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Abstract

We present a hybrid rendering scheme that explores the locality of visibility at the cost of extra storage and

prefetching, and makes a tradeoff between image quality and rendering efficiency by using textured level-of-detail

(LOD) meshes. The space is first subdivided into cells. For each cell, inside objects are rendered as normal while outside

objects are rendered as textured LOD meshes using projective texture mapping. The textured LOD meshes are object

based and derived from the original meshes based on the captured depth images viewed at the centers of the cell and its

adjacent cells. With such a textured LOD mesh, problems commonly found in image-based rendering, such as the hole

problem due to occlusion among objects and the gap problems due to resolution mismatch, can be avoided. The size of

holes due to self-occlusion is constrained to be within a user-specified tolerance. Several scenes with millions of

polygons have been tested and higher than 200 FPS has been achieved with a little loss of image quality.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to achieve an immersive visual effect during

the VR navigation, rendering with photo-realistic scene

images in high frame rate has been an ultimate goal of

real-time rendering. In the traditional geometry-based

rendering, very complex scenes often consist of numer-

ous polygons that cannot be rendered at an acceptable

frame rate even using a state-of-the-art hardware. Many

techniques have been proposed in last decades on

reducing the polygon count while preserving the visual

realism of the complex scenes, including visibility

culling, level-of-detail (LOD) modeling, and image-

based rendering (IBR). Although IBR is capable of

rendering complex scenes with photo-realistic images in

the time that is independent of the scene complexity, it

has been suffered from the static lighting, the limited

viewing degree of freedom, and some losses of image

quality due to gaps and holes. As a consequence, hybrid

rendering that combines geometry- and image-based

technique has become a viable alternative.

As a representation for an object or a region of the

scene, several image-based or hybrid representations

have been proposed. Shade et al. [1] described a

paradigm in which regions or objects could be repre-

sented by environment map, planar sprite, sprite with

depth, layered depth image (LDI), and polygonal mesh,

depending on their distances to the viewer. Although the

scheme integrates several existing representations, each
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individual form has its own problems. For example,

sprites in general have gap problem due to resolution

mismatch, and have to be re-computed once the viewer

is outside the safe-region. LDI can only be drawn using

software rendering with splatting. Finally, transition

between different representations may produce notice-

able popping effects.

To reduce gap problems due to resolution mismatch

and to improve the efficiency of pixel-based rendering,

depth meshes are extracted from the sprite with depth

based on depth variation. However, rubber artifacts

between disjoint surfaces are often encountered, and re-

projecting pixel coordinates back to 3D coordinates may

result in precision problems. The depth mesh approach

can be incorporated by space subdivision, in which,

when navigating inside a cell, distant objects are

rendered using depth meshes with textures, while near

objects are rendered by selected LOD models. With such

approaches, the polygon count of a complex scene can

be still high and, most importantly, the transition

between LOD and depth mesh with texture will

generally results in visually noticeable popping effects.

Another more uniform representation is LOD model-

ing, which can be incorporated with texture mapping for

recovering surface details. View-independent LOD

modeling has no control over silhouette during naviga-

tion. View-dependent LOD modeling, however, has to

deal with silhouette problems at run-time by maintain-

ing a mesh of fine resolution along silhouettes. Silhou-

ette clipping that incorporates LOD modeling and

normal/texture map needs to extract fine silhouettes at

run-time, which is in general time consuming.

