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Distance-Preserving Mappings From Binary Vectors to A DPM for lengthn (for short: an:-DPM) is a mapping’: Z5 —
Permutations S, such that
Jen-Chun Chang, Rong-Jaye Chen, Torleiv K|dedlow, IEEE and dir (2, y) < du(f(z), f(y)), forallz, y € 7.
Shi-Chun Tsai Let 7., denote the set of-DPMs. SincdS,,| < |Z5| forn < 4, an

obvious necessary condition for the existence ofiddPM isn > 4.

. ) ) A heuristic argument indicates that, is quite large, even for small,
Abstract—Mappings of the set of binary vectors of a fixed length to the but F. is known to be nonempty only fot < < 8 (Ferreira and
set of permutations of the same length are useful for the construction of u n | W pty only S s !
permutation codes. In this correspondence, several explicit constructions of Vinek [3]).
such mappings preserving or increasing the Hamming distance are given.  The main results in this correspondence are several explicit methods
Some applications are given to illustrate the usefulness of the construction. to construct mappings iff,, for all n > 4.
In particular, a new lower bound on the maximal size of permutation arrays From any mapping itF,., we can obtain new mappings by permuting

PAs) is given. het . .
(PAS)is g Zy , Sy, and the positions of the elements in the values. More precisely,
Index Terms—Code constructions, distance, mapping, permutation ar- |et # be ann-DPM and let

rays (PAs).
(T1, T2y veney Tn) = fl@r, @2, o0y ).
|. INTRODUCTION Leto, p, 7 € S,.. Then the mapping defined by
The main objects studied in this correspondence are mappings from(2s(1y: To(2)s -« - Ta(n)) =(P(Tr(1))s P(Tr(1))s- -0 p(Tr (1))

the set of binary vectors of length to permutations of the same is again am-DPM. We callf andg equivalent
length that preserve (or increase) the Hamming distance. We call them ' ’
n-DPMs (distance-preserving mappings).
The inspiration comes partly from the paper [3] where Ferreira and . ON 74
Vinck usedr-DPMs to construct permutation trellis codes. They found We start by a systematic study &%; in particular doing a com-
a 4-DPM by computer search. From this mapping they constructpléte listing. Renaming the elements if necessary (that is, permuting
n-DPMs for5 < n < 8, using anad hoc“prefix method.” It was {1, 2, 3, 4}), we may assume that
not clear from their paper if and how the method could be generalized
ton > 8. One result of this correspondence is a general method to £(0,0,0,0)=(1,2,3,4). @
systematically construct explicit DPMs for all> 4. For (w1, ma, w3, ma) = f(1, 1,1, 1), there are nine possibilities
A permutation array(PA) is a set of permutations of the firsthat-  since we must have
ural numbers. PAs were somewhat studied in the 1970s, some important ,
papers from that period are [1] and [4]. A recent application by Vinck dr((1, 2, 3, 4), (w1, w2, 73, 7)) = 4.
[10] of PAs to a coding/modulation scheme for communication ov&fhese nine possibte fall into two classes, depending on whether
power lines has created renewed interest in PAs, see [2], [3], [5], [6],
[11]-[13]. Other recent papers on PAs are [7] and [9]. In this correspon- g =1, wherea = 2

dence, thel-DPM'.s we.construct are applied to give new ConStrUCtiOQﬁwat is,1 is a fixpoint for the permutation - 7) or not. There are three
of PAs and resulting (improved) lower bounds on the size of PAs. possibilities for (2) to be satisfied, namely.

