
1054 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

Distance-Preserving Mappings From Binary Vectors to
Permutations

Jen-Chun Chang, Rong-Jaye Chen, Torleiv Kløve, Fellow, IEEE, and
Shi-Chun Tsai

Abstract—Mappings of the set of binary vectors of a fixed length to the
set of permutations of the same length are useful for the construction of
permutation codes. In this correspondence, several explicit constructions of
such mappings preserving or increasing the Hamming distance are given.
Some applications are given to illustrate the usefulness of the construction.
In particular, a new lower bound on the maximal size of permutation arrays
(PAs) is given.

Index Terms—Code constructions, distance, mapping, permutation ar-
rays (PAs).

I. INTRODUCTION

The main objects studied in this correspondence are mappings from
the set of binary vectors of lengthn to permutations of the same
length that preserve (or increase) the Hamming distance. We call them
n-DPMs (distance-preserving mappings).

The inspiration comes partly from the paper [3] where Ferreira and
Vinck usedn-DPMs to construct permutation trellis codes. They found
a 4-DPM by computer search. From this mapping they constructed
n-DPMs for 5 � n � 8, using anad hoc“prefix method.” It was
not clear from their paper if and how the method could be generalized
to n > 8. One result of this correspondence is a general method to
systematically construct explicit DPMs for alln � 4.

A permutation array(PA) is a set of permutations of the firstn nat-
ural numbers. PAs were somewhat studied in the 1970s, some important
papers from that period are [1] and [4]. A recent application by Vinck
[10] of PAs to a coding/modulation scheme for communication over
power lines has created renewed interest in PAs, see [2], [3], [5], [6],
[11]–[13]. Other recent papers on PAs are [7] and [9]. In this correspon-
dence, then-DPMs we construct are applied to give new constructions
of PAs and resulting (improved) lower bounds on the size of PAs.

II. BASIC NOTATIONS

LetSn denote the set of alln! permutations ofZn = f1; 2; . . . ; ng.
We represent a permutation�: Zn ! Zn by listing its values in an
n-tuple:� = (�i; �2; . . . ; �n) (where�i = �(i)).

The Hamming distancedH(aaa; bbb) between two n-tuples
aaa = (a1; a2; . . . ; an) and bbb = (b1; b2; . . . ; bn) of elements
of any kind is the number of positions where they differ

dH(aaa; bbb) = jfj 2 Zn j aj 6= bjgj:

The setZn
2 denotes the set of binary vectors of lengthn.

Manuscript received March 6, 2002; revised October 28, 2002. This work was
supported in part by The Norwegian Research Council.

J.-C. Chang is with the Department of Information Management, Ming
Hsin University of Science and Technology, Hsin Chu, Taiwan (e-mail:
jcchang@csie.nctu.edu.tw).

R.-J. Chen and S.-C. Tsai are with the Department of Computer Science and
Information Engineering, Chiao Tung University, Hsin Chu, Taiwan (e-mail:
rjchen@csie.nctu.edu.tw; sctsai@csie.nctu.edu.tw).

T. Kløve is with the Department of Informatics, University of Bergen,
N-5020, Norway (e-mail: Torleiv.Klove@ii.uib.no).

Communicated by C. Carlet, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.809507

A DPM for lengthn (for short: ann-DPM) is a mappingf : Zn
2 !

Sn such that

dH(xxx; yyy) � dH(f(xxx); f(yyy)); for all xxx; yyy 2 Z
n
2 :

LetFn denote the set ofn-DPMs. SincejSnj < jZn
2 j for n < 4, an

obvious necessary condition for the existence of ann-DPM isn � 4.
A heuristic argument indicates thatFn is quite large, even for smalln,
butFn is known to be nonempty only for4 � n � 8 (Ferreira and
Vinck [3]).

The main results in this correspondence are several explicit methods
to construct mappings inFn for all n � 4.

From any mapping inFn, we can obtain new mappings by permuting
Zn
2 ,Sn, and the positions of the elements in the values. More precisely,

let f be ann-DPM and let

(�1; �2; . . . ; �n) = f(x1; x2; . . . ; xn):

Let �; �; � 2 Sn. Then the mapping defined by

g(x�(1); x�(2); . . . ; x�(n))=(�(��(1)); �(��(1)); . . . ; �(��(1)))

is again ann-DPM. We callf andg equivalent.

