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Adaptive Fuzzy Sliding Mode Controller for
Linear Systems With Mismatched
Time-Varying Uncertainties

C. W. Tao, Mei-Lang Chan, and Tsu-Tian Ld&ellow, IEEE

Abstract—A new design approach of an adaptive fuzzy sliding techniques require that the uncertainties satisfy the matching
mode controller (AFSMC) for linear systems with mismatched conditions. This would limit the application of the sliding
time-varying uncertainties is presented in this paper. The coef- mode control.

ficient matrix of the sliding function can be designed to satis . . .

a sliding coefficient matc%ing condition provideg time-varyin;jy The fuzz.y techmqqe; [6] have been widely applied to ,t.he
uncertainties are bounded. With the sliding coefficient matching Systems with uncertainties. Recently, researchers have utilized
condition satisfied, an AFSMC is proposed to stabilize the uncer- the fuzzy techniques together with the sliding mode control
tain system. The parameters of the output fuzzy sets in the fuzzy for many engineering control systems. Hwaetgal. designed
mechanism are on-line adapted to improve the performance of the a fuzzy controlled low-pass filter to smooth the output from a

fuzzy sliding mode control system. The bounds of the uncertain- _,. .. .
ties are not required to be known in advance for the presented sliding mode controller (SMC) [12]. In [21], the sliding mode

AFSMC. The stability of the fuzzy control system is guaranteed control schemes with fuzzy system are proposed with the uncer-
and the system is shown to be invariant on the sliding surface. tain system function is approximated by the fuzzy system . The
Moreover, the chattering around the sliding surface in the sliding  fuzzy control rules based on the sliding function and the deriva-
mode control can be reduced by the proposed design approach. 4yq of the sliding function are constructed in [11]. It can be seen
Simulation results are included to illustrate the effectiveness of . . . .
the proposed AFSMC. that fuzzy techniques have pgen incorporated with thg sliding
mode control as the fuzzy sliding mode control to alleviate the
chattering in the pure sliding mode control [8], [13], [17], [20].
Also, the utilization of the fuzzy techniques can release the lim-
INCE the time-varying uncertainties (structured or unstrugtation on the known bounds of uncertainties which is required
ured) are inevitable in many practical linear systems, ther the traditional SMC [5]. However, the determination of the
control of the linear systems with time-varying uncertaintigsarameters in the fuzzy SMC is not trivial. The complexity of
has been an important research topic in the engineering atie@ fuzzy SMC is increased quickly as the number of sliding
[15], [19]. In the past several decades, the variable structdtgctions increases.
with sliding mode has been effectively applied to control the In this paper, a new adaptive fuzzy sliding mode controller
systems with uncertainties because of the intrinsic nature (@fFSMC) for linear systems with mismatched time-varying
robustness of the variable structure with sliding mode [2lincertainties is proposed. The coefficient matrix of the sliding
[14], [18], [22]. When the system reaches the sliding modgnction can be designed to satisfy a sliding coefficient
the system with variable structure control is insensitive to theatching condition [1] provided time-varying uncertainties
external disturbances and the variations of the plant parametars bounded. With the sliding coefficient matching condition
[16]. Moreover, the variable structure system can be invariagdtisfied, a stability guaranteed SMC can be constructed if the
to the uncertainties in many cases [10]. However, the slidimgcessary information of the uncertainties is assumed to be
mode control suffers from the problem of chattering, which igvailable. Since the assumptions may be too limited in the real
caused by the high-speed switching of the controller output épplication, a fuzzy SMC is proposed based on the analysis of
order to establish a sliding mode. The undesirable chatterittg system characteristics to release some of the limitations.
may excite the high-frequency system response [3], [7] afithe parameters of the output fuzzy sets in the fuzzy SMC are
result in unpredictable instabilities. Furthermore, most of thsh-line adapted with the approach in [9] extended to minimize
uncertain systems with the traditional sliding mode contrehe decreasing rate of the square of sliding function for the case
with multi-dimensional sliding function vectors. The on-line
Manuscri . o . _ Qarameter adaptive process simplifies the design of the fuzzy
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ficient matching condition are described in Section Il. The (@) (©
reaching mode of the SMC is discussed in Section Ill. The
AFSMC is designed in Section IV. Also in Section IV, the
sliding mode of the proposed AFSMC is guaranteed. Moreover,
the characteristics of the adaptive fuzzy sliding mode control —— . T U > 3 > Ugo
o=a3  a;=0 @ —=aj 9570 af

system on the sliding surface are also described in Section IV.
In Section V, simulation results of the illustrative examples are (b) (d)

presented. Finally, conclusions are presented in Section VI. _ : .
Fig. 3. Input and output membership functions.