Il. BASIC NOTATIONS (1, w2, w3, ma) = (2, 1,4, 3), (3,4, 1, 2), (4,3, 2, 1),

LetS,, denote the set of all! permutations ofZ,, = {1, 2, ..., n}. wherer, is 2, 3, and4, respectively. By permuting the positions in a
We represent a permutation Z, — Z, by listing its values in an suitable way and renaming the elements, we can always obtain
n-tuple:m = (m., LETE 7 ) (Wherer; = 7 (7). (71, o, w3, 7a) = (2,1, 4, 3)

The Hamming distanceds(a, b) between two n-tuples
a = (a1, az,...,a,) andb = (b, ba, ..., b,) of elements in this case. We say that the correspondfnis of type 1. Similarly,
of any kind is the number of positions where they differ if (2) is not satisfied, there are six possibilities fot, 72, 73, 74),

namely,
di(a. b) = [{j € Zn [ a; # bj}]. (2.3,4,1),  (2,41,3). (3,142

The setZy denotes the set of binary vectors of length (3,4,2,1), (41,2,3), (43,1,2).

By permuting and renaming, we can get
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We call f normalized if it satisfies (1), (3), and (4). For each normalized if x> =1 then swap (w3, m4);
f oftype 1, there ar8 - 24> = 1728 mappings which normalizes tb if a3 =1 then swap (m, m3);
For f of type 2, there aré - 24 = 3456. if x,=1 then swap (m, m4);
How many normalized of each type are there? A complete searctend
using standard backtracking, has shown that the exact number of noiNote that the first two swaps are independent, as are the two last. The
malizedf is other mappings wittD,> = D33 = 0 have similar simple algorithms,
23227834 of typel and 30910400 of type2. but the tests must be done in different orders and with different swaps.

Example 1: We illustrate the algorithm for computirig ) on one
example, namelyg = (1, 22, 3, 24) = (1, 1, 0, 1). In the fol-
lowing table we show howr, w2, w3, 1) develops in each step.

Hence, the total number of mappingsi is

24° (3-23227834+ 6-30910400) = 146 964 039 552.

For f € Fu, let D;; denote the number of (unordered) pairs .
{z, ¥y} C Z5 such that

) ) ) ) 1 2 3 4

dH(ma y) =i and dH(f(m)~ f(y)) = r =1, SW&F(TU, sz) 2 1 3 4

These numbers tell us to what extghincreases distances. By defini- wz =1, swafms, m) 2 1 4 3

tion of DPM, D;; = 0 if i > j. A DPM that increases many distances r3 =0, noswap 2 1 4 3

may be more interesting for applications. zg =1, swafm, m4) 2 3 4 1
We haveD;; = 0 forall i, D4y = 8, and

Do+ D13+ D1y =32 (5)
Doy & Dos 4 Doy — 48 ©) IV. RECURSIVE CONSTRUCTIONS OFDPM
Dss + Dsy = 32. @) In this section, we give a couple of recursive constructions of DPMs.
For a permutatiop = (p1, p2, ..., pm) € Sm and an integer,
We have computed the numbdps; for all f € F4. We noted that letp +n = (p1 +n, p2 +n, ..., pm +n). This is a permutation of
the D;; are all invariant under the normalizing operations describelgh + 1, n +2, ..., n 4+ m}.

above. Hence, we only had to consider normalized mappings.

The number o priori possibilities of theD; ;, that is, nonnegative
integral solutions of (5)—(7), is 22678425, but, as it turns out, only (fog)(z, 2') = (f(z), g(2') + n).

27 458 of these actually occur.

We note thaD»» + D33 is the number of distances (2 or 3) which do Example 2: Using f = g = h, we get a mapping o € Fs.
not increase undef. For applications, it is interesting to ha¥#. + Sinceh(1, 1, 0, 0) = (2, 1: 4,3)andh(1, 1,0, 1) = (2, 3, 4, 1),
D33 as small as possible. It turns out that there exist (exactly) twg, example/, we get o i i ’
normalized mappings for whichz: = D33 = 0. One is obtained
from the other by simple transformations. Further such mappings are, (h<oh)(1,1,0,0,1,1,0,1)=(2,1, 4, 3,6, 7, 8, 5).
of course, the equivalent mappings.

One example (denoted i) is given in the following table. Itisnot  Thegrem 1:If f € F,, andg € Frm, thenf o g € Frim.
normalized but has a nice structure that can be generalized, something pyoof: We have
we will do in a later section.

