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Reduction of Interference in Oscillometric Arterial
Blood Pressure Measurement Using Fuzzy Logic
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Abstract—In oscillometry, oscillation amplitudes (OAs) em-
bedded in the cuff pressure are drastically affected by a variety
of artifacts and cardiovascular diseases, leading to inaccurate
arterial blood pressure (ABP) measurement. The purpose of this
paper is to improve the accuracy in the arterial pressure mea-
surement by reducing interference in the OAs using a recursive
weighted regression algorithm (RWRA). This method includes a
fuzzy logic discriminator (FLD) and a recursive regression algo-
rithm. The FLD is used to reduce the effect of artifacts caused by
measurement motion disturbance or cardiovascular diseases, and
to determine the truthfulness of the oscillation pulse. According
to the truth degree, the relationship between the cuff pressure and
OA is reconstructed using the regression algorithm. Because the
regression method must utilize inverse matrix operation, which
will be difficult to implement in an automatic or ambulatory
monitor, the recursive regression method is proposed to solve
this problem. To test the performance of this RWRA, 47 subjects
underwent the ABP measurement using both the auscultation and
the oscillometry combined with the RWRA. It was found that the
average difference between the pooled blood pressures measured
by the auscultation and those by the oscillometry combined with
the RWRA was found to be only 4.9 mmHg. Clinical results
demonstrated that the proposed RWRA is more robust than the
traditional curve fitting algorithm (TCFA). We conclude that
the proposed RWRA can be applied to effectively improve the
accuracy of the oscillometric blood pressure measurement.

Index Terms—Blood pressure, fuzzy logic, oscillation, oscillom-
etry, regression.

I. INTRODUCTION

M OST commercial automatic blood-pressure monitors
primarily apply either the auscultatory or the oscillo-

metric methods for measurement. Both of these methods utilize
an occlusive cuff, as an external pressure source, wrapping
around a subject’s upper arm to disclose the systolic and
diastolic pressures within 30–60 s. In the deflation period, the
fluctuating wall of the blood vessel slightly alters the blood
pressure, giving rise to oscillations in the cuff pressure. A
specific pattern will be shown when the occluding cuff pressure
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Fig. 1. The systolic (Sys.) and diastolic (Dia.) pressures detected from an
oscillation pattern with the oscillometric method, where the dense decreasing
line represents the cuff pressure(P ), the thin line represents the oscillation
signal of cuff pressure, and MAP means the mean arterial pressure.

is gradually reduced from above systolic to below diastolic
values. In the oscillometric method, because a reflective notch
waveform appears in a raw blood pressure waveform, the
technique of maximum change of positive slope is used to find
the peak values of oscillation waveform which are considered
as the oscillation amplitudes (OAs). The OA and the cuff
pressure are then used to determine the mean arterial, systolic
and diastolic pressures. Fig. 1 shows the relative position of the
systolic and diastolic pressures on the patterns of cuff pressure
and oscillation waveform. It is now generally accepted that a
maximum cuff pressure oscillation occurs when the occlusive
cuff pressure is equal to the mean arterial pressure (MAP)
[1]–[3]. Systolic pressure is the pressure where the OA is a
systolic ratio of the maximum oscillation in the period of high
cuff pressure. In contrast, diastolic pressure is the pressure
where the OA is a diastolic ratio of the maximum oscillation in
the period of low cuff pressure.

There are two major shortcomings in applying the oscil-
lometry. One is that an artifact from the patient’s motion will
contaminate the actual OAs, resulting in a change in the OAs.
The other is that a large number of cardiovascular diseases,
such as arrhythmia, will lead to an irregular OA. Due to these
two drawbacks, it is difficult to produce a smooth curve rep-
resenting the authentic envelope of the OAs. This makes the
blood pressure measurement inaccurate. Therefore, a variety of
techniques have been proposed to overcome the disturbance of
the OA profile and to improve the accuracy in blood pressure
measurement [4]–[6]. Most of them employed smoothing (or
averaging) maneuvers or pulse matching algorithms to reject
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Fig. 2. Block diagram of the proposed oscillometric measurement system, where input is the ABP,P is cuff pressure,� is the angle formed by three contiguous
OAs [see Fig. 3(a)],� is the angle formed by five contiguous OAs [see Fig. 3(a)], andW is a weighting factor.

the motion artifact [7]. Also, the Kalman filter has been inves-
tigated to conquer these problems [8], [9]. Another approach
to determining the isolated pressure and the rate of pressure
change has been proposed, in which the brachial artery pul-
sation signal obtained by an oscillometric methodology was
incorporated [10].