Il. THE SySTEM MODEL DESCRIPTION The mismatched time-varying uncertainiy4; (¢) is assumed,

In this section, the uncertain linear system with thas in [15], to have the structure
mismatched uncertainties satisfying the sliding coefficient
matching condition [1] is described. Let the state equation AA(t) = DF(t)E 3)
of the linear system with the only mismatched time-varyin

uncertainties [4]AA(t) be %ith the constant matricd3, F and the uncertain matrik(¢) €

R %72 satisfying
i(t) = (A+ AA(t)z(t) + Bu(t) @ FTW)F(t) <I
where the state vectorigt) € k" and the control input vector wherel is the corresponding identity matrix. Moreover, the rank

isu(t) € R™. The constant matriced, B are assumed to be of £ needs to satisfy
known with proper dimensions. Furthermore, it is assumed that

(A, B) is controllable and3 has full rank. With a nonsingular rank(F) = max{rank(AA;(¢))}.
state transformation matrig, (1) is transformed into the regular .
form The matricesD, F(t) do not have zero column vectors or zero
row vectors. As in our previous paper [1], the sliding surface is
A(t) = [zlgg} _ Tat) designed to be
2
S=Cz(t)=[C1 Cs)z(t)=0 4
= [An A12] |:Zl(t):| + |:AA1(t):| (1) =[Cr Cal(1) (4)
Aa1 Agz | | 22(t) AAs(t) with C, B, being an invertible matrix. In the following, the
0 sliding coefficient matching condition is reviewed and the
x #(t) + [Bz] u(t) 2) system considered in this paper is defined.
Definition 1: (Sliding Coefficient Matching Condition
where [1]): For the uncertainthA;(t) = DF(¢)E and the sliding
) . functionS = Cz(t), the sliding coefficient matching condition
z1(t) € R 2o(t) € R™ is defined as
AA(t) € R(n—m)sn v T T
AAQ(IL) c Rm*n and 32 c Rm*m rank[C ]_ rank[C |E ] (5)
That is

It can be easily seen tha&tA,(t) = By{(t) satisfies the clas-
sical matching condition, since the matri¥% is nonsingular. E=EFE,C. (6)
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Fig. 4. States of the open-loop system{solid line),z. (dash-dot line), and; (dashed line).

Definiton 2: (SCMCS System)or a sliding mode + DF(t)E,Cz(t)) + Ca(A2121(t) + Aaaza(t)
control system with the state equation in (2) and the + Bot(£)2(t) + Bou(t)))
sliding function S = Cz(¢), if the mismatched uncer-

T
tainty AA,(t) = DF(t)E,(F(t)TF(t) < I) satisfies the <5 (CI(A”zl(t)_"A”’TZz(tD +TCZT(A21zl(t)
sliding coefficient matching condition, then the sliding mode + Az2(t))) +1/2 (5 CiDD™Cr S
control system is called a sliding coefficient matched control + STETE,S) + STCoBs&(t)2(t) + ST CoBoul(t).
system (SCMCS). @)

Since A A, (t) satisfies the traditional matching condition, the
[ll. THE REACHING MODE OF THE SLIDING MODE assumption

CONTROL SYSTEM

Itis known that the sliding mode of the uncertain system with 1€(#)=(1)]| < p,  pis aconstant scalar

an SMC [in Fig. 1(2)] is guaranteed if is made as usual [10]. Furthermore, we can assume that
sTs <0, 570 { STCBRE(:(0) < MG 15 #0
Lemma 1 [15]: If F(t)T F(t) < I, then STCyBo¢(t)2(t) = 0, if $=0.
Therefore

20" F(t)yy < a¥x +y'y; Va,y € R™
STS S ST(Cl(Allzl(t) + A1222(t)) + CQ(Alel(t)