III. ON F4

We start by a systematic study ofF4; in particular doing a com-
plete listing. Renaming the elements if necessary (that is, permuting
f1; 2; 3; 4g), we may assume that

f(0; 0; 0; 0) = (1; 2; 3; 4): (1)

For (�1; �2; �3; �4) = f(1; 1; 1; 1), there are nine possibilities
since we must have

dH((1; 2; 3; 4); (�1; �2; �3; �4)) = 4:

These nine possible� fall into two classes, depending on whether

�a = 1; wherea = �1 (2)

(that is,1 is a fixpoint for the permutation� ��) or not. There are three
possibilities for (2) to be satisfied, namely.

(�1; �2; �3; �4) = (2; 1; 4; 3); (3; 4; 1; 2); (4; 3; 2; 1);

where�1 is 2; 3; and4; respectively. By permuting the positions in a
suitable way and renaming the elements, we can always obtain

(�1; �2; �3; �4) = (2; 1; 4; 3)

in this case. We say that the correspondingf is of type 1. Similarly,
if (2) is not satisfied, there are six possibilities for(�1; �2; �3; �4),
namely,

(2; 3; 4; 1); (2; 4; 1; 3); (3; 1; 4; 2)

(3; 4; 2; 1); (4; 1; 2; 3); (4; 3; 1; 2):

By permuting and renaming, we can get

(�1; �2; �3; �4) = (2; 3; 4; 1)

in this case. We say that the correspondingf is of type 2. Hence, we
only have to consider

f(1; 1; 1; 1) 2 f(2; 1; 4; 3); (2; 3; 4; 1)g: (3)

Rearranging the positions of the argument values (that is, permuting
fx1; x2; x3; x4g) does not affect(0; 0; 0; 0) or (1; 1; 1; 1) and will
give 24 mappings. One of the 24 mappings obtained will satisfy

f(0; 0; 0; 1) < f(0; 0; 1; 0) < f(0; 1; 0; 0) < f(1; 0; 0; 0): (4)

0018-9448/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003 1055

We callf normalized if it satisfies (1), (3), and (4). For each normalized
f of type 1, there are3 � 242 = 1728 mappings which normalizes tof .
For f of type 2, there are6 � 242 = 3456.

How many normalizedf of each type are there? A complete search,
using standard backtracking, has shown that the exact number of nor-
malizedf is

23 227834 of type1 and 30 910400 of type2:

Hence, the total number of mappings inF4 is

242(3 � 23 227834 + 6 � 30 910400) = 146964039552:

For f 2 F4, let Dij denote the number of (unordered) pairs
fxxx; yyyg � Z4

2 such that

dH(xxx; yyy) = i and dH(f(xxx); f(yyy)) = j:

These numbers tell us to what extentf increases distances. By defini-
tion of DPM,Dij = 0 if i > j. A DPM that increases many distances
may be more interesting for applications.

We haveDi1 = 0 for all i, D44 = 8, and

D12 +D13 +D14 =32 (5)

D22 +D23 +D24 =48 (6)

D33 +D34 =32: (7)

We have computed the numbersDij for all f 2 F4. We noted that
theDij are all invariant under the normalizing operations described
above. Hence, we only had to consider normalized mappings.

The number ofa priori possibilities of theDij , that is, nonnegative
integral solutions of (5)–(7), is 22 678 425, but, as it turns out, only
27 458 of these actually occur.

We note thatD22+D33 is the number of distances (2 or 3) which do
not increase underf . For applications, it is interesting to haveD22 +
D33 as small as possible. It turns out that there exist (exactly) two
normalized mappings for whichD22 = D33 = 0. One is obtained
from the other by simple transformations. Further such mappings are,
of course, the equivalent mappings.

One example (denoted byh) is given in the following table. It is not
normalized but has a nice structure that can be generalized, something
we will do in a later section.

xxx h(xxx) xxx h(xxx)

(0; 0; 0; 0) (1; 2; 3; 4) (0; 0; 0; 1) (1; 4; 3; 2)

(0; 0; 1; 0) (3; 2; 1; 4) (0; 0; 1; 1) (3; 4; 1; 2)

(0; 1; 0; 0) (1; 2; 4; 3) (0; 1; 0; 1) (1; 3; 4; 2)

(0; 1; 1; 0) (4; 2; 1; 3) (0; 1; 1; 1) (4; 3; 1; 2)

(1; 0; 0; 0) (2; 1; 3; 4) (1; 0; 0; 1) (2; 4; 3; 1)

(1; 0; 1; 0) (3; 1; 2; 4) (1; 0; 1; 1) (3; 4; 2; 1)

(1; 1; 0; 0) (2; 1; 4; 3) (1; 1; 0; 1) (2; 3; 4; 1)

(1; 1; 1; 0) (4; 1; 2; 3) (1; 1; 1; 1) (4; 3; 2; 1)

The values ofDij for h areD12 = D23 = D34 = 32, D24 =
16, andDij = 0 otherwise. The simple structure ofh gives a simple
algorithm for computing its values.