Recently, fuzzy logic has been widely applied in the biomed-
ical control and feature extraction [11]–[14]. One of the advan-
tages of fuzzy logic is that it can be established empirically
without explicit mathematical models of nonlinear physiolog-
ical systems [15], [16]. Also, since fuzzy logic is based on lin-
guistic rules, it is not difficult to implement a feature extraction
system with fuzzy logic. In this paper, we shall apply fuzzy logic
theory to reduce the interference in oscillometric arterial blood
pressure (ABP) measurement.

In the oscillometry, the measured OAs contain a large amount
of physiologic disturbance inherently, so reconstructing the rela-
tionship between the cuff pressure and OA is a challenging task.
To solve this problem in this paper, we design a fuzzy logic dis-
criminator (FLD) to effectively remove the interference in the
OAs due to different kinds of artifacts. We then apply a regres-
sion algorithm based on the weighting factors determined by the
FLD to reconstruct the relationship between the cuff pressure
and OA. A recursive computation method is used in the linear
regression algorithm to form the recursive weighted regression
algorithm (RWRA) for reconstructing the OA pattern. There are
two reasons for using the recursive computation method in the
linear regression algorithm. One is that there are about 30 to
40 heartbeats during the measurement period, so the rank of the
corresponding regression matrix is about 30 to 40. In a commer-
cial automatic blood pressure monitor, the inverse operation of
a high-rank matrix is difficult to program in a single-chip pro-
cessor. The other reason is to reduce the measurement time. If
the regression matrix is used to calculate the parameter vector
directly, then the program must wait for the finish of the mea-
surement procedure to start the mathematical calculations, so
that the real-time blood pressure monitor is difficult to obtain.
In RWRA, each OA of a heartbeat is detected and immediately
used to update the parameter vector to fit the current measured
data. This can largely decrease the final mathematical calcula-
tion time and speed up the whole measurement procedure. The
systolic and diastolic pressures are detected from the new rela-
tionship between the cuff pressure and OA, which is constructed

by the RWRA. Extensive clinical tests have been done to verify
the performance of our designed algorithm. The outcomes mea-
sured by the proposed RWRA technique will be further com-
pared with those measured by the mercury column sphygmo-
manometer performed by the professional nurse.

This paper is organized as follows. In Section II, an FLD
and a recursive regression method are designed for reducing
the redundancy of OA. In Section III, the practically clinical
measurement for verifying the proposed algorithm, and the
statistic method for comparing the accuracy and reliability of
the estimated blood pressures are presented. Discussions and
conclusions are made in Section IV.

II. FUZZY-LOGIC-BASED RECURSIVEWEIGHTED REGRESSION

ALGORITHM

The oscillometry cannot provide the accurate systolic and di-
astolic pressures once the disturbances resulting from arm’s mo-
tion, tremor or cardiovascular abnormalities occur during the
measurement period. This is because these disturbances will
greatly distort the original OAs, leading to a change in the spe-
cific OAs that correspond to the systolic and diastolic pressures,
respectively. Therefore, this paper focuses on investigating how
to extract the features of disturbance from the measured OAs.
The degree of closeness between the corrupted and original OAs
is represented by a weighting factor. In general, an OA with a
smaller weighting factor contributes less to the reconstruction
of the OA profile.