Construction 1: Let f € F,, andg € F,,. Define f ¢ g by

du((fog)(x. 2'). (fog)(y. ¥'))

z I () x h(z) =du(f(x), f) +dulg(@) +n, g(y') +n)
o - =du(f(®), fy) +dulg(@), 9(y"))
(0,0,0,0) | (1,2 3, 4) (0,0,0,1) | (1, 4,32 > Ao )t A (@ 4
(0,0,1.0) | (3,2.1,4) (0,0,1.1) | (3.4.1,2) 2 dnlw y) +dnz, ¥
(0,1,0,0) | (1,2,4.3) | (0,1,0,1) | (1,3,4,2) = dn((z, =), (y. ). QED
(0,1,1,0) | (42, 1,3) (0,1,1,1) | (43, 1,2)
(1,0, 0, 0) (2,1, 3, 4) (1,0,0,1) | (2,4,3,1) Corollary 1: For alln andm we have
(17 07 17 0) (3 17 2 4) (17 07 17 1) (3* .47 2:‘ 1) |Fn+m| 2 |]:n| . |fm|
(1,1,0,0) | (2.1, 4,3) (1,1,0,1) | (2,3, 4, 1)
(1,1, 1, 0) (4. 1,2, 3) (1,1,1, 1) (4,3,2,1) Proof: This follows directly from Theorem 1. QED
Corollary 2: For alln > 4 we havelF,| > 0.

The values ofD,; for h are Dyy = Dys = Dsq = 32, Doy = Proof: The statementis true far< n < 8 (see [3]). The general
16, andD;,; = 0 otherwise. The simple structure bfgives a simple Statement follows by induction, using Corollary 1. QED
algorithm for computing its values. In our next class of recursive constructions, we constnsBPMs
Mapping algorithm for h from (n — 1)-DPMs. A position function (of lengthn) is a function
Input : (x4, s, 3, x4) € Z3. p: 23— Zm.

Output : (w1, &2, 73, ma) = h(w1, @2, T3, T4).

Construction 2: Let g € F,,—y and letp be a position function of

begin lengthn — 1. Fore € Z7 1, let

(71, T2, w5, Ta) — (1,2, 3, 4);
if 2, =1 then swap (w7, m2); (1, T2y ooy Tnet) = glx), q = p(x).
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Define f: Z3 — S,, by

f(z, 0) = (71, T2, ...,

fl&, 1) =(m1, ..., Tg—1, N, Tgg1, - .-

Informally, we can describe the construction as follows: first we appe
the element: at the end ofr; if «,, = 1 we further swap the elements

in positionsg andn».

The functionf depends op andp; sometimes, we explicitly include

Tn—1, ”)a

them in the notation and writé = f, ,.

Example 3: In this simple example, we let = 6 andp is defined
by p(2) = 2 for all 2. Sincep is a constant functiory,(z, xs) depends

only ong(x) andx. We give a few examples.

We see thaf (z, 0) always has in the last position and(z, 1) always

> Tn—1, TFQ)'
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Case lll: ©, =y, = 1 andr = ¢. Then

f(m7 1) :(ﬂ-l:\ ey =1, Ny g4t e eey Tn—1, 7Tq)

FW 1) =(p1, -y Pg15 T Pgt1--vs Pr—1s Pg)-

ragearly, (8) is satisfied (with equality).