1.1. System overview

A hybrid rendering scheme that aims to render

complex scenes in a constant and high frame rate with

only a little or an acceptable quality loss is presented in

this paper. To this end, view space is partitioned into

cells to explore the locality of visibility, and for a view

cell, each object outside the cell is represented by a LOD

mesh together with textures that are derived with respect

to the view cell. All these are done in a preprocessing. In

contrast with IBR or depth mesh approach, the object-

based LOD mesh derivation avoids hole problems due

to occlusion among objects. In the meantime, to reduce

hole problems due to self-occluding, the LOD mesh is

classifised into either single-view LOD mesh (termed as

SVMesh) or multi-view LOD mesh (termed as

MVMesh), depending on the object’s self-occluding

error (w.r.t. the viewcell). The SVMesh is chosen if the

object’s self-occluding error is smaller than a user-

specified tolerance, otherwise MVMesh is chosen. Such

a condition on SVMesh ensures that the potential holes

possibly found in the images viewed from any point

inside the cell will have size less than the user-specified

tolerance. Hence all the information necessary to guide

the derivation of SVMesh and the texture associated

with the SVMesh come from the captured image and

captured depth image of the cell’s center. On the other

hand, the MVMesh presents geometry and texture

necessary to avoid holes on images viewed from some

points in the cell. Therefore, the derivation of MVMesh

and its texture associations are based on captured

images and depth images from the cell’s center as well

as the centers of adjacent cells. In the proposed scheme,

prefetching is also implemented to preload the data

necessary for the following cells such that sudden drops

in the frame rate at the cell transition can be avoided.

The proposed approach explores locality of visibility

at the cost of extra storage and prefetching, and makes a

tradeoff between image quality and rendering efficiency

by using the SVMesh and MVMesh together with

textures. Our experiments have shown that for a scene of

8 million polygons we have achieved higher than 200

frames/s with a little loss of image quality (average

PSNR 37.34 dB). The polygons and textures require

about 1260MB hard disk storage and about 287MB

run-time memory on average. With such high frame

rates, the overhead of prefetching is hardly noticeable.

2. Related work

There have been extensive research in the field of real-

time rendering, ranging from geometry-based rendering,

IBR, and hybrid rendering. Although culling, including

back-face culling, view-frustum culling, and occluding

culling, is a classical technique to clip out invisible

polygons, many new approaches have been proposed. In

[2], a sublinear algorithm has been proposed for

hierarchical back-facing culling. Zhang et al. improved

this by introducing normal mask which reduces the per

polygon back-face test to only one logical AND

operation [3].

Several run-time methods have been proposed for

occlusion culling; for example, shadow frusta [4],

hierarchical Z-buffer [5], and hierarchical occlusion

map [6]. To overcome the inevitable overhead doing

occlusion culling at run-time, some recent results

focused on regional conservative occlusion culling.

Cohen-Or et al. [7] proposed a pre-processing algorithm

for regional occlusion culling, but its performance

depends heavily on a single strong occluder. Durand

et al. [8] proposed extended projection operations and

Schaufler et al. [9] proposed blocker extension to handle

occluder fusion of multiple occluders.

LOD modeling has been very useful in further

reducing the number of polygon that are visible and

inside the view frustum. Distant objects get projected to

small areas on the screen and hence can be represented

with coarse meshes. On the other hand, nearby objects
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share larger screen areas and should be modeled by

meshes of higher resolution. Many LOD techniques

have been proposed; for example, vertex clustering [10–

12], vertex decimation [13], edge collapsing, progressive

mesh [14,15], and view-dependent LOD [16,17]. View-

independent LOD can be incorporated with texture map

to recover surface details as proposed in [18]; however,

the silhouette cannot be recovered since it is view

dependent. View-dependent LOD preserves silhouettes,

but at the cost of fine mesh resolution along the

silhouettes as well as complicated texture mapping.

Silhouette clipping took different approach that clips an

enlarged coarse mesh by the exact exterior silhouettes

derived at run-time [19].

Geometry-based rendering based on visibility culling

and LOD modeling alone usually still cannot meet

interactive requirement for very complex scenes. IBR

has been a well-known alternative. IBR takes parallax

into account, and renders a scene by interpolating

neighboring reference views [20,21]. IBR has efficiency

that is independent of the scene complexity, and can

model natural scenes using photographs. It is, however,

often constrained by the limited viewing degree of

freedom, and may result in problems like folding, gap,

and hole. LDI [1] is a good try to eliminate hole

problems due to the visibility changes. LDI structure is

more compact in the sense that redundant information

has been reduced when several neighboring reference

images are composed into a single LDI. However, a

splatting is necessary for overcoming the gap problem.