Fig. 2 shows the block diagram of the proposed measurement
system. The whole system includes the sensing module, a feature
detector of disturbance, an FLD, and an RWRA. The sensing
module of the oscillometric measurement system, including
pressure sensor, pumping air motor, and valve, simultaneously
record cuff pressure and the corresponding oscillation
waveforms. The peak values on the oscillation waveform are
then detected as the OAs. The disturbance characteristics of
the OA, and defined later, are then extracted from the
OAs’ pattern. The FLD uses these parameters, including, ,
and OAs to determine a weighting factor to represent the OAs
truthfulness, and the RWRA uses this weighting factor along
with the cuff pressure and OAs to reconstruct the shape of change
in OA over cuff pressure. The systolic and diastolic pressures
are then detected based on this reconstructed relationship.
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In the sensing module of Fig. 2, a silicon membrane pressure
transducer (SenSym, SCX05DNC) is used to measure the cuff
pressure. The sensed analog cuff pressure signalis further
processed using a band-pass filter with cut-off frequencies of
0.5–3 Hz to produce the oscillation signal (see Fig. 1). The cuff
pressure signal and the oscillation signal are then converted to
digital signals using a 12-bit A/D converter. Then the technique
of maximum change of positive slope is used to find the oscilla-
tion peaks (OAs) on the oscillation signal [17]. During the peak
detection process, the oscillation signal slope is measured peri-
odically at a rapid rate, and unless the slope meets some prede-
termined criteria, the peaks will be measured and compared. The
measured cuff pressure and OA are then used in other functional
blocks of Fig. 5 as detailed in Section II-A and Section II-B.

A. FLD for Disturbance Estimation

In several previous studies, the relationship between the cuff
pressure and OA has been investigated when the cuff was
deflated [18], [19]. But how to reject the noise from the acquired
data becomes a practical challenge. Therefore, it is necessary to
explore an efficient approach for the disclosure of the reliable
relationship between the cuff pressure and OA. In this section,
an FLD is designed to reduce the effect of artifacts and to de-
termine the truthfulness of the OA corresponding to individual
heart beat. Reasonably, the more artifacts contained in the oscil-
lation pulses, the lower degree of truthfulness that the measured
OA represents in extracting the shape of change in OAs over
cuff pressure. According to the fuzzy logic theory, the degree of
the truthfulness for the OAs can be considered as the weighting
factor in identifying the true measured targets. In general, if an
OA’s truthfulness degree is close to zero, the OA plays an infe-
rior role in the reconstruction of the oscillometric pattern.

In Fig. 3, four typical oscillation waveforms of normal and
abnormal cardiovascular functions, corresponding to the normal
subject without cardiovascular disease and the subjects with
arrhythmia, atherosclerosis, and hypertension respectively, are
used to describe how to extract the disturbance characteristics
from the OA patterns and construct the fuzzy logic rules in the
FLD. Fig. 3(a) shows a normal oscillation waveform from a
young man whose age, weight, and blood pressure (systolic/di-
astolic) are 26 years, 70 Kg, and 102/64 mmHg, respectively.
Fig. 3(b) shows an oscillation waveform of arrhythmia from an
old man with cardiac arrhythmia whose age, weight, and blood
pressure are 85 years, 74 Kg and 148/56 mmHg, respectively.
This waveform appears to contain periodic irregular heart beats.
Fig. 3(c) shows an oscillation waveform of atherosclerosis from
an old man with atherosclerosis whose age, weight, and blood
pressure are 68 years, 67 Kg, and 140/76 mmHg, respectively.
This waveform contains a wider range in the MAP’s neigh-
borhood. Fig. 3(d) shows an oscillation waveform of hyperten-
sion from an old man with hypertension whose age, weight,
and blood pressure are 63 years, 80 Kg, and 170/96 mmHg, re-
spectively. This waveform appears to have waveform shifting to
the high pressure. We can find that the envelopes of the oscil-
lation waveforms of atherosclerosis and hypertension are sim-
ilar to those of normality. Therefore, we only illustrate the ways
of extracting the disturbance characteristics from the oscillation
waveforms of normality and arrhythmia in the following.

Fig. 3. (a) The oscillation waveform from a subject with normal cardiovascular
function. (b) The oscillation waveform from a subject with cardiac arrhythmia.
(c) The oscillation waveform from a subject with atherosclerosis. (d) The
oscillation waveform from a subject with hypertension.

