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Abstract

Brownian dynamics simulation is used to investigate the viscoelastic response of the Gaussian chain to a step shear deformation in both the

linear and non-linear regions under the influence of hydrodynamic interactions. Both the preaveraged Oseen tensor and the Rotne–Prager

tensor are used in the study. In the former case, the simulation results are shown to be in agreement with the expected results calculated using

the eigenvalues of the normal modes of motion obtained numerically. It is shown that an initial state with zero second normal-stress

difference is generated by the step shear deformation. The subsequent rise of the second normal-stress difference as revealed by the

simulation is shown mainly arising from the coupling of the recoil of the stretched bond in the direction of deformation and the anisotropy in

the hydrodynamic interaction created by the step deformation.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As first introduced by Kirkwood and Riseman [1,2] into a

polymer system, the pertubation of the solvent flow field

caused by the forces experienced by suspending spherical

particles leads to a dynamical interaction between beads, the

so-called hydrodynamic interaction. At the u temperature,

where the excluded volume effect is absent, the chain

dynamic behavior under the influence of hydrodynamic

interaction in a dilute solution has been extensively studied

theoretically and experimentally. The inclusion of the

hydrodynamic interaction into the Langevin equation

renders it to become non-linear and unsolvable analytically.

Zimm preaveraged the hydrodynamic interaction—the

Oseen tensor [3]. Under such an approximation, the

diffusion constant and intrinsic viscosity have been

calculated and the eigenvalues for the normal modes of

motion have also been obtained numerically [3–10]. It has

been shown that the large differences between the Rouse

theory and the experimental results of the dilute polymer

solutions have been basically corrected by the Zimm model

[11–14].

In recent years, the Brownian dynamics simulation

[15–19] has been used widely to investigate the dynamic

and viscoelastic behavior of a polymer chain in a dilute

solution, where a detailed theoretical analysis is not

possible, such as under the influence of a fluctuating

hydrodynamic interaction. In this study, the viscoelastic

responses to a step shear strain in the linear and non-linear

regions are investigated by the Brownian dynamics

simulation. First, in the case of using the preaveraged

Oseen tensor, the simulation results are shown to be in

agreement with the expected results calculated using the

eigenvalues of the normal modes of motion obtained

numerically [8]. Then, the non-linear effects revealed

from the simulations based on the preaveraged Oseen

tensor and the Rotne–Prager tensor [20] are compared.

Particularly, the rise of the second normal-stress difference

in the latter case is investigated and analyzed.

2. Background

2.1. Basic equations

Consider a Gaussian chain of N beads with positions

{Rn} ¼ ðR1;R2;…;RNÞ and connected by springs each
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with the mean square bond length kb2l (denoted simply by

b2 below). In the absence of a macroscopic flow field, the

dynamics of the Gaussian chain under the influence of

hydrodynamic interaction Hnm with the property (›=› RnÞ·

Hnm ¼ 0 is described by the Langevin equation [9,10]

›RnðtÞ

›t
¼ 2

X
m

Hnm·
›U

›Rm

þ gnðtÞ ð1Þ

where U is the total spring potential of the chain,

ð3kT=b2ÞSn¼2; NðRn 2 Rn21Þ
2; and gnðtÞ arising from the

fluctuation force is defined by

kgnðtÞl ¼ 0 ð2Þ

kgnðt
0Þgmðt

00Þl ¼ 2kTHnmdðt
0 2 t00Þ ð3Þ

For n ¼ m; Hnn ¼ I=z; where I is the unit tensor and z is the

friction constant experienced by each bead. For a bead with

radius a, z is given by the Stokes–Einstein equation z ¼

6phsa: For n – m two forms of Hnm tensor have been

proposed as approximations to the hydrodynamic inter-

action mediated by the solvent fluid: (a) the Oseen tensor,

which treats each bead as a point, is given by:

Hnm ¼
1

8phsrnm

rnmrnm

r2
nm

þ I

� �
ð4Þ

where rnm ¼ Rn 2 Rm and rnm ¼ lrnml; and (b) the Rotne–

Prager tensor given by

Hnm ¼
1

8phsrnm

� 1 þ
2a2

3r2
nm

 !
I þ 1 2

2a2

r2
nm

 !
rnmrnm

r2
nm

" #
ð5Þ

for rnm $ 2a; and

Hnm ¼
1

6phsa
1 2

9rnm

32a

� �
I þ

3rnm

32a

� �
rnmrnm

r2
nm

� 	
ð6Þ

for rnm # 2a: At rnm ¼ 2a; Eqs. (5) and (6) are the same.

When rnm is very large, the terms containing ða=rnmÞ
2

become negligible; and Eq. (5) reduces to Eq. (4).

