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Adaptive Fuzzy Sliding Mode Controller for
Linear Systems With Mismatched

Time-Varying Uncertainties
C. W. Tao, Mei-Lang Chan, and Tsu-Tian Lee, Fellow, IEEE

Abstract—A new design approach of an adaptive fuzzy sliding
mode controller (AFSMC) for linear systems with mismatched
time-varying uncertainties is presented in this paper. The coef-
ficient matrix of the sliding function can be designed to satisfy
a sliding coefficient matching condition provided time-varying
uncertainties are bounded. With the sliding coefficient matching
condition satisfied, an AFSMC is proposed to stabilize the uncer-
tain system. The parameters of the output fuzzy sets in the fuzzy
mechanism are on-line adapted to improve the performance of the
fuzzy sliding mode control system. The bounds of the uncertain-
ties are not required to be known in advance for the presented
AFSMC. The stability of the fuzzy control system is guaranteed
and the system is shown to be invariant on the sliding surface.
Moreover, the chattering around the sliding surface in the sliding
mode control can be reduced by the proposed design approach.
Simulation results are included to illustrate the effectiveness of
the proposed AFSMC.

I. INTRODUCTION

SINCE the time-varying uncertainties (structured or unstruc-
tured) are inevitable in many practical linear systems, the

control of the linear systems with time-varying uncertainties
has been an important research topic in the engineering area
[15], [19]. In the past several decades, the variable structure
with sliding mode has been effectively applied to control the
systems with uncertainties because of the intrinsic nature of
robustness of the variable structure with sliding mode [2],
[14], [18], [22]. When the system reaches the sliding mode,
the system with variable structure control is insensitive to the
external disturbances and the variations of the plant parameters
[16]. Moreover, the variable structure system can be invariant
to the uncertainties in many cases [10]. However, the sliding
mode control suffers from the problem of chattering, which is
caused by the high-speed switching of the controller output in
order to establish a sliding mode. The undesirable chattering
may excite the high-frequency system response [3], [7] and
result in unpredictable instabilities. Furthermore, most of the
uncertain systems with the traditional sliding mode control
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techniques require that the uncertainties satisfy the matching
conditions. This would limit the application of the sliding
mode control.

The fuzzy techniques [6] have been widely applied to the
systems with uncertainties. Recently, researchers have utilized
the fuzzy techniques together with the sliding mode control
for many engineering control systems. Hwanget al. designed
a fuzzy controlled low-pass filter to smooth the output from a
sliding mode controller (SMC) [12]. In [21], the sliding mode
control schemes with fuzzy system are proposed with the uncer-
tain system function is approximated by the fuzzy system . The
fuzzy control rules based on the sliding function and the deriva-
tive of the sliding function are constructed in [11]. It can be seen
that fuzzy techniques have been incorporated with the sliding
mode control as the fuzzy sliding mode control to alleviate the
chattering in the pure sliding mode control [8], [13], [17], [20].
Also, the utilization of the fuzzy techniques can release the lim-
itation on the known bounds of uncertainties which is required
for the traditional SMC [5]. However, the determination of the
parameters in the fuzzy SMC is not trivial. The complexity of
the fuzzy SMC is increased quickly as the number of sliding
functions increases.

In this paper, a new adaptive fuzzy sliding mode controller
(AFSMC) for linear systems with mismatched time-varying
uncertainties is proposed. The coefficient matrix of the sliding
function can be designed to satisfy a sliding coefficient
matching condition [1] provided time-varying uncertainties
are bounded. With the sliding coefficient matching condition
satisfied, a stability guaranteed SMC can be constructed if the
necessary information of the uncertainties is assumed to be
available. Since the assumptions may be too limited in the real
application, a fuzzy SMC is proposed based on the analysis of
the system characteristics to release some of the limitations.
The parameters of the output fuzzy sets in the fuzzy SMC are
on-line adapted with the approach in [9] extended to minimize
the decreasing rate of the square of sliding function for the case
with multi-dimensional sliding function vectors. The on-line
parameter adaptive process simplifies the design of the fuzzy
sliding mode control system. The stability of the fuzzy control
system is guaranteed and the system is shown to be invariant
on the sliding surface. Moreover, the chattering around the
sliding surface in the sliding mode control can be reduced by
the proposed design approach. Simulation results are included
to illustrate the effectiveness of the proposed AFSMC.