Mapping algorithm for h

Input : (x ; x ; x ; x) 2 Z .

Output : (� ; � ; � ; �) = h(x ; x ; x ; x).

begin

(� ; � ; � ; �) (1; 2; 3; 4);

if x = 1 then swap (� , �);

if x = 1 then swap (� , �);

if x = 1 then swap (� , �);

if x = 1 then swap (� , �);

end

Note that the first two swaps are independent, as are the two last. The
other mappings withD22 = D33 = 0 have similar simple algorithms,
but the tests must be done in different orders and with different swaps.

Example 1: We illustrate the algorithm for computingh(xxx) on one
example, namely,xxx = (x1; x2; x3; x4) = (1; 1; 0; 1). In the fol-
lowing table we show how(�1; �2; �3; �4) develops in each step.

�1 �2 �3 �4

1 2 3 4

x1 = 1; swap(�1; �2) 2 1 3 4

x2 = 1; swap(�3; �4) 2 1 4 3

x3 = 0; no swap 2 1 4 3

x4 = 1; swap(�2; �4) 2 3 4 1

IV. RECURSIVECONSTRUCTIONS OFDPM

In this section, we give a couple of recursive constructions of DPMs.
For a permutation� = (�1; �2; . . . ; �m) 2 Sm and an integern,

let �+ n = (�1 + n; �2 + n; . . . ; �m + n). This is a permutation of
fn + 1; n + 2; . . . ; n +mg.

Construction 1: Let f 2 Fn andg 2 Fm. Definef � g by

(f � g)(xxx; x0x0x0) = (f(xxx); g(x0x0x0) + n):

Example 2: Using f = g = h, we get a mappingh � h 2 F8.
Sinceh(1; 1; 0; 0) = (2; 1; 4; 3) andh(1; 1; 0; 1) = (2; 3; 4; 1),
for example, we get

(h � h)(1; 1; 0; 0; 1; 1; 0; 1) = (2; 1; 4; 3; 6; 7; 8; 5):

Theorem 1: If f 2 Fn andg 2 Fm, thenf � g 2 Fn+m.
Proof: We have

dH((f � g)(xxx; x
0x0x0); (f � g)(yyy; y0y0y0))

= dH(f(xxx); f(yyy)) + dH(g(xxx
0) + n; g(yyy0) + n)

= dH(f(xxx); f(yyy)) + dH(g(xxx
0); g(yyy0))

� dH(xxx; yyy) + dH(xxx
0

; yyy
0)

= dH((xxx; xxx
0); (yyy; yyy0)): QED

Corollary 1: For alln andm we have

jFn+mj � jFnj � jFmj:

Proof: This follows directly from Theorem 1. QED

Corollary 2: For alln � 4 we havejFnj > 0.
Proof: The statement is true for4 � n � 8 (see [3]). The general

statement follows by induction, using Corollary 1. QED

In our next class of recursive constructions, we constructn-DPMs
from (n � 1)-DPMs. A position function (of lengthm) is a function
p: Zm2 ! Zm.

Construction 2: Let g 2 Fn�1 and letp be a position function of
lengthn � 1. Forxxx 2 Zn�12 , let

(�1; �2; . . . ; �n�1) = g(xxx); q = p(xxx):

1056 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

Definef : Zn
2 ! Sn by

f(xxx; 0) = (�1; �2; . . . ; �n�1; n);

f(xxx; 1) = (�1; . . . ; �q�1; n; �q+1; . . . ; �n�1; �q):

Informally, we can describe the construction as follows: first we append
the elementn at the end of�; if xn = 1 we further swap the elements
in positionsq andn.

The functionf depends ong andp; sometimes, we explicitly include
them in the notation and writef = fg; p.

Example 3: In this simple example, we letn = 6 andp is defined
byp(xxx) = 2 for all xxx. Sincep is a constant function,f(xxx; x6) depends
only ong(xxx) andx6. We give a few examples.

g(xxx) x6 f(xxx; x6)

(1; 2; 3; 4; 5) 0 (1; 2; 3; 4; 5; 6)

(1; 2; 3; 4; 5) 1 (1; 6; 3; 4; 5; 2)

(1; 3; 5; 2; 4) 0 (1; 3; 5; 2; 4; 6)

(1; 3; 5; 2; 4) 1 (1; 6; 5; 2; 4; 3)

(5; 4; 3; 2; 1) 0 (5; 4; 3; 2; 1; 6)

(5; 4; 3; 2; 1) 1 (5; 6; 3; 2; 1; 4)

We see thatf(xxx; 0) always has6 in the last position andf(xxx; 1) always
has6 in the second position (sincep(xxx) = 2).