The preaveraged Oseen tensor for a Gaussian chain is

given by

Hnm ¼
I

ð6p3ln 2 mlÞ1=2hsb
ð7Þ

2.2. Brownian dynamics simulation

The algorithm for the Brownian dynamics simulation

was given by Ermak and McCammon [15]. Denoting zHnm

by D0
nm and 2ðkT =zÞDt by l2; Eq. (1) can be transformed into

Rnðs þ 1Þ ¼ RnðsÞ2
l2

kT

X
m

D0
nm·

›U

›Rm

þ DrnðsÞ ð8Þ

where

kDrnðsÞl ¼ 0 ð9Þ

kDrnðs
0ÞDrmðs

00Þl ¼ D0
nml2ds0;s00 ð10Þ

It is understood that the second term on the right side of

Eq. (8) is calculated at time-step s ¼ ts=Dt: The fluctuations

{DrnðsÞ} at time-step s can be calculated from the variance–

covariance matrix Do
nmðsÞ (to express the tensorial property

of Do
nmðsÞ; a 3N £ 3N matrix is involved in practice). This

can be carried out through the Cholesky decomposition of

the D0
nmðsÞ matrix and the generation of a random array

consisting of 3N components with values being either þ1 or

21, or obtained from a multivariate normal deviate

generator such as the RNMVN subroutine listed in the

IMSL1 library. It is well known that the Oseen tensor is not

positive definite, when rnm is small. Thus, in the following

simulation of chain dynamics, only the preaveraged Oseen

tensor and the Rotne–Prager tensor are used.

3. Simulation Results

3.1. A test for the validity of the Brownian dynamics

simulation—stress relaxation simulations

The constitutive equation of the Zimm model is given by

Ref. [10]

tðtÞ ¼
ðt

21
ckT

XN21

p¼1

1

Sp

exp 2
ðt 2 t0Þ

Sp

 !
g½0�ðt; t

0Þdt0 ð11Þ

where g½0�ðt; t
0Þ ¼ d2 Eðt; t0Þ·ET ðt; t0Þ with Eðt; t0Þ being the

deformation gradient tensor between the present time t and a

past time t0; c is the number of polymer chains per unit

volume; and Sp; the relaxation time of the pth normal mode

of motion, is given by

Sp ¼
zb2

6kTlp

ð12Þ

with lp being the eigenvalue of the modified Rouse matrix

[7,8,10].

Using the Stokes–Einstein equation, the hydrodynamic

interaction parameter [21] can be written as

hp ¼

ffiffiffiffi
�3

p

s
a

b
ð13Þ

The eigenvalues lp of the modified Rouse matrix at different

hp and N values have been calculated numerically for hp up

to 0.3 and N up to 346 [8].

The stress relaxation following a step shear strain l at

ts ¼ 0 for the Zimm model can be obtained from Eq. (11) (in

all the discussions and analyses below related to Eq. (11),

the number of chains per unit volume, c; and kT will both be
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set as 1) as

txyðtÞ ¼ l
XN21

p¼1

exp 2
t

Sp

 !
ð14Þ

In the Brownian dynamics simulation, a step shear

deformation

E ¼

1 l 0

0 1 0

0 0 1

0
BB@

1
CCA ð15Þ

is applied to the polymer chain in an equilibrium state at

time ts ¼ 0; and then the evolution of {RnðsÞ} is calculated

according to Eq. (8). For the simulation, a large number of

identical relaxation processes following a step deformation

are repeated and accumulated for averaging. In each

repeating cycle, the following quantities at ts ¼ sDt are

calculated

SxyðtsÞ ¼ 2
3

b2

XN21

n¼1

xnðsÞynðsÞ ð16Þ

SaaðtsÞ ¼ 2
3

b2

XN21

n¼1

anðsÞanðsÞ ða ¼ x; y; zÞ ð17Þ

where xnðsÞ; ynðsÞ and znðsÞ are the x; y; and z components of

the nth bond vector ðrnðsÞ ¼ Rnþ1ðsÞ–RnðsÞÞ at time-step s:

Then, based on the Kramers form for the stress tensor [10,

22], the shear and normal stresses are obtained from

averaging SxyðtsÞ and SaaðtsÞ; respectively, over the

repetition, i.e. �SxyðtsÞ; and �SaaðtsÞ; where the bar over a

calculated quantity denotes the (time-)averaging.

