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Abstract 

Suppose G = (S, T, E) is a bipartite graph, where (S, T) is a bipartition of the vertex set. A B-assignment is an edge 
set X C_ E such that degx(i) = 1 for all i E S. The cardinality ,a-assignment problem is to find a ,a-assignment X which 
minimizes fl(X) = max~r degx(j). Suppose we associate every edge with a weight which is a real number. The bottleneck 
B-assignment problem is to find a ,a-assignment X that minimizes fl(X) and maximizes the minimum edge weight on X. 
The weighted B-assignment problem is to find a ,a-assignment X that minimizes ,a(X) and maximizes the total weights of 
edges in X. This paper presents O(ISIIEI)-time algorithms for the cardinality and the bottleneck ,a-assignment problems 
and an O( ISI21TI + ISllTI2)-time algorithm for the weighted ,a-assignment problem. (~) 1998 Elsevier Science B.V. 
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1. Introduction d e g x ( i ) = l  for a l l i E S ,  

Chang and l e e  [3] posed the following kind of 
assignment problem. Suppose there is a set S of n jobs 
and a set T of m workers. Information as to whether 
or not a worker is qualified for a job is known in 
advance. The problem is to assign jobs to workers 
such that the maximum number of jobs a worker has 
is minimized. To distinguish this problem from the 
traditional assignment problem [ 1,6-8], it is termed 
the fl-assignmentproblem. This problem is formulated 
in terms of bipartite graphs as follows. Consider the 
bipartite graph G = (S, T, E) in which (S, T) is a 
bipartition of the vertex set, and (i, j )  E E if and only 
if worker j is qualified for job i. A B-assignment is 
an edge set X C_ E such that 
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where degx(i) is the degree of i in the subgraph of 
G induced by X. This implies that for any job i there 
exists exactly one worker j such that (i, j )  E X, and 
therefore job i is assigned to worker j .  To apply B- 
assignments in scheduling problems, see [2]. 

Let B(X) denote the maximum number of jobs a 
worker has in a B-assignment X, i.e., 

B(X) = max degx( j ) .  
jET 

The cardinality B-assignment problem is to find a B- 
assignment x which minimizes B ( x ) ;  this minimum 
value is denoted by B(G). This study also takes ac- 
count of the following variations of the cardinality 
B-assignment problem. In these variations, each edge 
(i,j) is associated with a weight wq, which can be 
interpreted as the profit accruing to a worker j by ex- 
ecuting job i. The bottleneck B-assignment problem 
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is to find a B-assignment X with B(X) = B(G) by 
which the minimum weight of an edge in X is maxi- 
mized. The weighted B-assignment problem is to find 
a B-assignment x with B ( x )  = B(G) by which the 
sum of the weights of all edges in X is maximized. 
Without loss of generality, it is assumed that G has a 
B-assignment, i.e., each vertex in S has a degree of at 
least one. 

Chang and Lee [3] gave an O(ISI2[Tl2)-time al- 
gorithm for the cardinality B-assignment problem. 
Chang [2] offered an O(IS[2[Tl2)-time algorithm 
for the weighted B-assignment problem. This paper 
presents o(Is l lEI)- t ime algorithms for the cardinal- 
ity and the bottleneck B-assignment problems and an 
o ( Is121TI + I SliT[ 2) -time algorithm for the weighted 
B-assignment problem. Strong duality theorems for 
these problems are incidentally verified. 

2. The cardinality r-assignment problem 

A partial B-assignment is an edge set X c E such 
that degx(i) ~< 1 for all i E S. The proposed algo- 
rithm for the cardinality B-assignment problem starts 
with the empty partial B-assignment x = 0 and adds 
one edge to X every iteration until an optimal B- 
assignment is found. 

For a partial B-assignment x,  a vertex i in S is 
exposed if degx(i) = 0 and a vertex j in T is safe if 
degx( j )  < B ( X ) ,  otherwise it is saturated. I fS  ~ is the 
set of all non-exposed vertices in S, X also is termed 
a partial B-assignment of S t. An X-alternatingpath is 
a path whose edges are alternately in E - X and X. 
An X-augmentingpath is an X-alternating path whose 
origin is an exposed vertex in S and whose terminus 
a safe vertex in T. 

The symmetric difference of two sets A and B is 

A A B  = ( A  - B) U (B - A). 

The following lemma is readily verified. 

Lemma 2,1. l f  X is a partial B-assignment of  S' and 
P is an X-augmenting path starting at vertex i E S - 
S ~, then XAP is a partial B-assignment of  S t o {i} 
and B ( X A P )  = B ( x ) .  