The remainder of this paper is organized as follows. The
system model considered in this paper and the sliding coef-
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Fig. 1. Block diagrams of (a) the sliding mode control system and (b) the
adaptive fuzzy sliding mode control system.

ficient matching condition are described in Section II. The
reaching mode of the SMC is discussed in Section III. The
AFSMC is designed in Section IV. Also in Section IV, the
sliding mode of the proposed AFSMC is guaranteed. Moreover,
the characteristics of the adaptive fuzzy sliding mode control
system on the sliding surface are also described in Section IV.
In Section V, simulation results of the illustrative examples are
presented. Finally, conclusions are presented in Section VI.

II. THE SYSTEM MODEL DESCRIPTION

In this section, the uncertain linear system with the
mismatched uncertainties satisfying the sliding coefficient
matching condition [1] is described. Let the state equation
of the linear system with the only mismatched time-varying
uncertainties [4], be

(1)

where the state vector is and the control input vector
is . The constant matrices are assumed to be
known with proper dimensions. Furthermore, it is assumed that

is controllable and has full rank. With a nonsingular
state transformation matrix, (1) is transformed into the regular
form

(2)

where

and

It can be easily seen that satisfies the clas-
sical matching condition, since the matrix is nonsingular.

Fig. 2. Stucture of fuzzy sliding mode controller.

Fig. 3. Input and output membership functions.

The mismatched time-varying uncertainty is assumed,
as in [15], to have the structure

(3)

with the constant matrices and the uncertain matrix
satisfying

where is the corresponding identity matrix. Moreover, the rank
of needs to satisfy

The matrices do not have zero column vectors or zero
row vectors. As in our previous paper [1], the sliding surface is
designed to be

(4)

with being an invertible matrix. In the following, the
sliding coefficient matching condition is reviewed and the
system considered in this paper is defined.

Definition 1: (Sliding Coefficient Matching Condition
[1]): For the uncertainty and the sliding
function , the sliding coefficient matching condition
is defined as

(5)

That is

(6)
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Fig. 4. States of the open-loop system:x (solid line),x (dash-dot line), andx (dashed line).

Definition 2: (SCMCS System):For a sliding mode
control system with the state equation in (2) and the
sliding function , if the mismatched uncer-
tainty satisfies the
sliding coefficient matching condition, then the sliding mode
control system is called a sliding coefficient matched control
system (SCMCS).

III. T HE REACHING MODE OF THESLIDING MODE

CONTROL SYSTEM

It is known that the sliding mode of the uncertain system with
an SMC [in Fig. 1(a)] is guaranteed if

Lemma 1 [15]: If , then

With Lemma 1 applied, the sliding mode reaching condition
of a system SCMCS becomes

(7)

Since satisfies the traditional matching condition, the
assumption

is a constant scalar

is made as usual [10]. Furthermore, we can assume that

if

if

Therefore

(8)
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Fig. 5. Performance comparison for statex of the uncertain system with SMC and AFSMC.

where

and

Since and are Hermitian and positive semidefinite, it is
reasonable to assume that

and (9)

where is the identity matrix with the corresponding dimension.
Thus, unlike the exactly known matrices required in [1],
the sliding mode can be guaranteed in Theorem 1 with only the
known bounds of and .

Theorem 1: For an uncertain system SCMCS, if the output
of the SMC is designed to be

(10)

then

(11)

and the sliding mode for the variable structure control of the
linear uncertain system is guaranteed.

It can be seen from Theorem 1 that the bounds of the mis-
matched uncertainty and the matched uncertainty are
necessary to be available in order to design the SMC to make
the system SCMCS approach the sliding mode. To alleviate the
difficulties in the design of SMC for the system SCMCS, the
AFSMC is designed in the next section.

IV. A DAPTIVE FUZZY SLIDING MODE CONTROLLER(AFSMC)

The block diagram of the uncertain system with the AFSMC
is shown in Fig. 1(b). The AFSMC is a fuzzy SMC with an
adaptive mechanism to adjust the parameters in the fuzzy SMC.
As in Fig. 2, the fuzzy SMC is designed to have an equivalent
controller and two fuzzy switching controllers, . The
output of the fuzzy SMC is defined as times the
sum of the equivalent control and the outputs of
the fuzzy switching controllers , i.e.,

with

1) Fuzzy Switching Controllers:Let the input and switching
output variable of the fuzzy switching controller be
simply partitioned into fuzzy sets (negative), (zero), and
(positive). The triangular-type input membership functions and
the membership functions for output fuzzy singletons are shown
in Fig. 3(a) and (b). From (8), it is easy to see that in order to
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Fig. 6. Performance comparison for statex of the uncertain system with SMC and AFSMC.

make to guarantee the sliding mode of SCMCS, the
fuzzy rules can be derived as the following.