Theorem 2: If g 2 Fn�1 andp is a position function of lengthn�1,
thenf = fg; p 2 Fn.

Proof: Let xxx; yyy 2 Zn�1
2 . We only need to show that

dH(f(xxx; xn); f(yyy; yn)) � dH(g(xxx); g(yyy)) + dH(xn; yn) (8)

since this inequality and the fact thatg 2 Fn�1 implies that

dH(f(xxx; xn); f(yyy; yn)) � dH(xxx; yyy) + dH(xn; yn)

= dH((xxx; xn); (yyy; yn)):

We let

(�1; �2; . . . ; �n�1) = g(xxx); q = p(xxx)

(�1; �2; . . . ; �n�1) = g(yyy); r = p(yyy):

To prove (8), we consider the possible values ofxn andyn. By sym-
metry, we may assume without loss of generality thatxn � yn. There
are four cases to consider.

Case I: xn = yn = 0. Then

f(xxx; n) = (�1; �2; . . . ; �n�1; 0)

f(yyy; 0) = (�1; �2; . . . ; �n�1; n):

Clearly, (8) is satisfied (with equality) in this case.
Case II: xn = 0 andyn = 1. Then

f(xxx; 0) = (�1; . . . ; �r�1; �r; �r+1 . . . ; �n�1; n)

f(yyy; 1) = (�1; . . . ; �r�1; n; �r+1 . . . ; �n�1; �r):

We see thatf(xxx; 0) andf(yyy; 1) differ in positionsr andn. On the
other hand, we have “lost” one differing position if�r 6= �r . More
precisely

dH(f(xxx; 0); f(yyy; 1)) = dH(g(xxx); g(yyy))� dH(�r; �r) + 2

� dH(g(xxx); g(yyy)) + 1

and so (8) is satisfied also in this case.

Case III: xn = yn = 1 andr = q. Then

f(xxx; 1) = (�1; . . . ; �q�1; n; �q+1 . . . ; �n�1; �q)

f(yyy; 1) = (�1; . . . ; �q�1; n; �q+1 . . . ; �n�1; �q):

Clearly, (8) is satisfied (with equality).
Case IV: xn = yn = 1 andr 6= q. Then

f(xxx; 1) = (�1; . . . ; �q�1; n; �q+1; . . . ;

�r�1; �r; �r+1; . . . ; �n�1; �q)

f(yyy; 1) = (�1; . . . ; �q�1; �q; �q+1; . . . ;

�r�1; n; �r+1 . . . ; �n�1; �r)

(if q < r and, similarly, ifq > r). We see thatf(xxx; 1) andf(yyy; 1)
differ in positionsq andr and possibly in positionn. On the other hand,
it may be thatg(xxx) andg(yyy) differ in positionsq andr, differences that
are “lost” in the step fromg to h. More precisely, we get

dH(f(xxx; 1); f(yyy; 1)) = dH(g(xxx); g(yyy)) + 2 + dH(�q; �r)

�dH(�q; �q)� dH(�r; �r)

� dH(g(xxx); g(yyy)):

Hence, (8) is satisfied also in this case. QED

Corollary 3: For alln � 4 we havejFn+1j � n2 jFnj.
Proof: Since a position function can take any ofn values on each

of the2n arguments, the number of positions functions isn2 . Hence,
we havejFnj choices forg andn2 choices forp. We have to show
that each choice gives a distinctf . Let g1; g2 2 Fn be distinct. Then
there exists anxxx 2 Zn

2 such thatg1(xxx) 6= g2(xxx). Therefore,

fg ; p (xxx; 0) = (g1(xxx); n+ 1) 6= (g2(xxx); n+ 1) = fg ; p (xxx; 0)

for all position functionsp1 andp2.
Letp1 andp2 be distinct position functions. Then there exists anxxx 2

Zn
2 such thatp1(xxx) 6= p2(xxx). Therefore,fg; p (xxx; 1) andfg; p (xxx; 1)

differ in positionsp1(xxx) andp2(xxx) for all g. QED

Construction 2 gives mappings that are implicitly defined (however,
with an algorithm to compute them). By carefully keeping track of the
recursive steps, it is possible to obtain more explicit expressions for
some mappings inFn (for all n). For example, starting from some
g4 2 F4 and the positions function that is constant1 in each step,
we obtain a mappinggn = fg ; 1 2 Fn which can be described as
follows (a proof follows by induction onn).