Comparison of the results of the Brownian dynamics

simulations and those calculated from Eq. (14) using the

eigenvalues for polymer chains with N ¼ 2; 3; and 10 at

hp ¼ 0:25 and different strains has been made. As shown in

Fig. 1 for N ¼ 10 as an illustration example, the agreement

between the two results validate the Brownian dynamics

simulation and indicates the potential usefulness of the

Brownian dynamics simulation in a case, where an

analytical result or a numerically calculated result is not

available, such as the case of using the Rotne–Prager tensor

for hydrodynamic interaction.

3.2. Effects of the Rotne–Prager tensor

We define the shear modulus GðtsÞ; the first normal-stress

difference function, F1ðtsÞ and the second normal-stress

difference MðtsÞ per spring connector of the chain,

respectively, as

GðtsÞ ¼ 2
SxyðtsÞ

lðN 2 1Þ
ð18Þ

F1ðtsÞ ¼ 2
SxxðtsÞ2 SyyðtsÞ

l2ðN 2 1Þ
ð19Þ

and

MðtsÞ ¼ 2
SyyðtsÞ2 SzzðtsÞ

ðN 2 1Þ

b2

3

 !
ð20Þ

Besides the agreement in the shear stress relaxation between

the Brownian dynamics simulation and calculation based on

the eigenvalues as shown in Fig. 1, the following effects

expected from the Zimm theory [10] have also been

confirmed by the Brownian dynamics simulation:

(1) No non-linear effect in the shear stress relaxation; in

other words, the obtained GðtÞ is independent of strain

l:

(2) The observation of the Lodge–Meissner rule [23],

namely, GðtsÞ ¼ F1ðtsÞ; as also shown in Fig. 1.

(3) Zero second normal-stress difference: MðtsÞ ¼ 0:

When the Rotne–Prager tensor is used for hydrodynamic

interaction, the shear stress relaxation curve (denoted by
�SRP

xy ðsÞ) becomes below that of the Zimm theory (denoted by

tZimm
xy ðsÞ) as shown in Fig. 2 for polymers of N ¼ 10 and 21

at hp ¼ 0:25 and l ¼ 1: In the long time region, the �SRP
xy ðsÞ

and tZimm
xy ðsÞ curves parallel each other. This indicates that

the use of the Rotne–Prager tensor, instead of the

preaveraged Oseen tensor, only affects the fast relaxation

modes in the shear stress relaxation curve. Similar results

have been obtained by Rey et al. [17].

Furthermore, in the case of using the Rotne–Prager

tensor, as shown in Fig. 3, the non-linear effect in the shear

stress relaxation up to the strain l ¼ 5 is weak, but indeed

observable. However, as shown in Fig. 4, the Lodge–

Meissner rule remains observed in the simulation based on

the Rotne–Prager tensor. The most prominent effect arising

from using the Rotne–Prager tensor is the non-zero second

Fig. 1. Comparison of the shear relaxation modulus GðsÞ (WWW) obtained

from the Brownian dynamics simulation ðl ¼ 1Þ based on the preaveraged

Oseen tensor at hp ¼ 0:25 and l ¼ 5 for N ¼ 10 with that (solid line)

calculated from the Zimm theory using the numerically obtained

eigenvalues (the Zimm theoretical curve). Also shown is the observation

of the Lodge–Meissner rule, GðsÞ ¼ F1ðsÞ (XXX), in the simulation.
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normal-stress difference. Shown in Fig. 5 are the MðtsÞ

curves obtained at hp ¼ 0:25 and l ¼ 5 for N ¼ 2; 3; 10;

and 21, which are quite different from those for GðtsÞ and

F1ðtsÞ in shape. It can be noticed that there is a rising phase

and a declining phase in MðtsÞ: This strongly suggests that

the constitutive equation for a system with the Rotne–

Prager tensor for hydrodynamic interaction would be quite

different from the form of the Zimm model (Eq. (11)).

Right after the step shear deformation, Eq. (15), is

applied at ts ¼ 0; Mð0Þ ¼ 0; because the deformation does

not create a difference in the configuration distribution of

the bond vectors between y and z directions, i.e.

yð0Þyð0Þ ¼ zð0Þzð0Þ for any bond vector. In fact, if the

affine deformation is assumed as in the present study and

in most cases, the stress tensor t(0) right after the

application of a step strain is the same for a Gaussian

chain regardless of whether there is a hydrodynamic

interaction between the beads or what its form is. As the

time goes on ðts . 0Þ; the velocity field at a certain part of

the chain induced by the force at another part of the chain

will change each other’s configuration distribution. Then,

the question is whether there is a transfer of configuration

change from one direction to another direction. In the case

of the Zimm model, where the hydrodynamic interaction

is preaveraged and remains the same and isotropic for any

pair of beads regardless of the deformation, such a

transfer cannot occur. Thus, in the Zimm theory, MðtsÞ

remains zero for ts . 0: This is clearly not the case, when

the Rotne–Prager tensor is used for the hydrodynamic

interaction.