An X-alternating tree relative to a partial B- 
assignment x is a tree which is a subgraph of G and 

satisfies the following two conditions. First, the tree 
contains exactly one exposed vertex in S, which is 
called the root of the tree. Secondly, any path between 
the root and a vertex in the tree is an X-alternating path. 

The proposed algorithm for the cardinality B- 
assignment problem begins with the empty partial 
B-assignment. Suppose the partial B-assignment X 
obtained so far is not a B-assignment. Then an ex- 
posed vertex s in S is located as the root of an X- 
alternating tree and vertices and edges are added to 
the tree by means of a labeling technique. Eventually, 
either a safe vertex in T is added to the X-alternating 
tree, or no further vertices or edges may be permitted. 
In the former case, an X-augmenting path is found 
and the partial B-assignment is augmented. In the 
latter case, all vertices in T of the X-alternating tree 
are saturated. Now, add an edge (s, t) to X; the value 
of B(X)  is increased by one. The tree-building pro- 
cedure is repeated for ISI iterations until an optimal 
B-assignment is obtained. More precisely, we obtain 
Algorithm Cardinality (see Fig. 1 ). 

Algorithm Cardinality may be verified by employ- 
ing the following dual problem of the cardinality B- 
assignment problem. For any A _c S, NG (A) denotes 
the set of neighbors of A in graph G. In a B-assignment 
x,  the vertices of A can be assigned only to vertices 
of NG (A), therefore 

p(x)  >. [IAI/INo(A)I1 

by the pigeonhole principle. Consequently, the follow- 
ing min-max duality inequality obtains. 

Lemma 2.2. 

min 
X:fl--assignment 

f l ( X )  >1 max [ [A[ / ING(A) [ ] .  
AC_S 

Theorem 2.3. Algorithm Cardinality works. 

Proof, Since X is updated only in Steps (a) and 
(b),  it continues to serve as a partial r-assignment by 
Lemma 2.1 and the definition. After IS] iterations, the 
partial r-assignment becomes a r-assignment. Let X* 
be the final r-assignment and k* the final k obtained 
from the algorithm. Suppose L is the X-alternating 
tree rooted at s that forces the value of k to increase 
from k* - 1 to k* in Step (b),  where X is a par- 
tial r-assignment of some A that does not contain s. 
N6 (L n S) = L n T by the labeling method in case 1. 
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Algorithm Cardinality 
Input: A bipartite graph G = (S, T, E) with bipartition (S, T). 
Output: An optimal cardinality B-assignment X with fl(X) = f l (G) .  
X,- -  0; 
k ~- 0; {* where k =/3(X) at any time ,} 
for each s E S do 

set all vertices 'unscanned'; 
erase labels of all vertices; 
label s by '0'; 

( , )  if there is an unscanned and labeled vertex i 
then {scan i in the following three cases; 

ease 1. i E S { ,  the tree grows from vertices of S to T,}: 
label each unlabeled j E T adjacent to i by 'i '; 
goto (*);  

case 2. i E T and is saturated {* the tree grows from T to S*}: 
identify the k edges ( i, j l  ) , ( i, j2 ) . . . . .  ( i, jk ) of X; 
label each jp by T for 1 ~< p ~< k; 
goto ( . ) ;  

(a) case 3. i E T and is safe {.  an X-augmenting path found *}: 
backtrack from i to s by labels to get an X-augmenting path P; 
X ~-- XAP;} 

(b) else {* all vertices in T of the X-alternating tree are saturated *} 
{choose an edge e = (s, t); 
X ' , - - X + e ;  
k ~--- k +  1;} 

endif; 
endfor; 
output (X, k); 
end Cardinality 
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Fig. 1. Algorithm Cardinality. 

By Step (b) ,  all the vertices of T in the X-alternating 
tree L are saturated, i.e., degx( j )  = k* - 1 for all j C 
N ~ ( L N T ) .  Also, Nctxl  (LMT) = (LMS) - {s}. Let 
A* = LMS.  Then, I a * l - - I Z n S I - -  (k* - 1 ) l t n T I  + 
1 = (k* - 1)IN6(A*) I + 1, and therefore f l (X*)  = 
k* = [Ia*l/INc(a*)l] .  This, together with Lemma 
2.2, gives 

3(x*) >/ min 3(x) 
X:B--assignrnent 

>~ max HAI/IN~(A)I1 
AC_S 

>~ [IA*t/ING( A*) I1 = ~ (  X*).  