Lumigraph [22] and light field rendering [23] have been

proposed to reduce the 7D plenoptic function to a 4D

function for static scenes. However, both require storage

for the extremely large number of images.

Hierarchical image caching proposed in [24,25] is the

first approach that combines geometry-based rendering

and IBR, aiming to achieve an interactive frame rate for

complex static scenes. The cached texture possesses no

depth and, in turns, limits its life cycle. The image

simplification schemes proposed in [26–28] represent

background or distant scene using depth meshes derived

from the captured depth images. Such depth meshes are

rendered by re-projection and texture mapping. In such

approaches, folding problems and gaps resulting from

the resolution changes can be eliminated; however, the

hole problems due to occlusion among objects and self-

occluding still remain. Moreover, disjointed surfaces

might be rendered as connected, and depth meshes

derived from the depth images are in pixel resolution,

which might lead to geometric inaccuracy when re-

projected into 3D space. In [29], Decoret et al., proposed

multi-layered impostors to constrain visibility artifacts

between objects to a given size, and a dynamic update

scheme to improve the gap due to resolution mismatch.

However, it still encountered hole problems due to self-

occlusion, and for an efficient dynamic update, a special

hardware architecture is needed. In [30], an interactive

massive model rendering system using geometric and

image-based acceleration is proposed, in which distant

objects are represented by textured depth meshes and

near objects by LOD models. The method proposed in

[31] integrates LOD and visibility computation and is

suitable for scenes with high-depth complexity and very

dynamic scene.

3. Proposed hybrid rendering scheme

The proposed hybrid scheme consists of a preproces-

sing phase and a run-time phase. In the preprocessing

phase, the x–y plane of the given 3D scene is first

partitioned into equal-sized hexagonal cells. Then for

each cell, we derive object-based textured LOD meshes,

called SVMesh or MVMesh, for each object outside the

cell. Note that with object-based LOD meshes, the holes

due to occlusion among objects can be avoided.

Furthermore, substituting original meshes with textured

SVMeshes or MVMeshes allows us to make a tradeoff

between image quality and rendering efficiency. The

SVMesh is a LOD mesh associated with the object

whose potential self-occluding error is within a user-

specified tolerance. Such a constraint ensures that the

potential holes found in the image of an SVMesh viewed

from any point inside the cell will have size less than the

user-specified tolerance. The MVMesh will be associated

with objects who fail to pass the self-occluding-error

test. Before deriving SVMesh, those objects legitimate to

SVMesh are tested for a possible clustering operation.

Such an operation clusters those objects whose union is

still legitimate to SVMesh and possesses a reduced

texture size. After SVMesh or MVMesh is derived for

each object outside the cell, an optional cell-based

occlusion culling can be performed to further reduce the

polygon count.

Both the SVMesh and MVMesh are derived from

object’s original meshes, with emphasis on preserving

interior and exterior silhouettes. SVMesh is derived

from polygons in original mesh that are front-facing to

the cell’s center while MVMesh comes from polygons

that are front-facing to the whole cell. Moreover, they

also differ in how the vertex’s weights are derived for

mesh simplification using edge collapsing and how

textures are associated with simplified polygons. For

SVMesh, the weight associated with each polygon vertex

and the texture associated with each simplified polygon

are derived only from the object’s depth image viewed

from the cell’s center. On the other hand, for MVMesh,

the derivation of vertex’s weight and polygon’s textures

also takes into account the depth images viewed from

centers of nearby cells.

At run-time phase, window culling and view-frustum

culling are performed for the whole scene, followed by a
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back-facing culling for all objects inside the current

navigation cell and a run-time occlusion culling for all

meshes. SVMeshes and MVMeshes with associated

textures are then texture mapped by hardware-acceler-

ated projective texture mapping, and meshes inside the

cell are rendered as normal. To reduce the overhead of

loading data from secondary storage when navigating

across the cell boundary, a prefetching mechanism is

applied to amortize the loading to previous frames.