Case lV: ¢, =y, = 1 andr # ¢. Then

f(a?‘/ 1):(W1') R
Tp—1y Tyy Typdly oo

F. D)=(p1, -\ pa=1s Pas Pat1s -+
Prets Ty Prdl«vny Pr—l, Pr)

Tg—15 Ty g4l evey

vy Tn—1, ﬂ—Q)

(if ¢ < r and, similarly, ifg > r). We see thaf(z, 1) and f(y, 1)

g(x) T flz, z6) differ in positionsy andr and possibly in position. On the other hand,
(1,2, 3, 4, 5) 0 (1,2, 3, 4, 5, 6) it may be thay(x) andg(y) differ in positionsy andr, differences that
(1‘ 2’ 3‘ 4’ 5 |1 (1‘ 6’ 3’ 4’ 5’ 2) are “lost” in the step frony to .. More precisely, we get
Coson | 1| Lonaes A (F(@, ). F(u: 1) = du(g(). 9(u)) + 2+ i (w0, pr)
(5.4.3.2.1) | 0 | (5.4.3.2.1.6) ~dpr(mg, pg) — du (e, pr)
(5.4,3,2,1) | 1 | (5,6,3,2,1,4) >du(g(x), g(y))-

has6 in the second position (singéz) = 2).

Theorem 2: If g € F,,_1 andp is a position function of length—1,

thenf = fg,p S fn-

Proof: Letz, y € Zy . We only need to show that

Hence, (8) is satisfied also in this case. QED

Corollary 3: Foralln > 4 we havelF, 11| > n?" |F,|.

Proof: Since a position function can take anyrofalues on each
of the2™ arguments, the number of positions functionsis . Hence,
we havel|F,,| choices forg andn?” choices forp. We have to show
that each choice gives a distinttLet g1, g» € F,, be distinct. Then
there exists aw € Z3 such thaiy: () # ¢-(2). Therefore,

A (f(®, 2n), £y, yn)) 2 dr(g(@), 9(¥) + di(xn, yn) (8)
since this inequality and the fact thate F,,_; implies that

d(f(@, xn), f¥ yn)) >du(@, y) + di(xn, yn) for all position functiong; andp:.

=du((®, x0), (Y yn))-

fé’l-Pl (il}‘./ 0) = (gl(x)7 7'1/—1— 1) 7é (gg({l}). n’+ 1) = fy2-112(mv 0)

Letp; andp- be distinct position functions. Then there existzan

We let

To prove (8), we consider the possible valuesgfandy,,. By sym-

(plﬂ P2, ---

(ﬂ—la T2y v vy ﬂ—"—l) :g(m),

s pa—1) = g(y),

q = p(z)
r=p(y).

Z3 such thap, (z) # p2(z). Thereforef, ,, (x, 1) andf, »,(z, 1)
differ in positionsp: () andp2(z) for all g. QED

Construction 2 gives mappings that are implicitly defined (however,
with an algorithm to compute them). By carefully keeping track of the
recursive steps, it is possible to obtain more explicit expressions for
some mappings iF,, (for all n). For example, starting from some
g2 € F. and the positions function that is constdnin each step,

metry, we may assume without loss of generality that< y,,. There
are four cases to consider.

Casel: #, = y» = 0. Then follows (a proof follows by induction om).

Lete = (z1, x2, ..., ¥n) € Z3
f(&', 'n) :(71-1-, T2y euvy Tn—1, 0)

f(?/, 0) :</)1> P2y +ovy Pr—1, 77‘)- andg,,(a:) = (Wlﬂ T2y «vvy "Tn)-

Clearly, (8) is satisfied (with equality) in this case.
Case ll: =, = 0 andy, = 1. Then

Let (p1, p2, p3, pa) = ga(x1, @2, 3, T4).
If x; = 0foralli,5 <i < mn,then

forl1 <i<4
for5 <i<mn.

f(mv 0) = (ﬂ'la vy Tp—1y Tpy Tyl v vey Tp—1, 77)
f(y> 1) :(ﬂl-/
We see thaif(x, 0) and f(y, 1) differ in positionsr andn. On the

other hand, we have “lost” one differing positionif. # p,.. More
precisely

Ti = Pis

s Pr—1s Ty Pr41 ooy Prn—1, [Jr)- T =1,

b <ip <iz <+ < iy <n,then

T =iy
dr(f(z, 0), f(y, 1)) =du(g(z), 9(y)) — dr (7, p;) +2 T = pi, for2 <i<4
>du(g(x), g(y)) +1 Tin = P1
Wi, = Tl for2<m<u

and so (8) is satisfied also in this case. =1, otherwise.