1) If is , then is .
2) If is , then is .
3) If is , then is .
With the centroid defuzzification technique, the switching

output of the fuzzy SMC is calculated as

(12)

where are input membership
functions, are diagonal matrices with the cor-
responding values of output fuzzy singletons on the diagonal
cells, and is a matrix function to generate a diagonal
matrix with the elements of the vector on the corresponding
diagonal cells. Note that the denominator of in (12) is equal
to an identity matrix, since the triangular membership functions
are designed as in Fig. 3(a). Thus, can be simplified as

(13)

For the switching controller , the input variable is defined as
. Similar to the design of the fuzzy switching controller

, the fuzzy rules for the switching controller are the
following.

1) If is , then is .
2) If is , then is .
3) If is , then is .

The input and output membership functions for are shown
in Fig. 3(c) and (d). Thus, the output of the switching controller

is

(14)

2) On-Line Adaptation Mechanism:To simplify the design
of the fuzzy switching controllers, in (13) and in (14),

are considered to be a scalar (times an identity ma-
trix). As in Fig. 3, the values of the output fuzzy singletons are
specified to be symmetrical to zero .
Furthermore, it is known that the outputs of the fuzzy switching
controllers are zero when the system is in the sliding mode

. Thus, the outputs of the fuzzy switching functions
and can be simplified as

and

(15)

where are column vectors with the mem-
bership values of the corresponding fuzzy sets of the elements
in vectors and , respectively. Note that and
are negative. The parameter of the fuzzy switching con-
troller is on-line adjusted. To minimize the reaching
rate of the sliding mode with respect to , the adaptive
laws are
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Fig. 7. Performance comparison for statex of the uncertain system with SMC and AFSMC.

and

(16)

where denotes positive learning rate. From (16), it can be
easily seen that and are always negative whenis not
zero and when . This adaptation makes
the system reach the sliding mode quicker when the sliding
function is getting smaller, and the system performance
is then improved. Moreover, the chattering can be alleviated
with this adaptation mechanism since and are small
when the sliding function is large at the beginning of the
system operation. With this proposed AFSMC, the sliding
mode of the system SCMCS is guaranteed, as described in
Theorem 2.

Theorem 2: The uncertain system SCMCS with the AFSMC
can have its sliding mode guaranteed.

Proof: The output of the AFSMC is

(17)

Then, the reaching rate of the sliding mode is

(18)

It is known that if then (see Fig. 3). Since

Furthermore, because is getting more and more neg-
ative with the adaptive law in (16), the term

is going to be negative when

Likewise, if , the second term in (18) becomes
negative when

Thus, the reaching rate of the sliding mode is negative in
the case of and . If , then

. is becoming more negative
by following the adaptive law, and finally will be larger
than . In this case
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Fig. 8. Parameters� and� .

Fig. 9. (a) Control action of AFSMC. (b) Control action of AFSMC (close to steady state). (c) Control action of SMC. (d) Control action of SMC (close to steady
state).
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Fig. 10. Performance comparison for statex of the uncertain system with SMC and AFSMC.

Fig. 11. (a) Control action of AFSMC. (b) Control action of AFSMC (close to steady state). (c) Control action of SMC. (d) Control action of SMC (close to
steady state).
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With the same idea, the second term in (18) can become neagtive
when and . Again, and
the sliding mode of the uncertain system SCMCS is guaranteed
while and . It can be easily proven with
the same approach that the sliding mode of the uncertain system
SCMCS using the AFSMC is guaranteed in other cases.

Note that even the bounds and are used for the proof
of the guarantee of sliding mode,and are not used for the
design of the proposed AFSMC for SCMCS. Therefore, the
requirement of the uncertainty bounds is no longer necessary
for AFSMC.

3) Characteristics of the SCMCS With AFSMC on the
Sliding Surface: In Theorem 3, the invariant characteristic of
the SCMCS with an AFSMC is described.

Theorem 3: A linear uncertain system SCMCS (see Sec-
tion II) with an AFSMC is invariant with respect to time-varying
uncertainties on the sliding surface.

With the same approach as in [1], the proof of Theorem 3
can be derived. In order to have the adaptive fuzzy sliding con-
trol system be asymptotically stable on the sliding surface, the
eigenvalues of the matrix

need to be all negative. This condition can be satisfied with
the proper selection of the sliding coefficient matrix[1]. The
illustrative examples are included in the next section to demon-
strate the effectiveness of the adaptive fuzzy sliding controllers
designed here.