In the normal oscillometric pattern, it is obvious that an angle
, close to 180, is formed among one specific OA and its

two contiguous OAs [e.g., ABC in Fig. 3(a)], except the
angle corresponding to the maximal OA. This is also true for the
angle, , formed by five contiguous OAs [e.g., DBE
in Fig. 3(a)]. But, if one OA corresponding to an arrhythmic
beat, the angle formed by three contiguous OAs,, will be-
come smaller [e.g., A′B′C′ in Fig. 3(b)]. However, even
in this case, the angle formed by five contiguous OAs,, is pos-
sibly close to 180 [e.g., D′A′C′ in Fig. 3(b)]. There-
fore, the FLD is designed to have three inputs, including the OA,
the angle formed by three contiguous OAs , and the angle
formed by five contiguous OAs . If these angles are ob-
tuse angels, their supplementary angles will be calculated. This
design ensures and being acute angles. The fuzzy term
set for the input OA is composed of three membership func-
tions: MAX, MID and MIN. These fuzzy terms are defined by
means of triangular functions in the [0 7] subset of real numbers.
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The fuzzy term set for or , also using triangular functions
defined in the [0 180 ] subset of real numbers, includes four
membership functions: BEST, GOOD, WORSE, and WORST.
The triangular membership function, , , , or OA,
is defined by

(1)

where and indicate the defined internal [ ] of fuzzy term
, and indicates the defined center of fuzzy term. In other

words, in (1) represents the center of the triangular mem-
bership function whose value is one at , and the functions

and define the left
spread and right spread of the triangle-shape function on
the internals [ , ] and [ , ], respectively. The output of
the FLD is the weighting factor , which represents the de-
gree of truthfulness of the current OA. The fuzzy term set for
the weighting factor has four fuzzy terms with singleton type:

, and .
There are two major concepts in constructing the fuzzy logic

rules in the FLD. First, we can find from Fig. 3(b) that the angle
A′B′C′ becomes smaller, when the OA is present in

the condition that the cuff pressure is equal to MAP, or is con-
taminated by undesired artifacts. Therefore, the input OA can
help the FLD to discriminate whether the heart beat belongs to
a normal or abnormal beat. Second, also from the observation
on Fig. 3(b), the contiguous OAs of the abnormal heart beats
will have A′B′C′ smaller than D′A′C′, when the
OA is in an ascending or descending procedure. According to
these observations, 38 fuzzy rules are designed to form the rule
set of the FLD. The individual rule-based inference process is
supervised by computing the degree of match between the fuzzi-
fied input values and the fuzzy set describing the meaning of the
rule-antecedent. Fig. 4 shows the distribution of all the designed
fuzzy rules, where , and represent the fuzzy singleton
output 1, 0.7, 0.4, and 0, respectively. Four representative fuzzy
rules are listed below:

If OA is MAX and is WORST and is WORSE, THEN
W is 1.

If OA is MID and is GOOD and is BEST, THEN W is
0.7.

If OA is MIN and is WORSE and is GOOD, THEN W
is 0.4.

If OA is MIN and is WORST and is WORSE, THEN
W is 0.

As expressed in (2), the output is produced by clipping
the fuzzy membership functions, and the possibility distribution
function is then found by applying the Mamdani’s max–min
operator [15]

(2)

Fig. 4. This 3-dimension map represents the set of 38 fuzzy rules that are
used by the FLD in our proposed measurement system, where�; ; and
represent the defuzzification outputs 1, 0.7, 0.4, and 0, respectively.

where the inputs are OA, and , the output
is , and is the number of fired rules. The technique of
“center of gravity” is used to process the defuzzification and to
calculate the numerical outputof the FLD, as expressed in (3)

(3)

where is the number of quantization levels of the output,
is the amount of output degree at the quantization level, and

represents the membership value in the output fuzzy set
, which is a singleton.

B. RWRA

In Section II-A, (3) determines the truthfulness degree of OA
of each heart beat, and the relationship between the cuff pressure
and OA has been formulated as a static nonlinear mapping in
the previous investigations [20]. Here, after each OA is given
a weighting factor, , representing the degree of truthfulness
of the OA, by the FLD designed in Section II-A, the RWRA
will be adopted to fit the envelope of the OAs in this subection.
Because the normal OA pattern is close to a triangular shape
[see, for example, Fig. 5(a)], the Lorentzian function is used to
fit the envelope of OAs here. The Lorentzian function is defined
as below

(4)

where is the model order, and s are the Lorentzian coeffi-
cients. Since the above Lorentzian function cannot be used by
the linear regression method directly to reconstruct the oscillo-
metric model, it is expanded to a power series as

(5)

where is the model order, ands are the coefficients to be es-
timated. Our goal is made the output of the oscillometric model,

