.

(2002b).

2. DNS configuration

tools

DNSexpert, Dlint, etc. as mentioned in Ou (2002).

3. DNS debugging tools (1) www.dnsreport.com (e.g. commercial sites).

web tool similar to doc, dnswalk (e.g. public domain tools, text

command lines).

(2) Ping (e.g. testing tool of network connectivity).

A default tool on most systems.

4. DNS monitoring (1) Online real-time DNS traffic monitoring (MRTG).

(2) Online DNS summary report sub-system, with outstanding traffic

identification capability as mentioned in Chen et al. (2002b).

5. DNS planning and

management

Our experimental Intelligent DNS planning and management system

(iDNS-PMS), still under development.

6. DNS traffic statistics

(offline)

Network traffic statistical engine. For example, Cisco Netflow

mentioned in Cisco NetFlow (2001).

7. DNS tutoring system (1) Online basic DNS tutoring course.

(2) FAQ (native-language support).

(3) Case study.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445442

http://www.dnsreport.com


DNS management environment that integrates DNS monitoring, debugging,
planning, configuration, and tutoring sub-systems, etc. using web interface and
expert system technology to help insure the healthy operation of the DNS systems of
an organization.

The presented study is an analysis of what problems and difficulties most DNS
administrators might encounter and provide insights into how various DNS
assistant sub-systems could be designed and deployed to solve the complex
problems or alleviate these DNS administration job loadings. In this paper, we
propose a KA algorithm, DNS Ontology Construction Algorithm, to help
knowledge engineers extract knowledge from experts and construct the DNS
ontology. Our experience has shown the effectiveness of this method. On the other
hand, the systematic analysis has provided useful support and has aided in
improving the design. During computational design application, the ontology can be
used to determine the suitability of problem solvers for the DNS systems including:
(1) to re-organize the resources of the DNS systems in the organization to make
them become more efficient, (2) to upgrade with the scale of the DNS systems when
the environment is changed, (3) to make sure that each DNS server is configured
correctly and properly to avoid those common problems that come from
configuration errors, and (4) most importantly to provide expertise to those
administrators whenever they need it. As our experience with a first simple prototype
has shown, the paradigm of using DNS ontology to build a unifying framework for
intelligent DNS management works good and effective; in the near future, it is
supposed that all these might become an integral part of the DNS administration
activities of an organization.

Future research will focus on several issues. First, we will complete the more
complex sub-system, Intelligent DNS Planning and Management System (iDNS-
PMS). Second, since the DNS system is still evolving, the corresponding DNS
ontology needs refining. For example, we will extend the ontology to integrate more
topics including: IPv6, multilingual DNS, intrusion detection mechanisms
concerning DNS, etc. The very extensions should be reflected on each of the
appropriate sub-systems in our proposed unifying framework. Finally, for letting
more local DNS administrators gain the insight of DNS administration in a
systematic and effective approach, more case studies will be integrated into the DNS
tutoring sub-system with native language support (e.g. Chinese Big5, etc.)
incorporated.

The authors wish to acknowledge that most of the presented research was
conducted while they were affiliated in part with the MOE Program of Excellence
Research of the Republic of China under Grant No. MOE89-E-FA-04-1-4.

References

Albitz, P., Liu, C., 2001. DNS and BIND, 4th Edition. O’Reilly & Associates Inc., Sebastopol, CA.

Chandrasekaran, B., Jorn, R., Josephson, V., Richard Benjamins, 1999. What are ontologies, and why do

we need them? IEEE Intelligent Systems 14 (1), 20–26.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 443



Chen, C.S., Tseng, S.S., Liu, C.L., Ou, C.H., 2002a. Design and implementation of an intelligent DNS

configuration system. In: Proceedings of Fourth International Conference on Advanced Communica-

tion Technology, Korea, February, 2002, pp. 230–235.

Chen, C.S., Tseng, S.S., Liu, C.L., 2002b. A distributed intrusion detection model for the domain name

system. Special issue on parallel and distributed systems. Journal of Information Science and

Engineering 18, 999–1009.

Chen, C.S., Tseng, S.S., Liu, C.L., Ou, C.H., 2002c. Building a DNS ontology using METHONTOLOGY

and Protege-2000. In: Proceedings of 2002 International Computer Symposium Workshop on

Artificial Intelligence, December, 2002, Vol. 2, pp. 1853–1860.

Cisco NetFlow, 2001. NetFlow Services Solutions Guide. Cisco Systems, Inc. http://www.cisco.com/

univercd/cc/td/doc/cisintwh/intsolns/netflsol/nfwhite.htm.

Cockburn, A., 1997. Structuring Use Cases with Goal. Journal of Object-Oriented Programming

(Parts 1 and 2), the September–October issue, 35–40; and the November–December issue,

56–62.

Fernandez, M.L., 1999. Overview of methodologies for building ontologies. In: Proceedings of the IJCAI-

99 Workshop on Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends, Vol.

18 (4). CEUR Publications, pp. 1–13.