we obtain a mapping. = fg,_,,1 € F» which can be described as

If z; = 1exactlyfori =i¢,,,m =1,2, ..., wwhereu > 1and
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Example 4: If

x=(1,1,0,0,0,1,1,0,1,0) and g4(1.1,0,0) = (4,3,2,1)
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Combining the preceding two steps, we get explicit expressions for
w;. Eachrm; depends om and the values of exactly twe; (which also
depends o). Forl < i < m, we get

thenu = 3,i1 = 6,i» = 7,43 = 9, and so Titm  Xrij2] Gtmod2 i
0 0 7
910(1,1,0,0,0,1,1,0,1,0)=(9, 3,2, 1,5, 4, 6, 8, 7, 10). 0 1 i—1
0 1 1 141
The description above gives rise to a simple algorithm to compute Titm  T(iymy/2) (i +m) mod2 L
gn(2) in this case. 1 0 i tm
Mapping algorithm 1 1 0 t4+m—1
Input : (21, T2, ..., @) € Z3 and g4 € Fi. 1 1 1 i+m+1
Output : (w1, 72, ..., Tp) = Gn(T1, To, ..., Tp)
where g;41 = fy;.1 for 5 >4 Form 4+ 1 < i < 2m we get
begin
(7T1-, T2, T3, 7T4) — ga(21, T2, 23, »’T4);
t — m; T; xri/2) i mod 2 T
for t=5to n do
if x; =1 then begin m — ¢, t«— i, end 0 !
else w; « i; 0 1 i—1
et 0 1 1 i+1
end i X[i—m)/2] (i —m) mod 2 T
If we choosey, = I, for example, we can substitute the explicit 1 0 i—m
algorithm ofh for the part(w1, w2, 73, Ta) «— ga(®1, w2, 3, 24) Of .
. 1 1 0 1—m-—1
the algorithm above. .
1 1 1 t—m-+1

V. EXPLICIT n-DPMS FOREVEN n

Mappings similar to: € F. may be constructed for all even=
2m > 4. These mappings, which we denote/by,,, we define by an
algorithm.

Construction 3:

Mapping algorithm for hom
Input : (x1, 2, ..., X2,) € Z3™.
Output : (w1, T2, ..., Tam) = Ram(T1, 22, ..., T2m).
begin
(71, Tay ooy o) — (1,2, ..., 2m);
for ¢« from 1 to m do

if x; =1 then swap (m_1, mo);
for i from m+1i to 2m do
if x; =1 then swap (Ti—m,m);

end

The firstm swaps are independent, and so are thetastherefore,
it is easy to give an explicit description of the mapping. L.edenote
the permutation after the first steps. Then, fot < j < m

(Y2j—1, U2j) = . Y ©)
(27,25 — 1), if ¢; =1.
The step from) to = is defined by
YVimm, Vi), if 2; =0
(Tri—ma 7Ti) = ( ) . (10)
Uiy Yimm ), if e, =1

form+1<i<2m.

Theorem 3:i) For all mm > 2 we havehs,, € Fap,. i) FOrm = 2
orm > 3 andodd, if0 < dy(z, y) < 2m, then

di(hom (&), hom(¥)) > du(, ¥).

Proof: Form even, we see that for any evéenm + 1 < i <
2m, the four element§m; . —1, Ti—m, mi—1, m;) Only depend on
(Z(i—m)/2+ Tij2, ¥i—1, ;); and are obtained by the following four
steps.

if  2(i—m)y;2 =1 then swap(m;_m_1, Ti—m);
if x;,,=1 then swap(m,_;, ),
if 2,y =1 then swap(mi_m_1,

if x; =1 then swap(m;_.,., m).