V. SIMULATION RESULTS

Let the uncertain linear system be described by (1) with

and

(19)

From (19), it is easy to see that is a mismatched time-
varying uncertainty, and the mismatched uncertainty
can be represented as

(20)

where

Thus, the sliding coefficient matrix can be designed to be

to satisfy the sliding coefficient matching condition. Simula-
tion results are provided for the open-loop system, closed-loop
sliding mode control system, and adaptive fuzzy sliding mode
control system, respectively. Fig. 4 illustrates that the open-loop
uncertain system with initial conditions

is unstable.

Fig. 12. Membership functions for AFSMC with five rules.

A. Sliding Mode Controller (SMC)

Since

and

(21)

the control action is designed to be

(22)

with and . Note that if , then
the chattering of the control action will be increased. Fig. 5
illustrates how the unstable system is stabilized when the sliding
mode control is applied.

B. Adaptive Fuzzy Sliding Mode Controller (AFSMC)

The output of the AFSMC is

(23)

with the adaptive laws

(24)

Note that the learning rates are selected with very small values
as the initial learning rates. Then, the learning rates are increased
to reduce the overshoot and the rising time of the control system.
If (the control action is too large and is over the limit) or (the
chattering of the control action is large) then the learning rates
are decreased. Since the parametersof the input member-
ship functions [see Fig. 3(a)] has the effect of a boundary layer,

is assigned to be a small number . Also,
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Fig. 13. Performance of the AFSMC with three rules (solid line) and five rules (dashed line).

is designed because . The performance com-
parisons for each state of the uncertain system with
SMC and AFSMC are provided in Figs. 5–7. In Fig. 5, it is
shown that the uncertain system with AFSMC has better per-
formance than the uncertain system with the SMC in the sense
of smaller undershoot and shorter rising time. The parameters

and are indicated in Fig. 8 to empirically conform so that
the sliding mode is guaranteed. The control actionsand of
AFSMC and SMC are illustrated in Fig. 9(a) and (c). The con-
trol actions close to the steady state for the system with AFSMC
and SMC are emphasized in Fig. 9(b) and (d). It can be seen in
Fig. 9(b) and (d) that the chattering is reduced for the uncertain
system with the AFSMC. Moreover, it is easy to verify that the
reduced system matrix on the sliding surface is

which is stable.

C. Simulations With Another Type of Uncertainties

Let and be two uncorrelated and uniformally dis-
tributed random processes with . Then, an-
other type of uncertainty matrix

(25)

is adopted for simulations. Likewise, is easy to be shown
as a mismatched time-varying uncertainty, and the mismatched
uncertainty can be partitioned as

(26)

where

From (26), the sliding coefficient matrix can be designed to
have

and the sliding coefficient matching condition is satisfied. Then,
the control action for SMC becomes

With the same adaptive laws in (24), and in AFSMC are
adjusted to be 3.9945 and 0.0096, respectively. The perfor-
mance comparison for state between SMC and AFSMC is
shown in Fig. 10, and the control actions of SMC and AFSMC
are shown in Fig. 11. From Figs. 10 and 11, AFSMC is seen to
have better performance than SMC.

D. An Example of AFSMC With More Than Three Rules

To indicate the effect of the number of fuzzy rules on the per-
formance of the AFSMC, an example is implemented. In this
example, the input and output spaces of the fuzzy switching
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controllers are partitioned as in Fig. 12. Thus, five rules are con-
structed for each switching controller. With the adaptive laws

(27)

the parameters are adjusted to the following values:

For simplicity, only the performance comparison of the state
between the AFSMC with three and five rules is shown in

Fig. 13. From Fig. 13, it can be seen that the performance of
AFSMC with more rules is not necessarily better. Moreover,
the forms of the membership values are more complicated for
the AFSMC with more than three rules. Thus, to showing the
guaranty of the sliding mode of the AFSMC with more than
three rules is not as easy as in Section IV. However, we would
not claim that the AFSMC with three rules is the best structure
that AFSMC can have.

VI. CONCLUSION

In this paper, an AFSMC is proposed for the linear systems
with mismatched time-varying uncertainties. The sliding coef-
ficient matching condition is provided. The sliding mode of the
uncertain system with the proposed AFSMC is guaranteed. The
requirement of the available uncertainty bounds for the design
of the traditional SMC is not necessary for the AFSMC. The
system is shown to be invariant and stable on the sliding sur-
face when the new matching condition is matched. Furthermore,
the chattering around the sliding surface for the adaptive fuzzy
sliding mode control is reduced. Simulation results are included
to illustrate the effectiveness of the proposed SMC.
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