Hence, all inequalities are in fact equalities. This ver- 
ifies that X* is an optimal/~-assignment and the algo- 
rithm is therefore valid. [] 

Corollary 2.4. 

min f l (X )  =max HAI/ING(A)I]. 
X:fl --assignment A C S 

Corollary 2.4. is an equivalent statement of Ed- 
monds and Fulkerson's theorem [4]. Note that the 
complexity of each iteration in the algorithm is 
O(IEI), since constructing of an alternating tree uti- 
lizes at most IE I edges and augmenting the assignment 
requires O(ISI) time. Hence, the time complexity of 
the algorithm is O(ISI IEI). 

3. The bottleneck/S-assignment problem 

Recall that the bottleneck ]~-assignment problem 
is to find a /~-assignment X with /~(X) = ~ (G)  
that maximizes min{wij : ( i , j )  E X}. The algo- 
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Algorithm Bottleneck 
Input: A bipartite graph G = (S, T, E) and a weight wij for each edge ( i , j )  E E. 
Output: An optimal bottleneck fl-assignment X. 
call Cardinality (G);  { ,  to get k* = f l(G) .} 
X~-0; 
W ~-- (x~; {* where W is the threshold *} 
for each s E S do 

set all vertices 'unscanned'; 
erase labels of all vertices; 
labels s by '0'; 
zrj ~ - ~  for all j E T; 

( . )  if each unscanned and labeled vertex j is in T and ~-j < W 
then W ,--- max{Trj : zrj < W}; {,  reduce the threshold .}  
select an unscanned and labeled vertex i in S or in T with 7ri ~> W; 
scan i for three cases; 

case 1. i E S: 
for each j E T with ( i , j )  E E - X, ~rj < wij and 7rj < W, 

label j by 'i' and ~rj ~-- wij; 
goto (*);  

case 2. i E T and is saturated, i.e., degx(i) = k*: 
identify the k* edges ( i , j l ) ,  (i, j2) . . . . .  (i, jk. ) of X; 
label each Je by 'i' for 1 ~< p ~< k*; 
goto (*);  

case 3. i E T and is safe, i.e., degx(i) < k*: 
backtrack from i to s by labels to get an X-augmenting path P; 
X ~- XAP;} 

endcase; 
endfor; 
output (X, W); 
end Bottleneck 

Fig. 2. Algorithm Bottleneck. 

rithm introduced here starts with the empty partial fl- 
assignment and a suitable large threshold W. Suppose 
that a partial fl-assignment X of some S ~ C_ S has 
been obtained at the general step. One tries to find 
an X-augmenting path in the subgraph containing all 
arcs ( i , j )  for which w o/> W. To do this efficiently, a 
number ~rj is associated with each vertex j E T such 
that 

7rj = max {wij  : ( i , j )  E E and i is 

in the X-alternating tree}. 

While growing the X-alternating tree, vertices are la- 
beled but no labeled vertex j in T is scanned unless 
7rj ~> W. If augmentation is possible, a partial fl- 

assignment of S ~ U {s} results, where whether a ver- 
tex of T is safe or not is determined by f l (G) = k*, 
which is obtained from algorithm Cardinality. If aug- 
mentation is not possible, the threshold W is reduced 
to the maximum value of zrj strictly less than W. This 
permits adding at least one vertex to the tree. Even° 
tually, augmentation must occur, or otherwise by an 
argument similar to Theorem 2.3, f l (G)  > k*, which 
is a contradiction. 

The precise algorithm, Algorithm Bottleneck, is 
given in Fig.2. 

For the reasons adduced in the cardinality case, 
the time complexity of Algorithm Bottleneck is 
also o(ISIIEI). The algorithm is verified again by 
a primal--dual approach. Let H denote a subgraph 
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obtained from G by deleting p vertices of S and q 
vertices of T such that 

p + B ( G ) q  = IsI - 1. 

Suppose x is a B-assignment with B ( x )  = B ( G ) .  X 
has at most B ( G ) q  edges incident to the q deleted 
vertices of T and p edges incident to the p deleted 
vertices of S. Thus, H contains at least one of the IS[ 
edges of X. Therefore, the following lemma obtains. 

Lemma 3.1. 

max min w 0 <~ min max wij. 
X:fl(X)=fl(G) (i,j)EX H (i,j)EH 

Theorem 3.2. Algorithm Bottleneck works. 