Tiz1);

This is exactly the algorithm fok (except for a renaming of the
elements). Hencé,.., is essentiallyn /2 copies of; more precisely,
haym IS equivalent to

hoho---oh (m/2 factors. (11)
By Theorem 1}2.,, is @ DPM. This proves i) fom even.
Considerm odd. Let
= (21, T2s ooy T2m)s Y= (Y10 Yoo oens Yom) € 23"
and let
7 =(m1, m , Tom) = hom (&)
P =(p1, p2; -5 p2m) = ham(y)-
Further, let
zr=(T1, T2y ooy Tn) ANA ZR=(Tmt1, Tmt2s -5 T2m)
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and definey, andy,, similarly. We will first show that

du(m, p) >22du(zL, y,,) 12)
du(m, p) 22du(®r, Yp)- (13)
First, suppose that; # y; for somej, 1 < j < m. Without loss of
generality, we assume that = 0 andy; = 1. Leti = 2j. Sincei—m
is odd, the explicit expressions above show that
Tic1, pi E{i—m—=2,i—m—-1,1—1,i+m—2,i+m—1},
iy pic1 E{i—m,i—m+1,4i+m,i+m+1}.
This implies thatr;_1 # p,— andw; # p,. This shows that for
eachj contributing tod (2z., ¥, ), both2; — 1 and2; contribute to
drr(m, p). This proves (12). The proof of (13) is similar. Let+ 1 <
i < 2m and suppose that; = 0 andy; = 1. Then
iy Piem €{1— 1,1, i+ 1}
Ticm, pi €E{i—m—1,i—m,i—m+1}.
Sincem > 2,we havei — m + 1 < i — 1, and sor; # p; and
Ti—m 7 pi—m- This proves (13). Combining (12) and (13), we get
2dp(w, p) > 2du(zr, yL) + 2dg (xR, yR) =2dp(z, y). (14)

This proves i) form odd. To prove ii), we first note that fon = 2
this is a property of.s = h described before. Consider odd, and
suppose that

0<du(m p)=du(z, y) < 2m. (15)
Then (14) and (15) imply that
du(m, p) =2dy(xr, ¥,) = 2du(zr, ¥,) (16)
and so
0<du(zL,y;)=du(@r, yp) < m. @a7)
Let

A={ilxi=y}, B={i|m=pi}

Then (16) and the proof above imply that
forl1 <j <m, j€Aifandonlyif{2j —1,2j} C B (18)
and
form+1 < i < 2m, i€ Aifandonlyif{i—m, i} C B. (19)
In particular, this implies that
forl <j<m, 2j—1e Bifandonlyif2j € B (20)
and
form+1<i < 2m, i € Bifandonlyifi —m € B. (21)
We will first show that
ifm+1<i<2m, theni € B. (22)

We note that (17) implies that there exists at leastioged such that
m+1<i<2m. By (19),i € B. We show next that

i—1€B. (23)

If i is even, then (20) implies that- 1 € B. If i is odd, then — m is

even, and — m € B by (21). Hence; — m — 1 € B by (20) and so

i —1 € B by (21). This proves (23). Using (23) repeatedly, we get
jE DB, forallj, m <j <i. (24)

In particular;n € B, and s®2m € B by (21). Since was an arbitrary
element ofBB, (24) is in particular valid fof = 2m. By (19),; € A for
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allj,m+1<j<2m,thatisdu(zr, y,) = 0, contradicting (17).
The assumption that led to the contradiction was (15). Hence, (15) is
not possible. QED

Let h2™ be defined recursively fon > 2m by Construction 2,
starting withh3? = hs,,, and using the position function that is con-
stant 1 in all steps.

We get a simple algorithm for computig™ using only swaps:

Mapping algorithm for h2m
Input : (x4, x2, ..., x,) € Z2.
Output : (w1, T2, ..., ™) = W2 (21, @2, ..., @y).
begin
(71, w2y ooy ) — (1,2, ..., n);

for ¢ from 1 to m do
if x; =1 then swap (mai_1, m2);
for ¢« from m+1 to 2m do
if x; =1 then swap (mi_m, m);
for ¢ from 2m+1 to n do
if x; =1 then swap (7, m);
end

Theorem 4: Letm = 2 orm > 3 and odd. Ifn. > 2m, 2, y € Z7,
and0 < dy(z, y) < 2m, then

A (B2 (@), B3 (y)) > dina, y).