Fig. 2. Comparison of the shear stress relaxation curves, 2�SRP
xy ðsÞ; obtained

from the simulation ðl ¼ 1Þ based on the Rotne–Prager tensor at hp ¼ 0:25

and l ¼ 1 for N ¼ 10 (WWW) and N ¼ 21 (AAA) with the Zimm

theoretical curves, 2tZimm
xy ðsÞ (solid line for N ¼ 10; and dashed line for

21).

Fig. 3. The strain dependence of the shear relaxation modulus GðsÞ (W for

l ¼ 0:5; A for l ¼ 1; D for l ¼ 3; and 7 for l ¼ 5) as observed from the

simulation ðl ¼ 2Þ based on the Rotne–Prager tensor at hp ¼ 0:25 for N ¼

10: Also shown is the Zimm theoretical curve (solid line).

Fig. 4. The Lodge–Meissner rule as observed in the simulation ðl ¼ 2Þ

based on the Rotne–Prager tensor at hp ¼ 0:25 and l ¼ 5 for N ¼ 10

(WWW for GðsÞ and lower solid line for F1ðsÞ) and N ¼ 21 (AAA for GðsÞ

and upper solid line for F1ðsÞ).

Fig. 5. The second normal-stress difference, MðsÞ (Eq. (20)), as observed in

simulations ðl ¼ 2Þ based on the Rotne–Prager tensor at hp ¼ 0:25 and

l ¼ 5 for N ¼ 2 (—), 3 (- - -), 10 (-·-·-), and 21 (-··-··).
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3.3. Analysis of the rise of the second normal-stress

difference

As shown in Fig. 5, the MðsÞ peak position depends on N

only weakly and occurs in the short time region. This

phenomenon suggests that the basic mechanism for the rise

of the second normal-stress difference should be quite the

same for a short chain as for a long chain—basically a local

phenomenon. For simplifying the analysis, we first consider

the elastic-dumbbell case. For N ¼ 2; Eq. (8) can be

expressed as

rðs þ 1Þ ¼ ZrðsÞ þ wðsÞ þ vðsÞ ð21Þ

where rðsÞð¼ R2ðsÞ2 R1ðsÞÞ is the bond vector at time-

step s,

Z ¼ 1 2 2S ¼ 1 2
3l2

b2
ð22Þ

wðsÞ ¼ 2SD0
21ðsÞ·rðsÞ ð23Þ

and

vðsÞ ¼ Dr2ðsÞ2 Dr1ðsÞ ð24Þ

According to Eqs. (17) and (20), we can calculate MðsÞ from

the yy and zz components of rðsÞ·rðsÞ: Thus, from Eq. (21),

we can obtain

Mðs þ 1Þ ¼ Z2MðsÞ þ
X5

i¼1

DMiðsÞ ð25Þ

where {DMiðsÞ} can be obtained from taking the differences

between the yy and zz components of the following dot

products

wðsÞ·wðsÞ! DM1ðsÞ ð26Þ

vðsÞ·vðsÞ! DM2ðsÞ ð27Þ

2ZrðsÞ·wðsÞ! DM3ðsÞ ð28Þ

2ZrðsÞ·vðsÞ! DM4ðsÞ ð29Þ

2wðsÞ·vðsÞ! DM5ðsÞ ð30Þ

Since Mð0Þ ¼ 0 for any strain l; Eq. (25) can be rewritten as

MðsÞ ¼
X5

i¼1

MiðsÞ ð31Þ

with

Miðs þ 1Þ ¼ Z2MiðsÞ þ DMiðsÞ ð32Þ

and the initial conditions

Mið0Þ ¼ 0 for all i ð33Þ

Using Eqs. (32) and (33), each component of MðsÞ;MiðsÞ;

can be calculated from DMiðsÞ obtained using Eqs. (26)–

(30) in the simulation.

M4ðsÞ and M5ðsÞ show up as noises around zero, as one

would expect from Eqs. (29) and (30). M1ðsÞ; M2ðsÞ; and

M3ðsÞ are non-zero with lM3ðsÞl . lM2ðsÞl @ lM1ðsÞl: The

contribution of M1ðsÞ to the total, MðsÞ; is negligible. As

shown in Fig. 6, M2ðsÞ and M3ðsÞ have opposite signs; and

the total second normal-stress difference MðsÞ results mainly

from their partial mutual cancellation.

Using Eq. (23), DM3 (Eq. (28)) can be expressed by

DM3 ¼ A3
yy 2 A3

zz ð34Þ

where (Note: The superscript of A does not represent an

exponent, but is an index as in the rest of the paper.)