Let xxx = (x1; x2; . . . ; xn) 2 Zn
2

andgn(xxx) = (�1; �2; . . . ; �n):

Let (�1; �2; �3; �4) = g4(x1; x2; x3; x4).
If xi = 0 for all i, 5 � i � n, then

�i = �i; for 1 � i � 4

�i = i; for 5 � i � n.

If xi = 1 exactly fori = im,m = 1; 2; . . . ; u whereu � 1 and
5 � i1 < i2 < � � � < iu � n, then

�1 = iu

�i = �i; for 2 � i � 4

�i = �1

�i = im�1; for 2 � m � u

�i = i; otherwise.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003 1057

Example 4: If

xxx = (1; 1; 0; 0; 0; 1; 1; 0; 1; 0) and g4(1; 1; 0; 0) = (4; 3; 2; 1)

thenu = 3, i1 = 6, i2 = 7, i3 = 9, and so

g10(1; 1; 0; 0; 0; 1; 1; 0; 1; 0)=(9; 3; 2; 1; 5; 4; 6; 8; 7; 10):

The description above gives rise to a simple algorithm to compute
gn(xxx) in this case.

Mapping algorithm

Input : (x ; x ; . . . ; x) 2 Z and g 2 F .

Output : (� ; � ; . . . ; �) = g (x ; x ; . . . ; x)

where g = f for j � 4.

begin

(� ; � ; � ; �) g (x ; x ; x ; x);

t � ;

for i = 5 to n do

if x = 1 then begin � t; t i; end

else � i;

� t;

end

If we chooseg4 = h, for example, we can substitute the explicit
algorithm ofh for the part(�1; �2; �3; �4) g4(x1; x2; x3; x4) of
the algorithm above.

V. EXPLICIT n-DPMS FOREVEN n

Mappings similar toh 2 F4 may be constructed for all evenn =
2m � 4. These mappings, which we denote byh2m, we define by an
algorithm.

Construction 3:
Mapping algorithm for h

Input : (x ; x ; . . . ; x) 2 Z .

Output : (� ; � ; . . . ; �) = h (x ; x ; . . . ; x).

begin

(� ; � ; . . . ; �) (1; 2; . . . ; 2m);

for i from 1 to m do

if x = 1 then swap (� , �);

for i from m + i to 2m do

if x = 1 then swap (� ; �);

end

The firstm swaps are independent, and so are the lastm. Therefore,
it is easy to give an explicit description of the mapping. Let denote
the permutation after the firstm steps. Then, for1 � j � m

(2j�1; 2j) =
(2j � 1; 2j); if xj = 0

(2j; 2j � 1); if xj = 1.
(9)

The step from to � is defined by

(�i�m; �i) =
(i�m; i); if xi = 0

(i; i�m); if xi = 1
(10)

for m + 1 � i � 2m.

Combining the preceding two steps, we get explicit expressions for
�i. Each�i depends oni and the values of exactly twoxj (which also
depends oni). For1 � i � m, we get

xi+m xdi=2e i mod 2 �i

0 0 i

0 1 0 i� 1

0 1 1 i+ 1

xi+m xd(i+m)=2e (i+m) mod 2 �i

1 0 i+m

1 1 0 i+m� 1

1 1 1 i+m+ 1

Form + 1 � i � 2m we get

xi xdi=2e i mod 2 �i

0 0 i

0 1 0 i� 1

0 1 1 i+ 1

xi xd(i�m)=2e (i�m) mod 2 �i

1 0 i�m

1 1 0 i�m� 1

1 1 1 i�m+ 1

Theorem 3: i) For all m � 2 we haveh2m 2 F2m. ii) For m = 2
orm � 3 and odd, if0 < dH(xxx; yyy) < 2m, then

dH(h2m(xxx); h2m(yyy)) > dH(xxx; yyy):

Proof: For m even, we see that for any eveni, m + 1 < i �
2m, the four elements(�i�m�1; �i�m; �i�1; �i) only depend on
(x(i�m)=2; xi=2; xi�1; xi); and are obtained by the following four
steps.

if x = 1 then swap(� , �);

if x = 1 then swap(� , �);

if x = 1 then swap(� , �);

if x = 1 then swap(� , �).

