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Abstract

We consider the Hessian matrices of simple liquid systems as a new type of random
matrices. By numerically comparing the distribution of the nearest-neighbor level spacing of
the eigenvalues with the Wigner’s surmise, we found that the level statistics is akin to the
generic Gaussian Orthogonal Ensemble (GOE), in spite of the constraints due to the summation
rules and the presence of the correlation among the components inherited with the underlying
spatial con6guration. The distribution is in good agreement with the Wigner’s prediction if only
the extended eigenstates are considered. Indeed, our theoretical analysis shows that the ensemble
of real symmetric matrices with full randomness, but constrained by the summation rules, is
equivalent to the GOE with matrices of the rank lowered by the spatial dimension.
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In characterizing the spatially disordered condensed systems, such as the amorphous
solids and the liquids, the methods of normal-mode analysis on the Hessian of the
potential energy surface has attracted much attention recently [1–5]. The approach is
analogous to its counterpart for the crystalline solid in that it traces the origin of the
physical properties to the collective motion in the system. The spatial disorder, on the
other hand, raises the issues on the level statistics [2,6] of the collections of random
Hessian matrices. The matrices possess the correlations inherited from the underlying
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spatial con6guration [5,7] and are also constrained by the summation rules, as the result
of the conservation of momentum [8], which consequently produce zero eigenvales in
number of the spatial dimension.
According to the theory of random matrices addressed by Wigner and Dyson [9],

a collection of real symmetric matrices with full randomness can be modeled by the
Gaussian Orthogonal Ensemble (GOE), where the only level correlation is imposed by
the transformation symmetry within the ensemble. It is conjectured in various physical
problems that the symmetry remains the dominant factor on the local properties such
as the nearest-neighbor level spacing (LS) distribution in the presence of additional
correlations. For random Hessian matrices, in recent numerical calculations of the LS
distribution done for the frequency spectra [10], we have found the evidence for the
type of GOE. Since the matrices are constrained by the summation rules, it deserves
some clari6cation because the rules in general are not preserved under the similarity
transformation applied by the orthogonal matrices. In this paper, we 6rst present our
numerical data for the LS distribution of the eigenvalue spectra for the Lennard Jones
liquid, obtained from the molecular dynamics simulation [11]. The LS distribution for
the levels in regions of extended states are shown to agree with Wigner’s surmise.
We, then, summarize our recent explanation [13] on how the summation rules can be
released so that the conservation-constrained random matrices can be considered within
the context of GOE.
The simplest version of the summation rules requires a vanishing total sum in

each row of a real symmetric matrix. For the Hessian matrix H of a system of N
pairwise-interacting identical particles, the summation rules are contained by the ex-
pression of its N 2 blocks of 3× 3 matrices [1]

Hij =−T (̃rij) for the oK-diagonal block (i �= j) ;
∑
k �=i
T (̃rik) for the diagonal block (i = j) ; (1)

16 i; j6N , determined by the pair interaction potential 	(r) and varies with the
relative position vector r̃ij = r̃i − r̃j via the tensor T (̃r) [1]. Eq. (1) states that the
diagonal blocks of H compensate the total oK-diagonal blocks in the same row of
blocks.
Fig. 1 demonstrates the using of the quantity [11]

R�N =


 N∑
j=1

| ẽ �j |4



−1

(2)

to estimate the participating particle number of the eigen state � by summing over
the fourth power of the contribution by the individual particles to the unit eigenvector
(̃e �1 ; : : : ; ẽ

�
N ). By analyzing RN , averaged over states with the same eigenvalues, and

considering its dependence on the size of the system [11,12], the region of extended
states can be distinguished from the non-extended states (Figs. 1 and 2). We have
carried out the LS calculation over the selected regions, equivalent to the selection of
windows of speci6c length scales [2]. While the LS distribution of the whole spectrum
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Fig. 1. The participating particle number RN vs. eigenvalue � averaged over 100 con6gurations for two
Lennard Jones Luid systems with particle number N = 750 (—) and N = 375 (· · ·), respectively. Both
systems are at the reduced temperature T∗ = 0:83 and the reduced density �∗ = 0:972. Their densities of
states, plotted in the inset, are virtually identical. (Note that RN is close to the size N of the systems in the
regions not too far away from the zero eigenvalue, indicating the motion of each eigenstate in these regions
is shared by most of the particles of the system.) It is in contrast to the situation in the region of localized
states over the two ends of the eigenvalue axis, where RN is basically independent of N .

greatly deviates from the Wigner’s surmise, with the presence of an exponential tail
in the larger separation regime, the LS distribution in the regions of extended states
agrees with Wigner’s distribution (Fig. 3). The LS considered in each latter region is
locally scaled via the unfolding procedure [6,14]

si =
∫ �i+1

�i
D(�) d� ; (3)

where the quantity
∫ �
−∞ D(�) d� is calculated by taking the smooth part of the cumu-

lative spectrum obtained from the raw data.
Now, we turn to the explanation why the summation rules may not cause a funda-

mental change in local properties. For 3N×3N real symmetric matrix M, the condition
of GOE allows its diagonalization matrix K in

M = K diag(�1; �2; �3; : : : ; �3N )Kt (4)

to possess the full O(3N) symmetry. Taking into account the matrix properties of T (̃r)
in Eq. (1), the theoretical issue is addressed to consider those 3N ×3N real symmetric
matrices M(C) constrained by the ‘block summation rules’ [13]:

m(C)(i;�)(i; �) =−
∑
j �=i
m(C)(i;�)( j; �) ; (5)
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Fig. 2. The ratio between the participating particle number of the two systems depicted in Fig. 1. The ratio is
close to that between the sizes of the systems for the extended states, which have their eigenvalues in between
−36:0 and −4:0 (marked by the pair of vertical broken lines), and in between 25.0 and 484.0 (marked by
the two dashed lines). The inset shows the plot for the systems at T∗ = 1:4 and �∗ = 0:4 (—); 0:6 (· · ·)
and 0:8 (---), respectively. It indicates the extended states could become rare at low density.
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Fig. 3. Level spacing distributions with the unfolding procedure for the extended states with positive eigen-
values (©) and that for the extended states with negative eigenvalues ( ) at T∗ = 0:83; �∗ = 0:972 for
N =750. Both are very close to Wigner’s surmise (—). The dashed line is the LS distribution for all states
without unfolding the spectra. The three zero modes are excluded and 100 con6gurations are averaged in
all cases.
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where we adapt the notation (i; �) ≡ 3(i−1)+� for 16 i; j6N and 16 �; �6 3. It is
apparent that the rules cannot be retained under the arbitrary symmetry operation over
SO(3N). But we are able to establish a one-to-one and onto mapping [13] between
the constrained matrix M (C) and a unconstrained matrix M (−) with the same set of
non-trivial eigenvalues but with a lowered rank ((3N − 3)) via the equality

K (C)
t

0 M (C)K (C)0 =




M (−) 000

...
...
...

0 · · · 000

0 · · · 000

0 · · · 000



; (6)

where K (C)0 is an orthogonal matrix taking up the constraint, (Eq. (5)). Thus, the full
randomness of the ensemble of conservation constrained matrix M (C) is realized as the
full O(3N − 3) symmetry possessed by the corresponding M (−). The ensemble of real
symmetric matrices with full randomness, but constrained by the block summation rules,
is equivalent to the GOE with matrices of the rank lowered by the block dimension.
From the numerical evidence and the theoretical analysis, we conclude that the local

properties of the level statistics of Hessian matrices is still akin to the GOE, in spite
of the presence of conservation constraints.
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