A3
yy ¼ 4SZðrðsÞ·D0

12ðsÞ·rðsÞÞyy ð35Þ

and, A3
zz and A3

xx have a corresponding definition.

At the same time, using Eqs. (10) and (24), DM2ðsÞ (Eq.

(27)) can be obtained as

DM2 ¼ A2
yy 2 A2

zz ð36Þ

where

A2
yy ¼ ðDr2·Dr2Þyy þ ðDr1·Dr1Þyy 2 2ðDr2·Dr1Þyy

¼ 2l2½1 2 ðD0
12Þyy�

ð37Þ

and, A2
zz and A2

xx have a corresponding definition.

Here, we shall do an analytical calculation on the A3
aa and

A2
aa values created right after the application of the step

shear deformation. Assuming that the probability is small

for the distance between the two beads to be short and

comparable to the bead radius, a, we shall use the Oseen

tensor to approximate the Rotne–Prager tensor in the

calculation. Denote by x0 þ ly0; y0; and z0 the x; y; and z

components of r right after the application of the step shear

deformation (Eq. (15)). Then A3
yy right after the step

deformation can be obtained from Eq. (35) by changing

the time averaging with the assembly averaging, which is

Fig. 6. The M2ðsÞ (- - -) and M3ðsÞ (– –) curves calculated through Eq. (32)

from DM2ðsÞ and DM3ðsÞ which are obtained, using Eqs. (27) and (28),

respectively, from the simulation ðl ¼ 0:8Þ based on the Rotne–Prager

tensor at hp ¼ 0:25 and l ¼ 5 for N ¼ 2: Also shown is the comparison of

the sum (—) of M2ðsÞ and M3ðsÞ with that (W) obtained directly from

averaging the yy and zz components of rðsÞ·rðsÞ in the simulation.
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then approximated by the averaging over all orientations

A3
yy ¼ K

ðx0 þ ly0Þ
2y2

0 þ y4
0 þ y2

0z2
0

R3=2

* +
þ

y2
0

R1=2

* +" #

< Kklrlleq

V2u2
y þ u4

y þ u2
yu2

z

U3=2

* +
u

þ
u2

y

U1=2

* +
u

" # ð38Þ

where K ¼ 3aSZ; ua (a ¼ x; y; and z) is the a component of

the unit vector u representing the orientation of the

dumbbell in the equilibrium state; RðlÞ ¼ ðx0 þ ly0Þ
2 þ

y2
0 þ z2

0; VðlÞ ¼ ux þ luy; UðlÞ ¼ 1 þ 2luxuy þ l2u2
y ; and

, .u denotes averaging over all orientations of u, while

, .eq denotes equilibrium-state averaging. The

expressions for A3
zz and A3

xx can be similarly obtained. By

the same procedure as used in obtaining Eq. (38), A2
yy is

obtained from Eq. (37) as

A2
yy < 2l2 1 2

3a

4

1

lrl

� �
eq

u2
y

U3=2
þ

1

U1=2

* +
u

" #
ð39Þ

The expressions for A2
zz and A2

xx can be similarly obtained.

For an elastic dumbbell with kr2l ¼ 100 as used in this

study, it has been shown by the Monte Carlo simulation that

klrlleq ¼ 9.23 and k1/lrlleq ¼ 0.138 [24]. Using these

values, A3
aa and A2

aa (a ¼ x; y; and z) calculated at l ¼ 3

and 5 are in close agreement with the simulation results as

shown in Table 1.

From comparing the expressions for A3
yy and A3

zz; we see

that the main cause for the second normal-stress difference

is the particular conformational anisotropy of the polymer

chain after the step shear deformation for giving A3
yy , A3

zz:

As indicated by Eqs. (36) and (37), DM2 arises from the

difference between the yy and zz components of D12
0 which is

created by the step shear deformation. A2
yy is larger than A2

zz

basically for a similar reason as explained above. Driven by

fluctuations (Eqs. (24) and (27)), M2 having an opposite sign

to that of M3 cancels out part of the second normal-stress

difference due to M3:

The above calculations for {A3
aa} and {Aaa

2 } (Table 1)

are only possible for right after the application of the step

shear deformation. After the chain configuration ‘passing’

through the Langevin equation (Eq. (21)), the simulation

results of {A3
aaðsÞ} and {A2

aaðsÞ} are shown in Figs. 7 and 8.

As the system returns to the equilibrium state at large s,

A3
xx ¼ A3

yy ¼ A3
zz; and A2

xx ¼ A2
yy ¼ A2

zz: We can consider

A3
xxðsÞ and A2

xxðsÞ as contributions over a time step to the

change of xx from the two ‘sources’ as described by Eqs.