[
With Lemma 1 applied, the sliding mode reaching condition + Ann(t)) +1/2 (TSTCIDIT)T%TS
of a system SCMCS becomes LSTETE,S) + pSTCyBy B3 C3 S
T ¢ T o |BFCT| IS
S°5=8 CZ(t) —I—STCQBQU(t), S 75 0
= ST(Cl(AMZl(t) + Alzzz(t) + AAl(t)z(t)) < ST(Cl(AHZl(t) + Alng(t)) + 02(A2121(t)
+ C2(A2121(1) + Az222(1) + Agozo(t)))
+ AAy(t)(t) + Bou(t))) STQS

T r T
= ST(C1(A1121(t) + Aga2(t) TSRS+ IIS]] + 5 CoBault), S 70 (8
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Fig. 5. Performance comparison for stateof the uncertain system with SMC and AFSMC.

where It can be seen from Theorem 1 that the bounds of the mis-
matched uncertaintk A; and the matched uncertaintyA4, are

T ~T T
P=1/2 (CIDD Ci + I, E,,,) necessary to be available in order to design the SMC to make

and the system SCMCS approach the sliding mode. To alleviate the
0= pCoBy BT CT difficulties in the design of SMC for the system SCMCS, the
- ||B2TCZTH ’ AFSMC is designed in the next section.

Since P and Q are Hermitian and positive semidefinite, it is

IV. ADAPTIVE FUzzY SLIDING MODE CONTROLLER (AFSMC)
reasonable to assume that

The block diagram of the uncertain system with the AFSMC
P<~I and Q<el (9) is shown in Fig. 1(b). The AFSMC is a fuzzy SMC with an

. . . L ) _ . adaptive mechanism to adjust the parameters in the fuzzy SMC.
wherel is the identity matrix with the corresponding d|men3|onAS in Fig. 2, the fuzzy SMC is designed to have an equivalent

Thus, unlike the exactly known matricés, £ required in [1], controller and two fuzzy switching controllerBS;, FSs. The

the sliding mode can be guaranteed in Theorem 1 with only tBﬁtputuf of the fuzzy SMC is defined a&»B,)~! times the

known bounds of> and@. _ sum of the equivalent contral, and the outputsi:, ugo of
Theorem 1:For an uncertain system SCMCS, if the OutpU}, o fuzzy switching controllerBS, , FSs, i.e

of the SMC is designed to be
u(t) = —(CyB) "M (C1(Ar1 21 (t) + Ar222(1)) up = (CaBa) " (ufe + g1 + ugea)
+ C2(A2121(t) + Aaaza(t)))
€S

— (C3By)~Y(y8) = (CaBy)™? <_> with
(

151l

Ute = —(Cl(Allzl(t) + A1222(t))
— (CQBQ) 1 kl sgn(S) + ]CQS) (10)

+ Oy (A1 21 (1) + Aszza(t))).

then
. 1) Fuzzy Switching Controllersket the input and switching
STS < ST (—kysgn(S) — ka5) output variableS, us; of the fuzzy switching controlleFS; be
<0; kiky>0; kiks€R (11) simply partitioned into fuzzy set§ (negative)/ (zero), and”

(positive). The triangular-type input membership functions and
and the sliding mode for the variable structure control of thtbe membership functions for output fuzzy singletons are shown
linear uncertain system is guaranteed. ® in Fig. 3(a) and (b). From (8), it is easy to see that in order to
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Fig. 6. Performance comparison for stateof the uncertain system with SMC and AFSMC.

makeSTS < 0 to guarantee the sliding mode of SCMCS, th@he input and output membership functions Fst, are shown

fuzzy rules can be derived as the following. in Fig. 3(c) and (d). Thus, the output of the switching controller
1) If Sis N, thenuy, is P. FS, is
2) If S'is 7, thenug; is Z. 3
3) If S'is P, thenug, is N. Ugs, = Zgleiz (i) . (14)
With the centroid defuzzification technique, the switching I 151l

outputus; of the fuzzy SMC is calculated as . . . . . .
— y 2) On-Line Adaptation Mechanismilo simplify the design