, equal to OA when the input,, is the corresponding cuff
pressure, .
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Fig. 5. Comparisons between the two envelopes of OAs generated by the
RWRA (solid curve) and the TCFA (dotted curve). The solid circles denote
the original OAs, and the open circles the weighting factor values decided
by the proposed FLD. (a) A typical OA distribution from a subject without
cardiovascular disease. (b) A typical OA distribution from a subject with
arrhythmia, whereP , P andP are the uncorrected peaks. (c) A typical OA
distribution from a subject with atherosclerosis. (d) A typical OA distribution
from a subject with hypertension. In Fig. (d), we also illustrate the way of
determining the systolic/diastolic pressures (166/98 mmHg) from the solid
fitted curve.

According to the expanded Lorentzian function in (5), in the
linear regression function, the regression vector,, and the pa-
rameter vector, , are defined below [21]

(6)

(7)

where is the model order andis the sampled number. There-
fore, the linear regression model can be expressed as

(8)

where is the residual error and is the oscillation am-
plitude corresponding to the cuff pressure at sample, .
For each data segment, the parameter vector of the model is de-
termined using a weighted least-squares method. Letdenote
an arbitrary estimate of the parameter vector. Then, the loss
function can be defined as

(9)

where is the total beat (i.e., OA) number in the deflating
process, and is the weight (weighting factor) of
obtained by the FLD designed in Section II-B. An optimal es-
timate of the parameter vectorcan be determined from the
measurement data, and and can be ob-
tained by minimizing the loss function

(10)

In (10), if we define , then
the RWRA to obtain (10) can be expressed by

(11)

and

(12)

Equations (11) and (12) are calculated for each measured
OA, and the final is the optimal parameter vector

, where is the total beat (i.e., OA) number.
Putting the optimal s values into the expanded Lorentzian
function in (5), we obtain the model describing the shape of
change in OA over cuff pressure

(13)

where is the cuff pressure, . That is, for a given measured
cuff pressure , (13) can estimate a reliable OA value; which
is equal to

(14)

The complexity and accuracy of the above computations
depend on the model order. In the proposed algorithm, the
Lorentzian function belongs to an irrational function. Normally,
a lower-order model cannot characterize the actual nonlinear
curve accurately. However, a high order model will result
in high computation complexity in building the relationship
between the cuff pressure and OAs. Moreover, it will
be easy to make a model divergent. Therefore, in subjective
criteria, the model’s order is chosen under the consideration
that the model estimating the shape of change in OA over cuff
pressure will not diverge. In objective criteria, the goal is to
develop a model which increases the accuracy and robustness in
the blood pressure measurement. Thus, we had tried the use of
models with different orders and found that the resulting model
by fitting the original envelope of the OAs can detect the most
accurate systolic and diastolic pressures whenis equal to 4.

Using (11) and (12), the curve describing the shape of change
in OA over cuff pressure can be reconstructed. With the reliable
OA versus model obtained in (13), which decides a curve
on the OA- plane, the systolic and diastolic pressures can
be detected on this curve using the oscillometric method. As
illustrated in Fig. 5(d), the cuff pressure corresponding to
the maximum reconstructed OA represents the MAP. Then,
according to proper systolic and diastolic ratios of the maximum
reconstructed OA, the systolic and diastolic pressures are found
from the corresponding cuff pressures, respectively. The systolic
ratio and diastolic ratio used in our system are 0.55 and 0.7,
respectively, which are decided experimentally as described
in Section III.
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III. EXPERIMENTAL RESULTS

A. Experimental Procedure

The experimental protocol recruited 47 subjects (34 men and
13 women) with a mean age and standard deviation (SD)
(61 15) from 13 to 87 years, undergoing diagnostic evalu-
ation for cardiovascular function or physical condition at the
Hsinchu Hospital, Taiwan. ABP measurements in all subjects
were performed with auscultation, and their systolic pressures
ranged from 92 to 186 mmHg (132 23) and diastolic pres-
sures from 52 to 112 mmHg (77 11). In the 47 subjects, 38
subjects with cardiovascular abnormalities, such as hyperten-
sion, atherosclerosis or arrhythmia, were included in the ex-
perimental group, and their systolic pressures ranged from 92
to 186 mmHg (137 23) and diastolic pressures from 52 to
112 mmHg (79 12). The other nine subjects (seven men and
two women) without cardiovascular diseases, aging from 21 to
63 years (48 13), were classified as the control group, and
their systolic pressures ranged from 96 to 146 mmHg (113
17) and diastolic pressures from 60 to 86 mmHg (719).