Proof: Forn = 2m, this was shown in Theorem 3 ii). For>
2m + 1 it follows by induction, using (8). QED

We note that the property shown in Theorem 4 is the main feature
of the mappingh2™. In the next section we show how this property
comes into play.

VI. APPLICATIONS TOPERMUTATION ARRAYS

An (n, d) PAis a subset of,, with the property that the Hamming
distance between any two distinct permutations in the array is at least
d. The maximal size of such a PA is denoted®n, d).

One application of the DPMs is to construct PAs from binary codes.
Clearly, if C'is an(n, d) code andf € F,,, thenf(C) is an(n, d) PA
(this is a main reason for studying DPMs in the first place).

Let A(n, d) denote the maximal size of dm, d) code, that is, a
binary code of length and minimum distancé. This quantity is well
studied. A number of lower bounds o#fi(n, d) exist, see, e.g., [8,
Ch. 5]. From the constructiofi(C') we immediately get the following
bound. Form > 4 we have

P(n, d) > A(n, d). (25)

Before we go on, we give a short survey of known bounds on
P(n, d). Since we clearly have’(n, d) > P(n.,d + 1) for all
d=1,2,...,n—1,andP(n, n) = n, we have the trivial lower
bound

P(n, d) > n. (26)

In most cases, this has been the best lower bound knowtis B power
of a prime, thenP(n, n — 1) = n(n — 1) and so

P(n,d)>n(n—1), ford <n-—1. (27)

Using the existence of DPMs we can improve these bounds in many
cases.

Even if the lower bound (25) often is better than the bound (27), itis
probably quite weak in most cases. The only general upper bound on
P(n, d) known was given by Deza and Vanstone [1]

n!

(28)
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The gap between the two bounds is quite large in most cases.

Example 5: Itis known thatd (23, 7) = 2'? = 4096 (shown by the
perfect[23, 12, 7] Golay code). By (25)P(23, 7) > 4096. In com-
parison, (27) which applies sine8 is a prime, only give$>(23, 7) >
506.

Example 6: It is known (see, e.g., [8, p. 300]) that we have
2d
2d —n
ford > % (the Plotkin bound). Hence,df > 5 +1,thenA(n, d) <n
and so (25) is weaker than the trivial bound (26). Therefore, (25) is
interest only ifd < =t'.
In some cases, the minimum distance may increase, thafds)
may be an(n, d') whered’ > d. A general such result is obtained
from Theorem 4, giving a bound that is stronger than (25).

A(n, d) <

(29)

Theorem 5:Forn > 4and2 < d <n
P(n,d) > A(n, d —1). (30)
Proof: If there exists an odeh > 3 (or m = 2) such that
n>2m>d-1 (31)

letC be an(n, d—1) code and considér>™ (C). This is a PA of length
n, and by Theorem 4, all distances between distinct permutations

1059

[4] P.Frankeland M. Deza, “On the maximum number of permutations with
given maximal and minimal distance]” Comb. Theory, Ser,Aol. 22,

pp. 352-360, 1977.

F.-W. Fuand T. Klgve, “Two constructions of permutation arrajSEE
Trans. Inform. Theorysubmitted for publication.

T. Klgve, “Classification of permutation codes of length 6 and minimum
distance 5,” irProc. Int. Symp. Information Theory and Its Applicatipns
2000, pp. 465-468.

R. Mathon and A. P. Street, “Overlarge sets of 2 (11, 5, 2) designs and
related configurations Discr. Math vol. 255, pp. 275-286, 2002.