Proof. Let X* be the final B-assignment obtained 
by algorithm Bottleneck. Suppose the augmentation 
from a partial B-assignment x '  of A to a partial B- 
assignment X of A U {s} is the first time an edge 
eo = (io,jo) with the minimum weight in X* is in- 
cluded by the assignment. Let L be the set of labeled 
vertices of G while the X~-alternating tree cannot 
extend further and that causes the reduction of the 
threshold W to w(eo) .  

Let T1 = { j  E L fq T : deg6iLnv(6tx, l )]( j)  >~ 
f l (G)}  and H be the subgraph of G obtained by 
deleting the vertices of (S - L) tO T1. Since ITII --- 
( I t n  sI - [{s)l) /B( a), then I S -  L I +fl (G)[TII  = 
I s -  tl + ILnSI - 1 = [ S I  - 1 .  It follows from Lemma 
3.1 that min{w 0 : ( i , j )  E X*} ~< max{wij : ( i , j )  E 
H}. Since eo E X and w(eo) = min{wij : ( i , j )  E 
X*}, it suffices to declare that e0 E H and w(eo) = 
max{wij : ( i , j )  E n } .  

Note that V(H) = ( L fq S) U/'2, where T2 = T - TI. 
Furthermore, i0 E L M S and J0 E 7"2, so e0 E H. 
Since e0 is the first bottleneck included by X*, thresh- 
old W must be greater than w(eo) before e0 E X*. 
By the choice of eo, Zrjo = max{~rj : 1rj < W and j 
is an unscanned but labeled vertex of T} and w(eo) = 
max {wij : ( i, jo) E E and i is a labeled vertex in S} = 
~j0- Because T2 is the set of the unscanned labeled ver- 
tices of T and L fq S is the set of the labeled vertices of 
S, it follows that w( eo ) = max { wij : ( i, j ) E H}.  [] 

Corollary 3.3. 

max min wii -~ rrfin 
X:~(X)=fl(G) (i,j)EX " H 

m a x  w o .  
(i , j)EH 

4. The weighted fl-assignment problem 

The weighted B-assignment problem is to find a B- 
assignment X with f l ( X )  = B ( G )  which maximizes 
the total weights of the edges in X. Suppose k* = 
B(G) is obtained by the cardinality B-assignment al- 
gorithm. The proposed procedure for the weighted B- 
assignment problem is a primal-dual method. The in- 
teger linear programming formulation of the weighted 

Z WijXij 

(i,j)cE 

to ~ x i j = l  for a l l i E S ,  (1 subject  ) 

jET 

E x i j < ' k *  for all j E T ,  (2) 
iES 

xi)>/0  for a l l ( i , j )  E E ,  (3) 

x 0 integer for all ( i , j )  E E. (4) 

Note that condition (4) can be replaced by 'xij is bi- 
nary for all ( i , j )  E E'. A feasible solution (xij : 
( i , j )  E E)  is equivalent to a B-assignment X = 
{ ( i , j )  E E : xij = 1}. The dual of its l inearpro- 
gramming relaxation (i.e. (4) is dispensed with) is: 

Minimize Z ui + k* E vj 
iES jET 

subject to vj 1> 0 for all j E T, (5) 

u i + v j ~ w i j  for a l l ( i , j )  EE .  (6) 

The orthogonality conditions are 

iES 

x O ( u i + v  j - w O ) = O  f o r a l l ( i , j )  E E .  (8) 

By linear programming theory, solutions of the pri- 
mal and the dual problems are optimal if and only 
if they satisfy conditions ( 1 ) - ( 8 ) .  The weighted fl- 
assignment problem algorithm offers initial solutions 
that satisfy all conditions except ( 1 ). The number of 
vertices i E S such that condition ( 1 ) falls decreases 
by one for each iteration of the algorithm (see Algo- 
rithm Weight, Fig. 3). 

The procedure begins with the empty partial 
B-assignment X = 0 and the dual solution ui = 

B-assignment problem is: 

Maximize 
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Algorithm Weight 
Input: A bipartite graph G = (S, T, E) and a weight wij for each edge ( i , j )  E E.  