3.1. Pre-processing phase

The steps in the preprocessing phase are (see Fig. 1):

(1) Hexagonal spatial subdivision.

(2) For each cell, for each object outside the cell:

(a) perform regional conservative back-face test;

(b) perform self-occluding-error test and select

single-view LOD mesh (SVMesh) or multi-

view LOD mesh (MVMesh);

(c) derive SVMesh or MVMesh and texture(s)

association;

(d) perform regional conservative back-face cul-

ling.

(3) (Optional) Perform regional conservative occlusion

culling.

3.1.1. Hexagonal spatial subdivision

In order to utilize the spatial locality of visibility, we

subdivide the x–y plane of the scene into N�M

hexagonal cells. With the spatial subdivision, the view-

point can be localized to cells, and, therefore, cell-based

visibility culling, back-facing and occlusion culling can

be performed in the preprocessing phase. Compared to

four for rectangular subdivision, hexagonal subdivision

requires that data of only three adjacent cells need to

be loaded when navigating across the cell boundary.

Table 1 depicts the maximum ratio of side faces that can

be seen from a point inside the hexagonal or the

rectangular cell under different fields of view (FOVs).

We can see that hexagonal subdivision is better than

rectangular one in most cases, except that they are equal

for the 451.

3.1.2. Self-occluding error test

Since the SVMesh of an object represents only those

polygons that are front-facing to the cell’s center, the

images derived from SVMesh for views other than the

cell’s center may have holes due to the self-occlusion.

Here we describe a conservative estimation of self-

occluding error.

As shown in Fig. 2, the maximum error occurs at the

farthest view position V0 from the cell center V. Let the

cell size, i.e., the length of VV 0; be c, the distance

between object and the cell center, i.e., the length of VO;
be d, and the depth of the object itself, i.e., the length of

OP; be l. The length of OC is l tan y, the angle y between
VP and V 0P is y ¼ tan�1 c=ðd þ lÞ; and s, the projected

size of OP or OC; is

s ¼ ðAB=cÞ ImageRes

Since

AB¼

ffiffiffi
3

p
=2

� �
c

d
OC¼

 ffiffiffi
3

p
=2

� �
c

d

! 
cl

d þ l

!
¼

ffiffiffi
3

p
c2l

2dðd þ lÞ
;

we have

s ¼

ffiffiffi
3

p
cl

2dðd þ lÞ
ImageRes:

The self-occluding error of an object O, denoted as self-

occluding-error (O), is approximated by s, derived based

on those polygons that are front-facing w.r.t. the cell.

Fig. 1. Preprocessing.

Table 1

Maximum ratio of side faces seen from a point inside the cell

under different FOVs

FOV(1) 120 90 60 45 30

Hexagonal 5/6 2/3 1/2 1/2 1/3

Rectangular 4/4 3/4 3/4 1/2 1/2
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The self-occluding-error test is to check if s is smaller

than a predefined tolerance Ts specified in image

resolution. If it is, the object is represented by an

SVMesh, otherwise by an MVMesh.

3.1.3. SVMesh derivation

SVMesh intends to provide a textured LOD model for

the portions of an object that are front-facing to the

cell’s center. The SVMesh is derived by simplifying the

object using edge collapsing. The vertices are associated

with weights derived from the depth variation found on

the object’s depth image captured at the cell’s center.

The cost of collapsing an edge is defined as a function of

vertex’s weights as well as the local geometry. The

weight assignment is designed to distinguish important

geometric features such as exterior silhouettes, interior

silhouettes, and sharp edges such that those features can

be preserved according to their importance during the

simplification.

The derivation of the SVMesh of an object O with

respect to a cell C is outlined as follows.

(1) Capture the image and depth image of O using cell’s

face as the window and cell’s center as the center of

projection.

(2) Categorize pixels on the depth image as exterior

silhouette, interior silhouette, sharp edge, and inter-

ior, and assign each category a weight.