(28) and (27), respectively (the same explanation for the yy

and zz components here and below). These contributions

counter the decrease of xx due to the mechanism

corresponding to the first term of Eq. (25), namely,

Z2xðsÞxðsÞ! xðs þ 1Þxðs þ 1Þ ð40Þ

with Z , 1 (Eq. (22)). Thus, at large s; the three

components of DM3 (i.e. {A3
aa}) and of DM2 (i.e. {A2

aa})

(also of DM1; which has been neglected in the analysis and

discussion here, because of its small magnitude) reach

some, identical, positive steady-state values, respectively,

which counteract the decreasing effect due to Eq. (40) so as

to maintain the equilibrium bond length and the equiparti-

tion principle. It is mainly the differences between A3
yy and

A3
zz; and between A2

yy and A2
zz in the off-equilibrium state

caused by the step shear deformation that are responsible for

the occurrence of the second normal-stress difference.

Eventually all the anisotropy in the system has to relax to

zero. The combination of the build-up in the early stage by

the mechanism described above and the eventual total

Table 1

Comparison of the initial values of A3
xx; A3

yy; A3
zz and of A2

xx; A2
yy; A2

zz; which have been obtained from the calculations based on the averaging over all orientations

and from the simulations, at the applied step shear strains: l ¼ 3 and 5. Both the calculation and simulation results are obtained with l ¼ 0:8

l ¼ 3 l ¼ 5

From calculation From simulation From calculation From simulation

A3
xx 1.897 1.866 3.236 3.209

A3
yy 0.2098 0.2029 0.1325 0.1300

A3
zz 0.3320 0.3156 0.2656 0.2540

A2
xx 0.9028 0.9331 0.9719 0.9985

A2
yy 1.005 1.016 1.078 1.085

A2
zz 0.9650 0.9908 1.040 1.062

Fig. 7. The time dependence of A3
xx; A3

yy; and A3
zz (see Eq. (35)) obtained

from the simulation ðl ¼ 0:8Þ based on the Rotne–Prager tensor at hp ¼

0:25 and l ¼ 5 for N ¼ 2:
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relaxation gives rise to the peak in the second normal-stress

difference, where the build-up rate equals the relaxation

rate.

We can also explain the rise of the second normal-stress

difference in another physical way. From the above

discussion, we know that the w term in Eq. (21), which is

expressed by Eq. (23), is the main factor that gives rise to

the second normal-stress difference. Right after the step

shear deformation, a large driving force that greatly affects

the chain conformation in the early stage of shear stress

relaxation is the recoil of the x component of the stretched

bond, namely, a large decrease from the initial value x0 þ

ly0: A coupling of this driving force with the anisotropic

part of the hydrodynamic interaction will lead to a

shortening of the projections of the bond in y and z

directions. According to Eqs. (21) and (23), it depends on

the magnitudes of ðD0
12Þyx and ðDo

12Þzx how effectively a

shortening of the projection of the bond in the x direction

(say, 2Dx) will lead to a decrease in y and z (say, 2Dy and

2Dz). We can estimate the relative magnitude of these two

components by calculating their averages similar to what is

done in Eq. (38). In general kðD0
12Þyxl @ kðD0

12Þzxl: For

instance, at hp ¼ 0:25; l ¼ 5, kðD0
12Þyxl < 1.7 £ 1023 while

kðDo
12Þzxl ,10211. Thus, a shortening in x leads to a larger

shortening in y: As a result, yðsÞyðsÞ , zðsÞzðsÞ or MðsÞ , 0;

giving rise to the second normal-stress difference.

In the above analysis, we have considered the N ¼ 2

case, where there is no coupling between different bonds,

which one needs to consider for N . 2: In view of the peak

position of MðsÞ being a weak function of N as shown in

Fig. 5, the coupling terms may play only minor roles which

modify the main mechanism as described above for the N ¼

2 case. The number of terms that need to be considered

increases greatly with increasing N: In the following, we

study the case of N ¼ 3 to show the modification effects due

to some important cross terms. Denoting the two bonds in

the N ¼ 3 case as r1ð¼ R2 2 R1Þ and r2ð¼ R3 2 R2Þ; we

obtain from Eq. (8)