3 3 -1 of the fuzzy switching controllers;} in (13) andg? in (14),
Ugy = Z.%lFil(S) <diag (Z F}(g))) (12) i =123are considered to be a scalar (times an identity ma-
i1 i1 trix). As in Fig. 3, the values of the output fuzzy singletons are

specified to be symmetrical to zefal = —al,a? = —a?).
where F! € {P,Z,N},i = 1,2,3 are input membership Furthermore, it is known that the outputs of the fuzzy switching
functions,g;,i = 1,2,3 are diagonal matrices with the cor-controllers are zero when the system is in the sliding mode

responding values of output fuzzy singletons on the diagon@ = 0). Thus, the outputs of the fuzzy switching functions
cells, anddiag(V') is a matrix function to generate a diagonal's, andFS, can be simplified as
matrix with the elements of the vectdr on the corresponding

_ 1 ye [+ 1

diagonal cells. Note that the denominatorg@f in (12) is equal ugs, = pdiag(sign(S)) F(S5)

to an identity matrix, since the triangular membership functior@d

are designed as in Fig. 3(a). Thug,; can be simplified as ug, = aidiag(sign(S))F2(S)|S])) (15)

3 where F1(S), F?(S/||S||) are column vectors with the mem-
Ufs, = Zg}F}(S). (13) Dbership values of the corresponding fuzzy sets of the elements
i=1 in vectorsS and (S/]|S]]), respectively. Note that} and a?

. N L i
For the switching controlldf'Ss, the input variable is defined as?r[jlgreggtl\(lgs-r)h Z%a;ﬁir::t:g(ssl t)ec()jf t?g L:ﬁ%lsz\':ichz r;g:;?in
(S/||S])). Similar to the design of the fuzzy switching controller S " ' ) -Ning
FSy, the fuzzy rules for the switching controll&S, are the rate of the sliding mode with respect éd(o?), the adaptive

. laws are
following. e
1) If (S/||S||) is N, thenugs is P. sal = - 255
2) If (8/||S|)) is Z, thenuys is Z. dog

3) If (S/||S]]) is P, thenugs is N. = —n ST diag(sign(S))F'(S)
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Fig. 7. Performance comparison for stateof the uncertain system with SMC and AFSMC.

and _ Then, the reaching rate of the sliding mode is
9 asTs .
bag = 502 STS < 8T (PS + ajdiag(sign(S))F'(S))
QS o S
= —np ST diag(sign(S))F? <ﬁ> (16) +57 <W + afdiag(sign(S)) F? s/ S #0.

(18)
whereny, n2 denotes positive learning rate. From (16), it can be. : 1 . .
easily seen thate} andéa? are always negative whehis not IE'S knc;wn that if| S| > 5, then(S) = 1 (see Fig. 3). Since
zero andSaj = da? = 0 when S = 0. This adaptation makes <
the system reach the sliding mode quicker when the sliding max(|PS|) < ymax(]S]).
function S is getting smaller, and the system performance
is then improved. Moreover, the chattering can be alleviatédirthermore, because; is getting more and more neg-
with this adaptation mechanism sined and o2 are small ative with the adaptive law in (16), the terfi” (PS +
when the sliding functiorS is large at the beginning of the cjdiag(sign(S))F'(S)) is going to be negative when
system operation. With this proposed AFSMC, the sliding L
mode of the system SCMCS is guaranteed, as described in |0‘1| >y max(|S]).
Th‘?r?:)rrgn?lz: The uncertain system SCMCS with the AFSMd‘ikeW_ise’ if £2(S/||Sl) = 1, the second term in (18) becomes
can have its sliding mode guaranteed. hegative when
Proof: The output of the AFSMC is S
2] > e max <‘WD .

ug = (CoBa) ™" (ufe + a1 + tgs2) Thus, the reaching rate of the sliding mode is negative in
= —(CyBy) N (C1(Ar121(t) + Apa2o(t)) the case of S| > B and|S/||S||| > B2. If |S| < fi1, then
diag(sign(9))F*(S) = (S/B1). ai is becoming more negative
+ Cy(A t)+ A t Z(81g 1
2(An=(?) z222(t))) by following the adaptive law, and finallyvi /31 | will be larger
+ (CoBy) ™! <a}diag(sign(S))F1(S) than+. In this case

+ o?diag(sign(S))F? <ﬁ>) . (17) ST (PS + ajdiag(sign(S))F'(S)) = ST (P + %) S <.
1
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With the same idea, the second term in (18) can become neagt F ;ﬁs ER

when|S/||S||| < B; and|a3/Bs| > . Again, STS < 0 and

the sliding mode of the uncertain system SCMCS is guarante W W
while |S| < g1 and|S/||S||| < .. It can be easily proven with 5 pn 0 B B S 5, 0 0 B2 B, M
the same approach that the sliding mode of the uncertain syst (a) ©)

SCMCS using the AFSMC is guaranteed in other cases.m

Note that even the bounds and ¢ are used for the proof ‘

e
z LII).Q\!