This is exactly the algorithm forh (except for a renaming of the
elements). Hence,h2m is essentiallym=2 copies ofh; more precisely,
h2m is equivalent to

h � h � � � � � h (m=2 factors): (11)

By Theorem 1,h2m is a DPM. This proves i) form even.
Considerm odd. Let

xxx = (x1; x2; . . . ; x2m); yyy = (y1; y2; . . . ; y2m) 2 Z2m
2

and let

� =(�1; �2; . . . ; �2m) = h2m(xxx)

� =(�1; �2; . . . ; �2m) = h2m(yyy):

Further, let

xxxL=(x1; x2; . . . ; xm) and xxxR=(xm+1; xm+2; . . . ; x2m)

1058 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

and defineyyyL andyyyR similarly. We will first show that

dH(�; �) � 2dH(xxxL; yyyL) (12)

dH(�; �) � 2dH(xxxR; yyyR): (13)

First, suppose thatxj 6= yj for somej, 1 � j � m. Without loss of
generality, we assume thatxj = 0 andyj = 1. Let i = 2j. Sincei�m
is odd, the explicit expressions above show that

�i�1; �i 2fi�m� 2; i�m� 1; i� 1; i+m� 2; i+m� 1g;

�i; �i�1 2fi�m; i�m+ 1; i; i+m; i+m+ 1g:

This implies that�i�1 6= �i�1 and�i 6= �i. This shows that for
eachj contributing todH(xxxL; yyyL), both2j � 1 and2j contribute to
dH(�; �). This proves (12). The proof of (13) is similar. Letm+ 1 �
i � 2m and suppose thatxi = 0 andyi = 1. Then

�i; �i�m 2fi� 1; i; i+ 1g

�i�m; �i 2fi�m� 1; i�m; i�m+ 1g:

Sincem > 2, we havei � m + 1 < i � 1, and so�i 6= �i and
�i�m 6= �i�m. This proves (13). Combining (12) and (13), we get

2dH(�; �) � 2dH(xxxL; yyyL) + 2dH(xxxR; yyyR) = 2dH(xxx; yyy): (14)

This proves i) form odd. To prove ii), we first note that form = 2
this is a property ofh4 = h described before. Considerm odd, and
suppose that

0 < dH(�; �) = dH(xxx; yyy) < 2m: (15)

Then (14) and (15) imply that

dH(�; �) = 2dH(xxxL; yyyL) = 2dH(xxxR; yyyR) (16)

and so

0 < dH(xxxL; yyyL) = dH(xxxR; yyyR) < m: (17)

Let

A = fi j xi = yig; B = fi j �i = �ig:

Then (16) and the proof above imply that

for 1 � j � m; j 2 A if and only if f2j � 1; 2jg � B (18)

and

for m+1 � i � 2m; i 2 A if and only if fi�m; ig � B: (19)

In particular, this implies that

for 1 � j � m; 2j � 1 2 B if and only if 2j 2 B (20)

and

for m+ 1 � i � 2m; i 2 B if and only if i�m 2 B: (21)

We will first show that

if m+ 1 � i � 2m; theni 2 B: (22)

We note that (17) implies that there exists at least onei 2 A such that
m + 1 � i � 2m. By (19),i 2 B. We show next that

i� 1 2 B: (23)

If i is even, then (20) implies thati� 1 2 B. If i is odd, theni�m is
even, andi�m 2 B by (21). Hence,i�m� 1 2 B by (20) and so
i� 1 2 B by (21). This proves (23). Using (23) repeatedly, we get

j 2 B; for all j; m � j � i: (24)

In particular,m 2 B, and so2m 2 B by (21). Sincei was an arbitrary
element ofB, (24) is in particular valid fori = 2m. By (19),j 2 A for

all j,m+ 1 � j � 2m, that is,dH(xxxR; yyyR) = 0, contradicting (17).
The assumption that led to the contradiction was (15). Hence, (15) is
not possible. QED

Let h2mn be defined recursively forn � 2m by Construction 2,
starting withh2m2m = h2m and using the position function that is con-
stant 1 in all steps.

We get a simple algorithm for computingh2mn using only swaps:

Mapping algorithm for h

Input : (x ; x ; . . . ; x) 2 Z .

Output : (� ; � ; . . . ; �) = h (x ; x ; . . . ; x).

begin

(� ; � ; . . . ; �) (1; 2; . . . ; n);

for i from 1 to m do

if x = 1 then swap (� , �);

for i from m + 1 to 2m do

if x = 1 then swap (� , �);

for i from 2m + 1 to n do

if x = 1 then swap (� , �);

end

Theorem 4: Letm = 2 orm � 3 and odd. Ifn � 2m,xxx; yyy 2 Zn2 ,
and0 < dH(xxx; yyy) < 2m, then

dH(h
2m
n (xxx); h2mn (yyy)) > dH(xxx; yyy):

Proof: Forn = 2m, this was shown in Theorem 3 ii). Forn �
2m+ 1 it follows by induction, using (8). QED

We note that the property shown in Theorem 4 is the main feature
of the mappingh2mn . In the next section we show how this property
comes into play.