Output: An optimal weighted/~-assignment X. 
call Cardinality (G); { ,  to get k* =/~(G) *} 
X ~ 0 ;  
Ui ~-- m a x  jET Wij for all i E S; 
vj ,-- 0 for all j E T; 
for each s E S do 

erase labels of all vertices; 
label s by '0 ' ;  
~ j  ~ c~ for all j E T; 

( . )  if there is an unscanned but labeled vertex i E S or i E T with ~ri = 0 
then {scan i in the following three cases; 

case 1. i E S: 
for each j E T with ( i , j )  E E and ui + vj - wij < 7rj, 

label j by ' i '  and 7rj ~-- ui + vj - wij; 

goto (*) ; 
case 2. i E T and is saturated, i.e., degx(i ) = k*: 

identify the k* edges (i, j l ) ,  (i, j2) . . . . .  (i, jk*) of X; 
label each jp by ' i '  for 1 ~< p ~< k*; 
goto (*);  

case 3. i E T and is safe, i.e., degx(i ) < k*: 
backtrack from i to s by labels to get an X-augmenting path P; 
X ~-- XAP;} 

else {d~ ~-- rnin{~-j : Try > 0 and j E T}; 
ui ~ ui - ~ for all labeled i E S; 
vj +-- vj + ~ for all j E T with 7rj = 0; 
cry ~-- 7rj - 8 for all j E T with 7rj > 0; 
goto (*);} 

endif; endfor; 
output ( X,  EijEX Wij )' 
end Weight 

Fig. 3. Algorithm Weight. 

m a x  jET Wij for all i E S and vj = 0 for all j E T. These 
initial primal and dual solutions clearly satisfy condi- 
tions ( 2 ) - ( 8 ) .  At the general step of the procedure, 
conditions ( 2 ) - ( 8 )  hold, but for some i E S, con- 
dition (1) does not. Then, by a labeling method, an 
augmenting path is sought within the subgraph con- 
taining only edges (i, j )  for which ui + vj = wij, so as 
to ensure continuing to satisfy condition (8).  If  such a 
path P is found, then X is updated by X A P .  The  new 
partial t -assignment continues to meet conditions 
( 2 ) - ( 8 )  and the number of  vertices i E S such that 
condition ( 1 ) fails decreases by one. I f  augmentation 
is not possible, then all the edges ( i , j )  available for 

continual addition to the X-alternating tree are such 
that ui + vj > wij. Such edges are incident to a vertex 
of S in the X-alternating tree and a vertex of T that is 
not so. Then, a change of certain 'suitable' 8 > 0 is 
made in the dual variables by subtracting 8 from ui 

for each tree vertex i E S and adding 8 to vj to each 
tree vertex j E T. Such a change in the dual variables 
affects the net value of ui + vj only for edges that 
have one end in the tree and the other end not so. 
The authors contend that after such a change, the new 
dual variables continue to satisfy conditions ( 2 ) - ( 8 ) .  
Note that only conditions ( 5 ) - ( 8 )  require checking. 
Condition (5) remains true since the new value of 
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Table 1 

CPU (sec) CPU (sec) CPU (sec) 
ISI IT I p p' B(G) for fl(G) b(G) for b(G) w(G) for w(G) 

150 30 0.010 0.035 10 0.033332 10 0.033332 8031 0.016666 
150 30 0.320 0.322 5 0.033332 47 0.033332 11 304 0.049998 
300 30 0.010 0.034 14 0.049998 10 0.116662 16 562 0.066664 
300 30 0.320 0.320 10 0.099996 37 0.166660 24336 0.099996 
300 60 0.010 0.019 10 0.066664 10 0.133328 17 584 0.066664 
300 60 0.320 0.324 5 0.116662 75 0.183326 25 227 0.116662 

450 30 0.010 0.035 25 0.133328 10 0.233324 25 106 0.133328 
450 30 0.320 0.328 15 0.216658 35 0.349986 38085 0.183326 
450 60 0.010 0.020 13 0.133328 10 0.266656 25 894 0.149994 
450 60 0.320 0.319 8 0.233324 71 0.349986 39482 0.216658 
450 90 0.010 0.014 8 0.149994 10 0.283322 26059 0.149994 
450 90 0.320 0.319 5 0.249990 75 0.399984 37 548 0.299988 

600 30 0.010 0.034 27 0.216658 10 0.433316 33257 0.233324 
600 30 0.320 0.321 20 0.383318 34 0.616642 50030 0.299988 
600 60 0.010 0.019 15 0.233324 10 0.433316 33416 0.266656 
600 60 0.320 0.318 10 0.449982 68 0.583310 52 553 0.366652 
600 90 0.010 0.014 12 0.233324 I0 0.466648 34607 0.266656 
600 90 0.320 0.321 7 0.416650 77 0.599976 52 777 0.433316 