U:?J
I8

e

of the guarantee of sliding mode,ande are not used for the
design of the proposed AFSMC for SCMCS. Therefore, th

Ugsi Ugso
requirement of the uncertainty bounds is no longer necesse®i=o} -aj=a} 0 @} @]  -of-a}-aj=a} 0 o} o}
for AFSMC. (b) (d)
3) Characteristics of the SCMCS With AFSMC on the _ _ L
Sliding Surface:In Theorem 3, the invariant characteristic oﬁ 912 Membership functions for AFSMC with five rules.
the SCMCS with an AFSMC is described. -
Theorem 3:A linear uncertain system SCMCS (see Seﬁ' ?Ildlng Mode Controller (SMC)
tion I1) with an AFSMC is invariant with respect to time-varying  Since
uncertainties on the sliding surface. [ | o T .
With the same approach as in [1], the proof of Theorem 3 1/2 (ClDD 1 +E, Ea) < 0.05
can be derived. In order to have the adaptive fuzzy sliding coand o
trol system be asymptotically stable on the sliding surface, the pC2By B3 Uy <003 1)
eigenvalues of the matrix |Bfct|| -~
Ay — AxCy Gy the control actionu(t) is designed to be
need to be all n_egatlve. Thl_s_condltlo_n_can be satisfied with u(t) = —(CaBa)~H(C1(A1121(t) + Arazo(t))
the proper selection of the sliding coefficient matfi{1]. The O (A 4
illustrative examples are included in the next section to demon- + Oa(Anz1(t) + Az222(1))) g
stra.te the effectiveness of the adaptive fuzzy sliding controllers — (C3B3) " Y(v8) = (C2By)~t (%)
designed here. 15]]
— (CoBy) ™Y (k1sgn(8S) + k2S)
. .03S8
V. SIMULATION RESULTS = Z[1 0]z — 4z — 0.055 — _s (@2
Let the uncertain linear system be described by (1) with 1S
[-1 2 0 0 with S = Cz,k, = 1, andk; = 0. Note that ifk; > 0, then
A=|11 0 3|, B=|0 the chattering of the control actiar{t) will be increased. Fig. 5
| 0 0 1 1 illustrates how the unstable system is stabilized when the sliding
and mode control is applied.

[0 0.06sin(0.1¢)  0.06sin(0.1¢)
AA(t) = [0 0.03cos(0.1£) 0.03cos(0.1t) | . (19) B. Adaptive Fuzzy Sliding Mode Controller (AFSMC)

K 0 0.1cos(0.1t) The output of the AFSMC is
From (19), it is easy to see thatA(t) is a mismatched time- .
varying uncertainty, and the mismatched uncertaiity; (¢) up = (C2B2)™ (ufe + uge1 + ugs2)
can be represented as = —[l 0]z; — 42 + aldiag(sign(S))F(S)
Adi(t) = DF(t)E , + o2 diag(sign(S)) F2 (ﬁ) 23)
_ {0(.)2 0?1] ; [jﬁigﬁﬂ <0 03 03] (20 _
with the adaptive laws

where

F(t)TF(t) = sin®(0.1t) + cos®(0.1¢) < 1. Saj = —.38T diag(sign(S))F(S)
Thus, the sliding coefficient matri& can be designed to be bai = —.0007ST diag(sign(S))F2 (S/||S|).  (24)

cC=0 11 . .
. he slidi ff'[ . ] hi diti Simul Note that the learning rates are selected with very small values
tp satisfy the sli Ing coe icient matching condition. SIMUla; g e injtia)| learning rates. Then, the learning rates are increased
tion results are provided for the open-loop system, closed-lo

lidi q I d adaotive f lidi reduce the overshoot and the rising time of the control system.
sliding mode control system, and adaptive fuzzy sliding mo le(the control action is too large and is over the limit) or (the

control §ystem, respec’_uv_dy. Fig. 4 _|Ilustrates that the Open'logﬂattering of the control action is large) then the learning rates
uncertain system with initial conditions are decreased. Since the parametgref the input member-

z(0)=1[0.5 025 0.01]" ship functions [see Fig. 3(a)] has the effect of a boundary layer,
is unstable. (1 is assigned to be a small numb@r = 0.1. Also, 3, = 1