V. S. Pless and W. C. Huffman, EdsHandbook of Coding
Theory Amsterdam, The Netherlands: Elsevier, 1998.

H. Tarnanen, “Upper bounds on permutation codes via linear program-
ming,” Europ. J. Combin.vol. 20, pp. 101-114, 1999.

A. J. H. Vinck, “Coded modulation for powerline communications,”
AEU Int. J. Electron. Commuywol. 54, no. 1, pp. 45-49, 2000.

A. J. H. Vinck and J. Héaring, “Coding and modulation for power-line
communications,” iflProc. Int. Symp. Power Line Communicatituim-
erick, Ireland, Apr. 5-7, 2000.

A. J. H. Vinck, J. Haring, and T. Wadayama, “Coded M-FSK for
power-line communications,” ifProc. |IEEE Int. Symp. Information
Theory Sorrento, Italy, June 2000, p. 137.

T. Wadayama and A. J. H. Vinck, “A multilevel construction of permu-
tation codes,1EICE Trans. Fundamentals Electron., Commun. Comp.
Sci, vol. 84, pp. 2518-2522, 2001.

[5]
6
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(8]

Of[]

(10]
(11]

(12]

(23]

are

at leastd. This proves the theorem in this case. In particular, such an

m exists ifn — (d — 1) > 4, thatis,d < n — 3. On the other hand, the
Plotkin bound (29) shows that

A(n, d—1) < n < P(n, d)

if d > £+2.ltremains to check the caseswhen2 < d < “2. For
n >, there are no such cases. The only remalnmg case(mfat)
are, therefore(7, 5), (6, 4), (5, 3), (3, 4), (4, 2), (4, 3). The first
two satisfy (31) forn = 3, the last four satisfy (31) fam = 2. QED

Example 7: Forn = 15, (27) can not be used sint&is not a prime.
Hence, we only had the trivial bound (26) that givegl 5, 4) > 15.
The bound (30) give®(15, 4) > A(15, 3) = 2*%.

VIL.

The problem of finding DPMs can be generalized in two direction
considering mappingg;® — S, where we may haver # » and
q F 2.

SinceZ;" contains pairs of vectors of mutual distaneg a neces-
sary condition for the existence of DPMsiis < n. Any mapping
f: Z" — S, can be trivially extended to a mappipgZ;" — S, by
definingg(z) = (f(x), m + 1, m + 2, ..., n). Therefore, it seems

POsSsSIBLE GENERALIZATIONS

that consideringn < n is not particularly interesting, at least from an

application point of view.

For existence of DPMg; — S, a necessary condition is clearly
q" < n!. Our constructions do not immediately generalize to 2.
We have done some preliminary work on gengtand may return to
this in a future paper.
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On Two High-Rate Algebraic Space—Time Codes
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Norman C. BeaulieuFellow, IEEE

Abstract—We examine some algebraic properties of two high-rate linear
space-time block codes oveM = 2, 3 transmit antennas. Although
these high-rate codes have positive coding gain, the gain decreases when
increasing the constellation size. We give tight upper and lower bounds
on the achieved coding gains as functions of the size of the constellations
used. We show that when using the irrational numbersy/3 and v/2, the
coding gains express the approximation of these numbers by continued
fractions depending on the constellations used. The poor approximation of
these numbers by rational numbers is then shown to make the coding gains
decrease slowly when increasing the constellation size.

S, . . . .
Index Terms—Block codes, continued fractions, diversity methods, mul-

tiple-input—multiple-output (MIMO) systems, number theory.

|. INTRODUCTION AND SYSTEM MODEL

The use of algebraic constellations over multitransmit and multire-
ceive antennas [1], [2] allows for the exploitation of the large capacity
of multiantenna systems [3] while achieving the full transmit diversity
[4]. However, the coding gains of these high data-rate codes are not the
same for all constellations since they correspond to the degree of ap-
proximation of some irrational numbers by rational numbers [2], [5].

In this correspondence, we examine the coding gain properties of
two high-rate linear space-time block codes (STBCs)}br= 2, 3
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