(3) Assign weights to object’s vertices:

* vertices that are back-facing with respect to the

center of C: vertex weight is 0.5;
* other vertices: vertex weight is the weight of the

pixel gets projected by the vertex.

(4) Perform edge collapsing in increasing order of

edges’ cost.

Fig. 3(a) presents the flowchart for the derivation of

SVMesh. Fig. 4 depicts the SVMeshes of a bunny model.

3.1.3.1. Categorizing pixels on the depth image. Pixels

on the depth image are categorized into four categories:

* Exterior silhouette: a pixel on the external silhouette,

which can be extracted using contour extraction

techniques.
* Interior silhouette (C0-discontinuity): a pixel Z whose

value differs from adjacent pixels over a user-

specified tolerance TC0 ; that is, Zi+1�Zi>TC0 or

Zi�1�Zi >TC0 (see Fig. 5).
* Sharp edge (C1-discontinuity): a pixel whose Z

variation differs from Z variation of an adjacent

pixel over a user-specified tolerance TC1 ; that is,

|(Zi�1�Zi)�(Zi�Zi+1)|>TC1 (see Fig. 5).
* Interior: other pixels whose Z values are different

from the background Z value.

Each category corresponds to a weight. We have

derived from our experience that 0.5 is for exterior

Fig. 3. Derivations of SVMesh (a) and MVMesh (b).

P
c

V

V'

A

B

O

C

d l
θ

Fig. 2. The maximum self-occluding error occurs at the

position V0.
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silhouette, 0.4 for interior silhouette, 0.25 for sharp edge,

and 0.125 for interior.

3.1.3.2. Assigning vertex weights. The vertex weight

indicates how important the vertex is, which is usually

determined by the local geometry and the viewing

parameters. Here we propagate the weight derived for

pixels on the depth image to corresponding vertices. We

first distinguish back-facing and front-facing vertices. A

vertex is back-facing (w.r.t. the cell’s center) if all

polygons incident to it are back-facing (w.r.t. the cell’s

center), otherwise it is front-facing. Each back-facing

vertex is assigned with the weight 0.5 (same as that for

the exterior silhouette vertex). For a front-facing vertex,

we do the projection and check to see if it is visible to the

cell’s center by checking its Z-value against the Z-value

of the pixel that gets projected. If it is, the pixel’s weight

is the weight of the vertex, otherwise it is invisible and

assigned with the weight 0.05, which is smaller than

vertices corresponding to the pixel category interior.

3.1.3.3. Edge collapsing. To perform edge collapsing

[14], the cost of collapsing an edge (vi, vj) is defined as

costðui; ujÞ ¼ ð1:5� ni � njÞ
2lðwi þ wjÞ;

where ni and nj are normals of vi and vj , respectively, l is

the edge’s projected length with respect to the cell’s

center, and wi and wj are the weights of vi and vj,

respectively.

Edges are first maintained in an increasing order

according to their costs, and stored in a heap. In each

edge collapsing, the edge at top of the heap is removed

and the vertex of smaller weight gets collapsed to the

other. Such a collapsing order ensures that the edge with

smaller cost gets collapsed first. The costs of some edges

may be altered as a result of an edge collapsing, and

must be updated afterwards. The edge collapsing is

repeated until the edge on the top of the heap has cost

higher than a user-specified value Tl, where Tl is a

tolerance on the edge’s projected length w.r.t. the cell’s

center.

3.1.4. MVMesh derivation

The derivation of the MVMesh is an extension of that

for SVMesh, as shown in Fig. 3(b) [32]. For MVMesh,

we consider those polygons that are front-facing with

respect to the cell, rather than cell’s center. Furthermore,

the derivation of the vertex’s weight takes into account

the captured depth images viewed at the centers of the

cell and its adjacent cells. For each vertex, a weight is

obtained from each depth image as we do for the

SVMesh and the vertex is assigned with the maximum of

all those weights.