292 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

0.7 T T T T T T T T T

0.6 - .

o
n

0.4

for AFSMC with 3 and 5 rules
o
)

1

state X

e
o

0.1

0 2 4 6 8 10 12 14 16 18 20
time

Fig. 13. Performance of the AFSMC with three rules (solid line) and five rules (dashed line).

is designed becauseax(.S/||S||) = 1. The performance com- is adopted for simulations. Likewis&,A(t) is easy to be shown
parisons for each stafe, x2, x3) of the uncertain system with as a mismatched time-varying uncertainty, and the mismatched
SMC and AFSMC are provided in Figs. 5-7. In Fig. 5, it isincertaintyA A, (¢) can be partitioned as
shown that the uncertain system with AFSMC has better per-
formance than the uncertain system with the SMC in the sens@Al(t) = DF)E
of smaller undershoot and shorter rising time. The parameters _ {0-4 0 } ) {0-5v1(t)} (03 03 03] (26)
1 2 . . . . .. - = . . .
ot anda? are indicated in Fig. 8 to empirically conform so that 0 02 0.5v2(1)
the sliding mode is guaranteed. The control actiopsndv of
AFSMC and SMC are illustrated in Fig. 9(a) and (c). The con-
trol actions close to the steady state for the system with AFSMC F()TF(t) = 0.25v1(t)® + 0.25v5(t)? < 1.
and SMC are emphasized in Fig. 9(b) and (d). It can be seen in o o ) )
Fig. 9(b) and (d) that the chattering is reduced for the uncertdif®™M (26), the sliding coefficient matrik’ can be designed to
system with the AFSMC. Moreover, it is easy to verify that thBaVve

reduced system matrix on the sliding surface is C=[1 1 1]
1 9 and the sliding coefficient matching condition is satisfied. Then,
Ay — ApCyioy = { 1 _3] the control actionu(t¢) for SMC becomes
0.03S

which is stable.
With the same adaptive laws in (24)! anda? in AFSMC are
adjusted to be-3.9945 and-0.0096, respectively. The perfor-
mance comparison for statg between SMC and AFSMC is
shown in Fig. 10, and the control actions of SMC and AFSMC
are shown in Fig. 11. From Figs. 10 and 11, AFSMC is seen to
have better performance than SMC.

C. Simulations With Another Type of Uncertainties

Let v (¢t) andws(t) be two uncorrelated and uniformally dis-
tributed random processes with (¢)| < 1,4 = 1,2. Then, an-
other type of uncertainty matrid A(¢)

D. An Example of AFSMC With More Than Three Rules
0.06v1(t) 0.06v1(t)  0.06v1(t) To indicate the effect of the number of fuzzy rules on the per-
(

AA(t) = | 0.03v9(t) 0.03v2(t)  0.03va(t) (25) formance of the AFSMC, an example is implemented. In this
0 0 0.1 cos(0.1¢) example, the input and output spaces of the fuzzy switching



TAO et al: AFSMC FOR LINEAR SYSTEMS LINEAR SYSTEMS

controllers are partitioned as in Fig. 12. Thus, five rules are con-[g]
structed for each switching controller. With the adaptive laws

[9]

Saj = —.38T diag(sign(9))F} (S)
day = —.38T diag(sign(S))F; (S) [10]
dat = —.0007ST diag(sign(S))F? <ﬁ> [11]
dai = —.0007ST diag(sign(S))Fy <ﬁ> (27) 12
_ , [13]

the parameters are adjusted to the following values:
1 1 2 2 [14]
[af o3 of 3] =[-4.03 —0.1453 —0.0098 0].