r1ðs þ 1Þ ¼ Zr1ðsÞ þ w1ðsÞ þ v1ðsÞ þ Sr2ðsÞ2 u2ðsÞ ð41Þ

where

w1ðsÞ ¼ 2SD0
21ðsÞ·r1ðsÞ ð42Þ

v1ðsÞ ¼ Dr2ðsÞ2 Dr1ðsÞ ð43Þ

u2ðsÞ ¼ SðD0
12ðsÞ þ D0

23ðsÞ2 D0
13ðsÞÞ·r2ðsÞ ð44Þ

An equation equivalent to Eq. (41) can in the same way be

obtained for the calculation of r2ðs þ 1Þ: The normal stress

differences for an N ¼ 3 chain can be obtained from the

time-averaging calculation of the components of r1ðsÞ·

r1ðsÞ þ r2ðsÞ·r2ðsÞ: Statistically, bond one and bond two are

equivalent. Thus, we need to consider only one of them

(bond one is chosen here). Similar to Eq. (31), we have

MðsÞ ¼
X14

i¼1

MiðsÞ ð45Þ

with Eqs. (32) and (33) equally applicable for i ¼ 1 to 14.

In substituting the various DMi(s) terms into Eq. (32), we

need to consider only the DM2; DM3; DM7; and DM8 terms

which can be obtained by taking the differences between the

yy and zz components of the following dot products; the

other terms give rise to either noises around zero or

negligible contributions to MðsÞ :

v1ðsÞ·v1ðsÞ! DM2ðsÞ ð46Þ

2Zr1ðsÞ·w1ðsÞ! DM3ðsÞ ð47Þ

2ZSr1ðsÞ·r2ðsÞ! DM7ðsÞ ð48Þ

2Zr1ðsÞ·u2ðsÞ! DM8ðsÞ ð49Þ

DM2ðsÞ and DM3ðsÞ given by Eqs. (46) and (47) are

equivalent to those given by Eqs. (27) and (28), respect-

ively, for the N ¼ 2 case; however, DM7ðsÞ and DM8ðsÞ are

due to couplings between bond 1 and bond 2. The obtained

M2ðsÞ; M3ðsÞ; M7ðsÞ; and M8ðsÞ curves are shown in Fig. 9.

As also shown in the figure, the sum of these four curves are

in close agreement with the MðsÞ curve which has been

calculated directly from averaging the yy and zz components

of r1ðsÞ·r1ðsÞ; confirming that the other terms can be

neglected. M2ðsÞ and M3ðsÞ are similar to their counterparts

in Fig. 6. The small differences should be due to the small

dynamic difference of a single bond motion between the

N ¼ 2 and N ¼ 3 cases. It has been shown in the free-

draining case that the time-auto-correlation function of a

single bond depend on N only weakly, particularly in the

short-time region [24]; it is expected to be similar here. The

coupling contributions, M7ðsÞ and M8ðsÞ; are much smaller

than M3ðsÞ in magnitude, and as revealed in Fig. 9 cancel

out each other to some extent. The MðsÞ peak occurring in

the short-time region is enhanced by the contributions of

M7ðsÞ and M8ðsÞ; and is higher than that of the N ¼ 2 case.

The phenomenon as shown in Fig. 5 that the MðsÞ peak

becomes greater with increasing N should be due to the

Fig. 8. The time dependence of A2
xx; A2

yy; and A2
zz (see Eq. (37)) obtained

from the simulation ðl ¼ 0:8Þ based on the Rotne–Prager tensor at hp ¼

0:25 and l ¼ 5 for N ¼ 2:
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coupling terms in a way similar to what occurs in the N ¼ 3

case. As revealed for the N ¼ 3 case, however, the peak

position of MðsÞ in time should still be greatly influenced by

the peak of M3ðsÞ because of its relatively large magnitude.

Because the M3ðsÞ peak is a very weak function of N; this

explains why the observed MðsÞ peak position depends on N

weakly. As shown in Fig. 9, the coupling terms contribute to

the long-time region of MðsÞ as well as to the peak height of

MðsÞ:

4. Discussion

The second normal-stress difference has a complicated

strain dependence, as indicated by Eq. (38) and (39) for A3
yy

and A2
yy; respectively. In Fig. 10, we show the second

normal-stress difference at different strains with the peak

height matched for a chain with N ¼ 10: In doing so, the

second normal-stress difference is divided by a factor lb,

where b is an adjustable parameter. These ‘normalized’

curves basically have the same shape. The strain depen-

dence of b indicates the complicated strain dependence of

the second normal-stress difference.