In order to determine the proper systolic ratio and diastolic
ratio as mentioned at the end of Section II, a noninvasive
blood pressure analyzer (DNI NEVADA, CuffLink, Carson
City, NV) was used to calibrate the proposed oscillometric
measurement system. This analyzer can generate the simulated
oscillation signals in the real cuff pressure measurement for
a specified blood pressure. In our calibration, we set the
blood pressure in the analyzer as the systolic pressure being
120 mmHg, the diastolic pressure being 80 mmHg, and MAP
being 90 mmHg. The measured oscillation signal from the
analyzer was then sent into our oscillometric measurement
system, which then produced a OA- curve describing the
shape of change in OA over cuff pressure [see, for example,
Fig. 5(d)]. The peak OA value (OA on the OA- curve
was detected, and its corresponding cuff pressure was the
MAP value. We first calibrated the pressure sensor in our
oscillometric measurement system such that the detected MAP
value was exact 90 mmHg. Then, we detected the OA values
corresponding to the cuff pressure of 120 mmHg and 80 mmHg
on the OA- curve, denoted by OA and OA ,
respectively. Finally, the systolic ratio and diastolic ratio was
set as OA /OA and OA /OA , respectively.
Such calibration was performed for several times and the
obtained average systolic ratio and diastolic ratio are 0.55 and
0.7, respectively, in our experiments.

Noninvasive blood pressure measurements in the study
were performed in two phases. In the first phase, the systolic
and diastolic pressures in all subjects were measured with
a mercury column sphygmomanometer by qualified nurses
at the Hsinchu Hospital. In the second phase, the designed
measurement system was used to record the brachial arterial
pressure pulses. In the beginning, a cuff was placed around
the subject’s upper arm, and the cuff pressure was inflated up
to 50 mmHg above the subject’s systolic pressure. Then, the
release valve was opened to decrease the cuff pressure at a
deflation rate of 3 mmHg/s until the cuff pressure reached at

20 mmHg below the subject’s diastolic pressure. The measured
cuff pressure signals are then processed by the proposed
oscillometric measurement system mentioned in Section II to
obtain the systolic and diastolic pressures of the testing subject.

B. Statistical Analysis

Fig. 5 shows the OAs extracted from the recordings in Fig. 3.
In Fig. 3(b), there are three uncorrected peaks,, and ,
that can be extracted by the proposed algorithm and shown in
Fig. 5(b). For the subject with normal cardiovascular function,
the envelope of the OAs generated by the RWRA is similar to
that by the traditional curve fitting algorithm (TCFA), as shown
in Fig. 5(a). In contrast, for the subject with cardiac arrhythmia,
the envelope of the OAs produced by the RWRA is reasonably
different from that by the TCFA, as shown in Fig. 5(b). Also, it
is worthwhile noting that lower values of the weighting factors
correspond to those OAs induced by the arrhythmic heart beats
or the uncorrected peaks.

To assess the feasibility of the RWRA as well as the TCFA,
a series of ABP measurements were carried out by the standard
auditory detection procedure, and by the oscillometry combined
with either one of RWRA and TCFA approaches. Table I lists
the values of systolic, diastolic, pulse, and pooled (including
systolic and diastolic) blood pressures determined by these two
different approaches. Here, 47 subjects were enrolled in the
blood pressure measurement. In the TCFA method, only 46
subjects’ pressures were recorded due to one subject having
a large amount of disturbance. Thus, there are 46 subjects’
blood pressures are shown and statistically analyzed in Table I.
The difference between the systolic blood pressures measured
with the auscultation, and that with the oscillometry combined
with the RWRA was found to be 4.7 mmHg, less than that
with the oscillometry combined with the TCFA. In addition,
the linear regression correlation coefficients is used to
describe the correlation between the auscultatory method and
the oscillometry combined with the RWRA. If thevalue is
near 1, it indicates the linear function being a good description.
For the systolic and diastolic blood pressure measurements
using the auscultatory method or the oscillometry combined
with the RWRA, the values were found to be 0.98 and 0.91,
respectively. Furthermore, in order to observe the measurement
variability over a broad pressure range by the oscillometry
combined with the RWRA, a linear regression analysis for the
pooled measurements was performed, as shown in Fig. 6. The
linear regression correlation coefficient between the auscultation
and the oscillometry combined with the RWRA was found
to be 0.99.