[15]

For simplicity, only the performance comparison of the state
1 between the AFSMC with three and five rules is shown in[16]
Fig. 13. From Fig. 13, it can be seen that the performance %7]
AFSMC with more rules is not necessarily better. Moreover,
the forms of the membership values are more complicated for
the AFSMC with more than three rules. Thus, to showing thd'®
guaranty of the sliding mode of the AFSMC with more than[ig)
three rules is not as easy as in Section IV. However, we would
not claim that the AFSMC with three rules is the best structure
that AFSMC can have. [20]

(21]

VI. CONCLUSION [22]

In this paper, an AFSMC is proposed for the linear systems
with mismatched time-varying uncertainties. The sliding coef-
ficient matching condition is provided. The sliding mode of the
uncertain system with the proposed AFSMC is guaranteed. The
requirement of the available uncertainty bounds for the design
of the traditional SMC is not necessary for the AFSMC. Th
system is shown to be invariant and stable on the sliding si
face when the new matching condition is matched. Furthermo
the chattering around the sliding surface for the adaptive fuz
sliding mode control is reduced. Simulation results are includ
to illustrate the effectiveness of the proposed SMC.

REFERENCES

293

J. S. Glower and J. Munighan, “Designing fuzzy controllers from a vari-
able structures standpointBEE Trans. Fuzzy Sysvol. 5, pp. 138-144,
Feb. 1997.

S.J.Huang and K. S. Huang, “An adaptive fuzzy sliding-mode controller
for servomechanism disturbance rejectid&EE Trans. Ind. Electron.
vol. 48, pp. 845-852, Aug. 2001.

J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A
survey,”|IEEE Trans. Ind. Electronvol. 40, pp. 2-21, Feb. 1993.

G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design
for nonlinear systems,Fuzzy Sets Systwol. 48, no. 3, pp. 279-287,
1992.

Y. R. Hwang and M. Tomizuka, “Fuzzy smoothing algorithms for vari-
able structure systemslEEE Trans. Fuzzy Systol. 2, pp. 227-284,
Nov. 1994.

C.L.Hwang and C. Y. Kuo, “A stable adaptive fuzzy sliding mode con-
trol for affine nonlinear systems with application to four-bar linkage sys-
tems,”IEEE Trans. Fuzzy Systol. 9, pp. 238-252, Apr. 2001.

T. T. Lee and K. Y. Tu, “Design of a fuzzy logic controller as a suction
controller,” Fuzzy Sets Systol. 91, no. 3, pp. 305-317, 1997.

J. C. Shen, “Designing stabilising controllers and observers for uncertain
linear systems with time-varying delaytoc. Inst. Elect. Engvol. 144,

pt. D, pp. 331-334, July 1997.

J. J. Slotine and W. LiApplied Nonlinear Control Englewood Cliffs,

NJ: Prentice-Hall, 1991.

F.C.Sun, Z.Q. Sun, and G. Feng, “An adaptive fuzzy controller based on
sliding mode for robot manipulatord EEE Trans. Syst., Man, Cybern.
vol. 29, pp. 661-667, Oct. 1999.

] V. I. Utkin, “Variable structure systems with sliding modedEEE

Trans. Automat. Contrvol. AC-22, pp. 212-221, Apr. 1977.

G. Wheeler, C. Y. Su, and Y. Stepanenko, “A sliding mode controller
with improved adaptation laws for the upper bounds on the norm of un-
certainties,” irProc. Amer. Control ConfAlbuquerque, NM, June 1997,
pp. 2133-2137.

R. R. Yager and D. P. File\Essentials of Fuzzy Modeling and Con-
trol. New York: Wiley, 1994.

B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear
system,”IEEE Trans. Fuzzy Systol. 6, no. 2, pp. 315-321, 1998.

K. D. Young and U. Ozguner, “Sliding mode design for robust linear
optimal control,”Automaticavol. 33, no. 7, pp. 1313-1323, 1997.

C. W. Tao received the B.S. degree in electrical
engineering from National Tsing Hua University,
Hsinchu, Taiwan, R.O.C., in 1984, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of New Mexico, Albuquerque, in 1989
and 1992, respectively.

Currently, he is an Associate Professor with the
Department of Electrical Engineering, National
I-Lan Institute of Technology, I-Lan, Taiwan. His
current research is on the fuzzy systems including
fuzzy control systems and fuzzy neural image

processing.