From this simulation study it is found that the second

normal-stress difference while having the opposite sign is

much smaller than the first normal-stress difference in

magnitude (for instance about 5% at l ¼ 1 in the long time

region). In steady shear flow, the first and second normal-

stress coefficients C1 and C2 (as defined in Ref. [10]) of the

Hookean dumbbell with unaveraged Oseen tensor have been

studied numerically by Fan [25] giving C2 to be negative

and lC2l=lC1l to have a magnitude comparable to the

experimental results [26]. The Brownian dynamics simu-

lation of Diaz et al. [27] (using the Oseen tensor, with a

modified form when r , 2a [28]) appeared to support the

viscosity and C1 obtained by Fan as a function of shear rate

but due to the statistical error could not produce a detectable

departure of C2 from 0.

5. Summary

The viscoelastic properties of a dilute polymer solution

system in the u condition is studied by assuming a mean-

field friction constant. The viscoelastic response of the

system to a step shear deformation can be studied by the

Brownian dynamics simulation on a single polymer chain.

When the preaveraged Oseen tensor, which is isotropic and

does not change with deformation, is used in the Brownian

dynamics simulation, the viscoelastic results of the Zimm

model, whose eigenvalues of the normal modes can be

obtained numerically, are quantitatively reproduced. This

shows that the Brownian dynamics simulation can replace

the numerical solution in showing the result of a particular

model. This also indicates that the Brownian dynamics

simulation becomes even more valuable, when a numerical

solution is impossible to obtain, such as in the case where a

fluctuating hydrodynamic interaction is involved.

As shown in this study, the most outstanding phenom-

enon that occurs when the Rotne–Prager tensor is used for

the hydrodynamic interaction in the simulation is the non-

zero second normal-stress difference, which has an opposite

sign to the first normal-stress difference. The detailed

mechanism for the rise of the second normal-stress

difference in the N ¼ 2 case has been analyzed. It is

shown that when the ensemble averaging is approximated

by the averaging over all orientations, the initial values of

A2
xx; A2

yy; and A2
zz; and A3

xx; A3
yy; and A3

zz following the

application of a step shear strain can be calculated. The

Fig. 9. The M2ðsÞ (- - -), M3ðsÞ (– –), M7ðsÞ (-·-·-), and M8ðsÞ (-··-··) curves

obtained, through the use of Eqs. (46)–(49), respectively, from the

simulation ðl ¼ 0:8Þ based on the Rotne–Prager tensor at hp ¼ 0:25 and

l ¼ 5 for N ¼ 3: Also shown is the comparison of the sum (—) of M2ðsÞ;

M3ðsÞ; M7ðsÞ; and M8ðsÞ with that (W) obtained directly from averaging

r1ðsÞ·r1ðsÞ in the simulation.

Fig. 10. The MðsÞ=lb curves at different l values (— at l ¼ 0:5; - - - at

l ¼ 1; -·-·- at l ¼ 3; and -··-·· at l ¼ 5) for N ¼ 10: b is first found to be 1.8

by matching the peaks of the curves at l ¼ 0:5 and 1. By matching the other

curves to the thus obtained two curves at the peak, b is found to be 1.1 at

l ¼ 3 and 0.85 at l ¼ 5:
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calculated values with the Rotne–Prager tensor approxi-

mated by the Oseen tensor are in close agreement with

the results obtained from the simulation. Such an

agreement supports the picture that the anisotropy in

hydrodynamic interaction caused by the applied step

strain gives rise to the second normal-stress difference.

In the studies of the steady-state shear flow case, it has

also been generally concluded that the second normal-

stress difference arises from the anisotropy in hydro-

dynamic interaction [25,27–29]. However, in this study

we show that there are different routes for the

anisotropy in hydrodynamic interaction to give a non-

zero value to the second normal-stress difference and

that the M3 term, which reflects the kind of interaction

as given by Eqs. (34) and (35), is the most important

contribution. The mechanism of the DM3ðsÞ interaction

in causing the rise of the second normal-stress

difference may be pictured as the coupling of the recoil

of the stretched bond in the direction of deformation

and the anisotropy in hydrodynamic interaction created

by the step shear deformation.

The N ¼ 3 case is studied for the effects of the

coupling terms between different bonds. While the

coupling terms cannot be neglected, the terms confined

to a single bond have the largest effect, in particular, the

M3ðsÞ term, which is weakly dependent on N: Because of

the dominance of the M3ðsÞ term, the peak position of

the second normal-stress difference occurs in the short

time region and is a weak function of N: However, the

contributions of the coupling terms make the peak height

of the second normal-stress difference per bond increases

with increasing N:

When a fluctuating hydrodynamic interaction is

involved, a numerical solution is in general very difficult

to obtain. Mainly because of experimental difficulties, the

second normal-stress difference has rarely been measured.

In such a situation of lacking both numerical and

experimental results, the Brownian dynamics simulation

becomes particularly valuable. In this study, the mechanism

for the rise of the second normal-stress difference has been

analyzed in detail.
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