Fernandez, M.L., Gomez-Perez, A., Juristo, N., 1997. METHONTOLOGY: from ontological art towards

ontological engineering. Workshop on Ontological Engineering, Spring Symposium Series. AAAI97

Stanford, USA.

Gaines, B.R., Shaw, M.L.G., 1993. Knowledge acquisition tools based on personal construct psychology.

Special Issues on ‘‘Automated Knowledge Acquisition Tools’’ of the Knowledge Engineering Review 8

(1), 1993.

Gomez-Perez, A., 1999. Tutorial on Ontological Engineering. In: Proceedings of the IJCAI-99 Tutorial

Program, No. 2. http://www.ontology.org/main/presentations/madrid/theoretical/pdf.

Heijst, G.V., Schreiber, A.T., Wielinga, B.J., 1997. Using explicit ontologies in KBS development.

International Journal of Human-Computer Studies 46 (2/3), 183–292.

Kobryn, C., 1999. UML 2001: A standardization odyssey. Communications of the ACM 42 (10),

29–37.

Koh, J.L., 2001. Recent Developments and Emerging Defenses to D/DoS: The Microsoft Attacks and

Distributed Network Security. SANS Institute, URL: http://www.sans.org/infosecFAQ/DNS/devel-

opments.htm.

Man-Mice, 2002. Domain Health Survey for. COM-November 2002, http://www.menandmice.com/6000/

61 recent survey.html.

Moecc, Taiwan, 2001. Network Traffic Statistics on TANet, MOECC Newsletter, URL:http://

www.edu.tw/moecc/art/brief.htm.

Musen, M.A., 1992. Dimensions of knowledge sharing and reuse. Computers and Biomedical Research 25,

435–467.

Noy, N.F., Fergerson, R.W., Musen, M.A., 2000. The knowledge model of Protege-2000:

Combining interoperability and flexibility. In: Proceeding of the Second International

Conference on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-les-Pins,

France.

Oetiker, T., 1998. MRTG: The Multi Router Traffic Grapher. In: USENIX LISA Conference, Boston,

MA, December, 1998, pp. 141–147.

Ou, C.H., 2002. Design of an intelligent dns planning and management system. Master

Thesis, Department of Computer and Information Science, National Chiao-Tung University,

Taiwan.

Shadbolt, N., O’Hara, K., Cottam, H., 2000. The use of ontologies for knowledge acquisition. In:

Cuena, J., et al. (Ed.), Knowledge Engineering and Agent Technology. IOS Press, Amsterdam,

pp. 12–14.

Studer, R., Benjamins, R., Fensel, D., 1998. Knowledge engineering: principles and methods. IEEE

Transactions on Data and Knowledge Engineering 25 (1–2), 161–197.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445444

http://www.cisco.com/univercd/cc/td/doc/cisintwh/intsolns/netflsol/nfwhite.htm.
http://www.cisco.com/univercd/cc/td/doc/cisintwh/intsolns/netflsol/nfwhite.htm.
http://www.ontology.org/main/presentations/madrid/theoretical/pdf.
http://www.sans.org/infosecFAQ/DNS/developments.htm
http://www.sans.org/infosecFAQ/DNS/developments.htm
http://www.menandmice.com/6000/61_recent_survey.html.
http://www.menandmice.com/6000/61_recent_survey.html.
http://www.menandmice.com/6000/61_recent_survey.html.
http://www.menandmice.com/6000/61_recent_survey.html.
http://www.edu.tw/moecc/art/brief.htm.
http://www.edu.tw/moecc/art/brief.htm.


Sugumaran, V., Storey, V.C., 2002. Ontologies for conceptual modeling: their creation, use, and

management. In Data & Knowledge Engineering 42, 251–271.

Tseng, S.S., Su, L.S., Chao E. H., 1996. TANet: Taiwan Academic Network. In: Proceedings of INET96,

Montreal, Canada, June, 1996, pp. 24–28.

C.-S. Chen et al. / Int. J. Human-Computer Studies 58 (2003) 415–445 445


	A unifying framework for intelligent DNS management
	Introduction
	Preliminaries
	Basics of the DNS
	Overview of uses cases modeling
	The needs of ontologies

	DNS metrics: awareness of traffic distribution
	Some DNS metrics from TANet
	Unwelcome DNS traffic and other related problems

	System architecture of the unifying framework
	Traditional approaches for fixing DNS problems
	A standard architecture of a DNS system
	Overall system architecture

	The DNS ontology
	Building of a DNS ontology
	Knowledge hierarchy of the DNS ontology

	DNS Knowledge acquisition
	DNS KA process
	Use case modeling for DNS KA
	Use case modeling and DNS ontology building
	DNS ontology construction algorithm
	Examples for illustrating the DNS ontology construction algorithm


	Experiments and evaluations
	Overview of the iDNS-MS project
	Evaluation and discussion

	Concluding remarks
	References