We also used the “-test” to compare the accuracy of RWRA
and TCFA in detecting the systolic and diastolic pressures
and the results are also listed in Table I [22]. The-test was
performed by using the SigmaPlot mathematical analysis
software (SPSS Inc., Chicago, IL). For a paired-test on data
sets and , the statistic is
defined as by

(15)
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TABLE I
SUMMARY OF THE BLOOD PRESSURE(BP) MEASUREMENTS BY THEAM, AND THE OSCILLOMETRY IN COMBINATION WITH THE TCFA, OR

WITH THE PROPOSEDRWRA, WHERE SEE= STANDARD ERROR OFESTIMATE; r = CORRELATION COEFFICIENT; t IS THE t-TEST

VALUE; p INDICATES THE PROBABILITY OF TWO MEANS BEING THE SAME

Fig. 6. Scatter plot of systolic (solid circles) and diastolic (open circles)
pressures measured by the auscultatory detection, and the oscillometry
combined with the RWRA. Study sample,n = 47; linear regression
correlation,r = 0:99 (p < 0:0001); SEE= 4.9 mmHg; least-square fit line,
y = 0:56 + 0:996x; t = �0:02 (p = 0:98).

where

(16)

(17)

where is the mean of values, is the mean of values,
and . Here, a -value of 0.05 was accepted as
significant. In Table I, the value indicates the probability of
incorrectness in stating that the two means are different. Hence,
the larger the value is, the more similar the two data groups are.
In order to test the performances between TCFA and RWRA in
each individual case, Table II is used to describe the distribution
of for two groups’ scores of TCFA to auscultatory method
(AM) and RWRA to AM, respectively.

IV. DISCUSSIONS ANDCONCLUSION

Previous studies, based on the oscillometric technique, have
produced several skills to improve the accuracy of ABP mea-

surement, such as adopting the Kalman filter to estimate the cor-
rect OAs [8], [9], using a step-decrease in cuff pressure to match
the successive complex OAs at each pressure level [4], applying
the Korotkoff sound to increase the signal to noise ratio [6], and
differentiating the signal’s slopes to predict the OAs [5]. In this
paper, also based on the oscillometric technique, we proposed
a new fuzzy-logic-based RWRA scheme to accurately measure
the ABP by declining the interference in the OAs.

The proposed RWRA for fitting the envelop of OAs solves
the two major disadvantages of a normal (unweighted) regres-
sion method (such as TCFA) using a polynomial function. The
first disadvantage is due to the monotonous smoothness of the
polynomial function. Because most of the normal OA patterns
resemble a triangle shape, the polynomial function cannot catch
up with an abrupt change in the OAs. Therefore, we applied, in
this study, the Lorentzian function to fit the pattern of OAs of
the cuff pressure. To become a real-time recursive algorithm, the
Lorentzian function was expanded and represented by a linear
function, as expressed by (5)–(8). Table III shows the compar-
ison between the weighted mean square errors (MSEs) yielded
by the RWRA with the polynomial function and those by the
RWRA with the Lorentzian function, respectively. For the nine
subjects with normal cardiovascular function, the MSEs gener-
ated with the Lorentzian function are always smaller than those
with the polynomial function. The second disadvantage is that
the TCFA is processed macroscopically. Thus, once certain parts
of the OAs are contaminated by a large amount of noise, the
TCFA approach will fail to provide a fit-well curve. As shown
in Fig. 7, with two OAs greatly affected by artificial noise, the
profile corresponding to those OAs obtained by the TCFA does
not fit the OAs well. On the contrary, the profile provided by the
RWRA matches quite well with those OAs. The reason for this
is that the proposed RWRA excludes the two intentionally al-
tered OAs in the reconstruction process. Noticeably, the values
of the weighting factors for the two OAs are set to nearly zero
according to the designed fuzzy logic rule in the proposed FLD.
It is noticed that the Lorentzian function in its form of (5) was
used both in the RWRA and the TCFA approaches in the com-
parisons made in Fig. 7.