Dr. Tao is the Associate Editor of the IEEERANSACTIONS ON SYSTEMS,
[1] M.L.Chan,C.W. Tao, and T. T. Lee, “Sliding mode controller for lineatMMAN, AND CYBERNETICS

systems with mismatched time-varying uncertaintidsPranklin Inst,
vol. 337, pp. 105-115, 2000.
[2] S. P. Chan, “An approach to perturbation compensation for variable
structure systemsAutomaticavol. 32, no. 3, pp. 469-473, 1996.
[3] F.J.Chang, S.H. Twu, and S. Chang, “Adaptive chattering alleviation of
variable structure systems controbfoc. Inst. Elect. Eng. Dvol. 137,
pp. 31-39, Jan. 1990.
H. H. Choi, “An explicit formula of linear sliding surfaces for a class
of uncertain dynamic systems with mismatched uncertaintigstb-
matica vol. 34, no. 8, pp. 1015-1020, 1998.
F. Da, “Decentralized sliding mode adaptive controller design based
fuzzy neural networks for interconnected uncertain nonlinear system
IEEE Trans. Neural Networksol. 11, pp. 1471-1480, Nov. 2000.
D. Driankov, H. Hellendoorn, and M. Reinfranin Introduction to
Fuzzy Contral New York: Springer-Verlag, 1993.
M. D. Espana, R. S. Ortega, and J. J. Espino, “Variable structure syste
with chattering reduction: A microprocessor-based desigyatdmatica
vol. 20, no. 1, pp. 133-134, 1984.

(4]

(5]

(6]
(71

Mei-Lang Chan received the B.E. degree from the
Department of Industrial Education, National Taiwan
Normal University, Taipei, Taiwan, R.O.C., in 1979,
and the M.S. and Ph.D. degrees from the Department
of Electrical Engineering, National Taiwan Univer-
sity of Science and Technology, Taipei, in 1992 and
2000, respectively.

He was a Lecturer from 1992 to 2000. He is now
an Associate Professor at National I-Lan Institute of
Technology, I-Lan, Taiwan. His current research in-
terests include sliding mode control, adaptive control,

and fuzzy systems.



294 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Tsu-Tian Lee (M'87-SM'89-F'97) was born in
Taipei, Taiwan, R.O.C., in 1949. He received the
B.S. degree in control engineering from the National
Chiao Tung University (NCTU), Hsinchu, Taiwan,
= in 1970, and the M.S. and Ph.D. degrees in electrical
a . engineering from the University of Oklahoma,
- Norman, in 1972 and 1975, respectively.
w In 1975, he was appointed Associate Professor and
in 1978 Professor and Chairman of the Department of
’ Control Engineering at NCTU. In 1981, he became
Professor and Director of the Institute of Control En-
gineering, NCTU. In 1986, he was a Visiting Professor and in 1987, a Full Pro-
fessor of Electrical Engineering at University of Kentucky, Lexington. In 1990,
he was a Professor and Chairman of the Department of Electrical Engineering,
National Taiwan University of Science and Technology (NTUST). In 1998, he
became the Professor and Dean of the Office of Research and Development,
NTUST. Since 2000, he has been with the Department of Electrical and Con-
trol Engineering, NCTU, where he is now a Chair Professor. He has published
more than 180 refereed journal and conference papers in the areas of automatic
control, robotics, fuzzy systems, and neural networks. His current research in-
volves motion planning, fuzzy and neural control, optimal control theory and
application, and walking machines.

Prof. Lee received the Distinguished Research Award from National Science
Council, R.O.C., in 1991-1992, 1993-1994, 1995-1996, and 1997-1998, and
the Academic Achievement Award in Engineering and Applied Science from
the Ministry of Education, R.O.C., in 1998. He was elected to the grade of
IEEE Fellow in 1997 and IEE Fellow in 2000. He became a Fellow of New
York Academy of Sciences (NYAS) in 2002. His professional activities include
serving on the Advisory Board of Division of Engineering and Applied Sci-
ence, National Science Council, serving as the Program Director, Automatic
Control Research Program, National Science Council, and serving as an Ad-
visor of Ministry of Education, Taiwan, and numerous consulting positions. He
has been actively involved in many IEEE activities. He has served as Member of
Technical Program Committee and Member of Advisory Committee for many
IEEE sponsored international conferences. He is now a Member of the Admin-
istrative Committee of the IEEE Systems, Man, and Cybernetics Society.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