VI. A PPLICATIONS TOPERMUTATION ARRAYS

An (n; d) PA is a subset ofSn with the property that the Hamming
distance between any two distinct permutations in the array is at least
d. The maximal size of such a PA is denoted byP (n; d).

One application of the DPMs is to construct PAs from binary codes.
Clearly, ifC is an(n; d) code andf 2 Fn, thenf(C) is an(n; d) PA
(this is a main reason for studying DPMs in the first place).

Let A(n; d) denote the maximal size of an(n; d) code, that is, a
binary code of lengthn and minimum distanced. This quantity is well
studied. A number of lower bounds onA(n; d) exist, see, e.g., [8,
Ch. 5]. From the constructionf(C) we immediately get the following
bound. Forn � 4 we have

P (n; d) � A(n; d): (25)

Before we go on, we give a short survey of known bounds on
P (n; d). Since we clearly haveP (n; d) � P (n; d + 1) for all
d = 1; 2; . . . ; n � 1, andP (n; n) = n, we have the trivial lower
bound

P (n; d) � n: (26)

In most cases, this has been the best lower bound known. Ifn is a power
of a prime, thenP (n; n � 1) = n(n � 1) and so

P (n; d) � n(n� 1); for d � n� 1: (27)

Using the existence of DPMs we can improve these bounds in many
cases.

Even if the lower bound (25) often is better than the bound (27), it is
probably quite weak in most cases. The only general upper bound on
P (n; d) known was given by Deza and Vanstone [1]

P (n; d) �
n!

(d� 1)!
: (28)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003 1059

The gap between the two bounds is quite large in most cases.

Example 5: It is known thatA(23; 7) = 212 = 4096 (shown by the
perfect[23; 12; 7] Golay code). By (25),P (23; 7) � 4096. In com-
parison, (27) which applies since23 is a prime, only givesP (23; 7) �
506.

Example 6: It is known (see, e.g., [8, p. 300]) that we have

A(n; d) �
2d

2d� n
(29)

for d > n

2
(the Plotkin bound). Hence, ifd � n

2
+1, thenA(n; d) < n

and so (25) is weaker than the trivial bound (26). Therefore, (25) is of
interest only ifd � n+1

2
.

In some cases, the minimum distance may increase, that is,f(C)
may be an(n; d0) whered0 > d. A general such result is obtained
from Theorem 4, giving a bound that is stronger than (25).

Theorem 5: Forn � 4 and2 � d � n

P (n; d) � A(n; d� 1): (30)

Proof: If there exists an oddm � 3 (orm = 2) such that

n � 2m > d� 1 (31)

letC be an(n; d�1) code and considerh2mn (C). This is a PA of length
n, and by Theorem 4, all distances between distinct permutations are
at leastd. This proves the theorem in this case. In particular, such an
m exists ifn� (d� 1) � 4, that is,d � n� 3. On the other hand, the
Plotkin bound (29) shows that

A(n; d� 1) < n � P (n; d)

if d � n

2
+2. It remains to check the cases whenn�2 � d � n+3

2
. For

n > 7, there are no such cases. The only remaining cases for(n; d)
are, therefore,(7; 5), (6; 4), (5; 3), (5; 4), (4; 2), (4; 3). The first
two satisfy (31) form = 3, the last four satisfy (31) form = 2. QED

Example 7: Forn = 15, (27) can not be used since15 is not a prime.
Hence, we only had the trivial bound (26) that givesP (15; 4) � 15.
The bound (30) givesP (15; 4) � A(15; 3) = 211.

VII. POSSIBLEGENERALIZATIONS

The problem of finding DPMs can be generalized in two directions,
considering mappingsZmq ! Sn where we may havem 6= n and
q 6= 2.

SinceZmq contains pairs of vectors of mutual distancem, a neces-
sary condition for the existence of DPMs ism � n. Any mapping
f : Zmq ! Sm can be trivially extended to a mappingg: Zmq ! Sn by
definingg(xxx) = (f(xxx); m + 1; m + 2; . . . ; n). Therefore, it seems
that consideringm < n is not particularly interesting, at least from an
application point of view.