We have made the comparisons of measurement accuracy
between the blood pressures measured by the standard aus-
cultatory detection procedure, and those by the oscillometric
technique incorporating the algorithm of RWRA or TCFA.
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TABLE II
COMPARISONS OF THEDIFFERENCES INEACH INDIVIDUAL CASE GENERATED BY THE TCFA AND RWRA METHODS FORSYSTOLIC AND

DIASTOLIC PRESSURES, RESPECTIVELY

TABLE III
COMPARISON OF THEWEIGHTED MSEs GENERATED BY THE RWRA WITH POLYNOMIAL FUNCTION AND THOSEWITH LORENTZIAN FUNCTION,

RESPECTIVELY, IN NINE SUBJECTSWITHOUT CARDIOVASCULAR DISEASES

Fig. 7. Two OA profiles obtained with the TCFA (dotted curve) and the
proposed RWRA (solid curve), respectively. The solid circles denote the
original OAs, and the open circles the weighting factor values. Note that the
dotted curve does not fit well with the original OAs, but the solid curve does.

According to the previous investigation [10], the correlation
coefficient between two data groups can be used to indicate the
similarity degree of these two data groups. Based on this index,
it is demonstrated, in the systolic pressure measurements,
that there is a high correlation coefficient , SEE
4.7 mmHg, and between the measured results of the
auscultatory technique and those of the oscillometry combined
with the proposed RWRA algorithm, whereas there is a lower
correlation coefficient , SEE 4.9 mmHg, and

between the measured results of the auscultatory
technique and those of the oscillometry combined with the con-
ventional TCFA (Table I). Similarly, in the results of-test, the
determined systolic pressure of RWRA ,
is more accurate than that of TCFA , .
The determined diastolic pressure of RWRA ,

is slightly less accurate than that of TCFA ,
. But in the pooled pressure measurements, the

RWRA displays better accuracy ( , SEE 4.9 mmHg)
than the TCFA ( , SEE 5.1 mmHg), when compared
with the auscultatory technique. Therefore, we would like to
reemphasize that one (out of 47) subject’s pressure records
contained a large amount of disturbance, and was excluded in
the above analysis.

In conclusion, the proposed RWRA is quite robust in rejecting
external interference induced by either artificial motion or
arrhythmic disturbance and in reconstructing the relationship
between the cuff pressure and OA. Form this reconstructed
relationship, the accurate systolic and diastolic pressures can
be detected. The contributions of this paper are summarized
as follows.

1) The proposed RWRA-based modeling (or “curve fitting”)
technique is aimed at the processing of the oscillation wave-
forms produced by the oscillometric blood pressure mea-
surement. Hence, the characteristics of such signals are fully
utilized in our algorithm, such as the use of Lorentzian func-
tion to fit the OA patterns due to their similarity, the use of
the technique of maximum change of positive slope for peak
detection due to the reflective notch waveform appearing in
a raw blood pressure waveform, and the extraction of dis-
turbance features ( and in Fig. 3) of the OA patterns
for fuzzy estimates of reliability by observing various types
of oscillation waveforms corresponding to the normal sub-
ject and the subjects with arrhythmia, atherosclerosis, and
hypertension, etc.

2) In the proposed RWRA, an FLD is established to detect the
irregularities within the succession of peaks on the oscil-
lation waveforms. Fuzzy estimates of reliability were then
used as weights in a recursive regression analysis to ex-
tract the shape of change in OA over cuff pressure. The
FLD effectively reduced the effect of artifacts caused by
cardiovascular diseases or measurement motion disturbance
and determined the truthfulness of the oscillation pulse. The
fuzzy logic rules were obtained by observing various types
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of oscillation waveforms corresponding to the subjects with
normal or abnormal cardiovascular functions. Hence, unlike
normal general-purpose smoothing methods, the proposed
FLD embeds the expert knowledge of ABP into its structure
and reasoning process.

3) Extensive clinical tests were done to verify the performance
of the proposed method. The results of the proposed method
were compared in 46 subjects to blood pressure measure-
ments obtained by conventional auscultatory procedure of
measurement. The study nicely showed that artifacts were
reduced and there was a good correlation between both
methods.
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