600 120 0.010 0.012 9 0.266656 10 0.483314 35 208 0.299988 
600 120 0.320 0.320 5 0.433316 80 0.649974 52 377 0.499980 
750 30 0.010 0.035 43 0.316654 10 0.666640 18694 0.349986 
750 30 0.320 0.319 25 0.599976 32 0.933296 31 936 0.416650 
750 60 0.010 0.019 22 0.349986 10 0.683306 17426 0.366652 
750 60 0.320 0.320 13 0.599976 69 0.833300 33 310 0.483314 

750 90 0.010 0.015 12 0.349986 10 0.733304 26447 0.416650 
750 90 0.320 0.321 9 0.649974 77 0.883298 44392 0.533312 
750 120 0.010 0.013 11 0.366652 10 0.783302 32 159 0.466648 
750 120 0.320 0.321 7 0.783302 82 0.949962 51 087 0.616642 
750 150 0.010 0.012 7 0.399984 10 0.783302 34543 0.499980 
750 150 0.320 0.320 5 0.733304 89 1.066624 50773 0.733304 

each vj is greater than or equal to its old value. The 
only case for decreasing ui + vj is when i is a tree ver- 
tex but j not. In that event ui + oj is decreased by t~. 
Since originally ui + vj > wij, selecting a sufficiently 
small 8 can make (6)  true. The only opportunity for 
increasing vj from zero to 8 occurs when j is a tree 
vertex. But each tree vertex j E T has the property 
that ~iES  xij = k*, and condition (7)  still holds. The 
only case of  ui + vj - wij changing from zero to t~ is 
when j is a tree vertex but i is not. By cases 2 and 3 
of  the algorithm, ( i , j )  f [ X  or xij = 0, so condition 
(8)  still holds. Therefore, after the change, the dual 
variables continue to satisfy conditions (2)  - (8 ) .  

As is the case for the threshold algorithm for the 
bottleneck optimal assignment problem, a number ¢r i 

is associated with each vertex j in T. This number 
indicates the value of  8 so that j may be added to the 
tree. The labeling procedure progressively decreases 
¢rj until zrj = m i n { u i + v j - w i j  : ( i , j )  E E a n d i  E S 
is in the alternating tree}. Note that a vertex j E T may 
receive a label although ¢rj > 0 but its label is scanned 
only if zrj = 0. Since we let t~ = min{Trj : ~-j > 0 and 
j E T} in the algorithm, at least one new edge can be 
added to the tree provided that G has a fl-assignment. 
Thus, the X-alternating tree continues to grow. 

After I SI iterations, the resulting fl-assignment sat- 
isfies conditions ( 1 ) - ( 8 )  and therefore is optimal. In 
each sub-iteration of  an iteration, the algorithm either 
scans a vertex or modifies the dual variables. Note that 
no vertex is scanned more than once in the same it- 



600 G.J. Chang, P-H. Ho/European Journal of Operational Research 104 (1998) 593-600 

eration; and after modifying dual variables, a labeled 
vertex always remains to be scanned. Therefore, there 
are at most ITI dual variable modifications in an iter- 
ation. Since each modification costs o(IsI + IT I) op- 
erations, each iteration requires O( ISI ITI + ITI 2) op- 
erations for the dual variable modifications. Because 
constructing the X-alternating tree employs at most 
IEI -< ISIITI edges, the time complexity of this algo- 
rithm is O(ISI21TI + ISIITI2). 

If either a max-flow-like or a shortest-path-like pro- 
cedure is utilized to determine maximum weighted 
augmentation at each iteration, the time complexity of 
the algorithm is O(ISI31TI). 

5. Numerical results 

The three algorithms of this paper were coded in a 
C program and run on a SUN SPARC 10. Bipartite 
graphs of various size were generated with two kinds 
of edge densities. Table 1 illustrates a typical output 
of the C program. 

The first (second) column is the size of S (T). The 
third column is the probability/9 for the existence of 
an edge ij. A random number generator determines 
whether or not ij is an edge. To ascertain that f l (G)  ex- 
ists, when a vertex i has degree zero, an edge ij is ran- 
domly added to the graph, thus rendering the real edge 
density p '  = IEI/ISlITI, as is depicted in the fourth 
column, larger than p for some cases. Column 5 in- 
dicates the value f l (G)  obtained from algorithm Car- 
dinality and column 6 the running time. Column 7 is 
the maximum value b(G) of the minimum weight of 
an edge in a fl-assignment X with f l (X)  = f l (G)  and 
column 8 the running time. Column 9 is the maximum 
value w(G)  of the sum of the weights of all edges in 
a fl-assignment X with f l (X)  = f l (G)  and column 10 
the running time. 
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