For existence of DPMsZnq ! Sn, a necessary condition is clearly
qn � n!. Our constructions do not immediately generalize toq > 2.
We have done some preliminary work on generalq, and may return to
this in a future paper.

REFERENCES

[1] M. Deza and S. A. Vanstone, “Bounds on permutation arrays,”J. Statist.
Planning and Inference, vol. 2, pp. 197–209, 1978.

[2] C. Ding, F.-W. Fu, T. Kløve, and V. K. Wei, “Constructions of permu-
tation arrays,”IEEE Trans. Inform. Theory, vol. 48, pp. 977–980, Apr.
2002.

[3] H. C. Ferreira and A. J. H. Vinck, “Inference cancellation with per-
mutation trellis arrays,”Proc. IEEE Vehicular Technology Conf., pp.
2401–2407, 2000.

[4] P. Frankel and M. Deza, “On the maximum number of permutations with
given maximal and minimal distance,”J. Comb. Theory, Ser A, vol. 22,
pp. 352–360, 1977.

[5] F.-W. Fu and T. Kløve, “Two constructions of permutation arrays,”IEEE
Trans. Inform. Theory, submitted for publication.

[6] T. Kløve, “Classification of permutation codes of length 6 and minimum
distance 5,” inProc. Int. Symp. Information Theory and Its Applications,
2000, pp. 465–468.

[7] R. Mathon and A. P. Street, “Overlarge sets of 2 (11, 5, 2) designs and
related configurations,”Discr. Math, vol. 255, pp. 275–286, 2002.

[8] V. S. Pless and W. C. Huffman, Eds.,Handbook of Coding
Theory. Amsterdam, The Netherlands: Elsevier, 1998.

[9] H. Tarnanen, “Upper bounds on permutation codes via linear program-
ming,” Europ. J. Combin., vol. 20, pp. 101–114, 1999.

[10] A. J. H. Vinck, “Coded modulation for powerline communications,”
AEÜ Int. J. Electron. Commun., vol. 54, no. 1, pp. 45–49, 2000.

[11] A. J. H. Vinck and J. Häring, “Coding and modulation for power-line
communications,” inProc. Int. Symp. Power Line Communication, Lim-
erick, Ireland, Apr. 5–7, 2000.

[12] A. J. H. Vinck, J. Häring, and T. Wadayama, “Coded M-FSK for
power-line communications,” inProc. IEEE Int. Symp. Information
Theory, Sorrento, Italy, June 2000, p. 137.

[13] T. Wadayama and A. J. H. Vinck, “A multilevel construction of permu-
tation codes,”IEICE Trans. Fundamentals Electron., Commun. Comp.
Sci., vol. 84, pp. 2518–2522, 2001.

On Two High-Rate Algebraic Space–Time Codes

Mohamed Oussama Damen, Member, IEEE,and
Norman C. Beaulieu, Fellow, IEEE

Abstract—We examine some algebraic properties of two high-rate linear
space–time block codes over = 2 3 transmit antennas. Although
these high-rate codes have positive coding gain, the gain decreases when
increasing the constellation size. We give tight upper and lower bounds
on the achieved coding gains as functions of the size of the constellations
used. We show that when using the irrational numbers 3 and 2, the
coding gains express the approximation of these numbers by continued
fractions depending on the constellations used. The poor approximation of
these numbers by rational numbers is then shown to make the coding gains
decrease slowly when increasing the constellation size.

Index Terms—Block codes, continued fractions, diversity methods, mul-
tiple-input–multiple-output (MIMO) systems, number theory.

I. INTRODUCTION AND SYSTEM MODEL

The use of algebraic constellations over multitransmit and multire-
ceive antennas [1], [2] allows for the exploitation of the large capacity
of multiantenna systems [3] while achieving the full transmit diversity
[4]. However, the coding gains of these high data-rate codes are not the
same for all constellations since they correspond to the degree of ap-
proximation of some irrational numbers by rational numbers [2], [5].

In this correspondence, we examine the coding gain properties of
two high-rate linear space-time block codes (STBCs) forM = 2; 3

Manuscript received June 5, 2001; revised August 10, 2002. The material
in this correspondence was presented in part at the IEEE GLOBECOM, San
Antonio, TX, November 2001.

The authors are with the Department of Electrical and Computer Engi-
neering, ECERF W2-073, University of Alberta, Edmonton, AB T6G 2V4,
Canada (e-mail: damen@ee.ualberta.ca; beaulieu@ee.ualberta.ca).

Communicated by G. Caire, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2003.809509

0018-9448/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