In addition to the weight, each vertex is also

associated with a set of views to which the vertex is

visible. The views associated with a simplified polygon is

determined by the intersection of view sets associated

with the polygon’s vertices. Since the views associated

with a vertex cannot propagate in the course of edge

collapsing, we place one more condition on edge

collapsing. Namely, for an edge uv; u can be collapsed

to v if the weight of u is smaller than or equal to that of v

and both u and v are either visible to some common

views or associated with empty view sets. Note that

determining polygon’s set of views based on that of

vertices is not able to reflect the cases in which the

polygon is partially occluded, but its vertices are not, by

other polygons. Such exceptions should be handled

carefully by considering general visibility problems.

For the cost function of an edge, we should replace l,

the projected length of an edge with respect to the cell’s

center, by l0, which is the projected length of the edge

with respect to the cell. When the object is far from the

cell, we have lEl0. The edge’s projected length for a near

(a) (b) (c) (d)

Fig. 4. (a) is the original mesh (65,491 polygons) of a bunny viewed at one cell away (cell size 50). (b–d) are SVMeshes for the bunny at

7(259 polygons), 8(254), and 9(239) cells away. The upper-right bunnies are the projected images.

Zi Zi+1
Zi-1

Zi-1

Zi

Zi+1 Zi+1

Zi

Zi-1

Fig. 5. Testing depth variation.
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object, however, varies when we navigate in the cell.

Fig. 6 depicts the MVMeshes of the bunny model.

3.1.5. Regional conservative back-face culling

We claim that if a polygon is back-facing to all six

vertices of the cell, the polygon is back-facing with

respect to any point inside the cell. That is, a polygon P

is back-facing with respect to the cell C if

dot productðP:normal; vectorðCi;P:centerÞÞ

o0 for i ¼ 0;y; 5;

where the Ci’s are the corners of C. A simple proof for

the 2D case is as follows: If a polygon P is back-facing

with respect to both A and B, P’s normal will be

bounded in the dark green area, as shown in Fig. 7(a).

Given a point G on the line AB; vector GP
�!

is bounded

by AP
�!

and BP
�!

: As a result, P is shown to be back-facing

with respect to G. An interior point I of the cell C is on a

line CiE; for some i, and E on CjCðjþ1Þmod 6 for some j.

Since P is back-facing with respect to all corners, P is

back-facing with respect to E and therefore I;

(see Fig. 7(b)).

3.1.6. Object clustering

In order to reduce the texture size associated with

LOD meshes and to reduce polygon count, objects that

pass the self-occluding-error test and are close to each

other can be clustered together, provided that certain

conditions are satisfied. The clustering operation

amounts to the coloring problem, and itself is an NP-

complete problem. Before getting into the details of the

proposed greedy approach, several terms are first

described.

* Cluster-able: Object or cluster M is cluster-able with

cluster C if the texture size of M,C is less than the

sum of texture sizes of M and C, and self-occluding-

error(M,C)oTs.
* Overlapping size: Overlapping size of an object M

and a cluster C is the size of the intersection of

projected areas of M and C.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. (a) is the original mesh (65, 491 polygons) of a bunny viewed at one cell away (cell size 50). (b–g) are MVMeshes of the bunny at

1(1,605 polygons), 2(945), 3(554), 4(392), 5(330), and 6(306) cells away. The upper-right indicates actual projected images.

A

B

P

G

I

Ci

Cj

C(j+1) mod 6

E

P

(a) (b)

Fig. 7. Regional back-face culling.
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The greedy approach proceeds as follows. Firstly,

objects that pass self-occluding-error test are sorted

according to the size of their projected areas. Initially no

cluster is formed. Secondly, for each object M removed

from the sorted list, M itself forms a new cluster if there

is no cluster or no cluster found to be cluster-able with

M. Otherwise, M is repeatedly clustered with all the

clusters that M is cluster-able with, in the order of

decreasing overlapping size. As shown in Fig. 8(a), M is

cluster-able with C1, C2 and C3 in the order of

decreasing overlapping size. M is clustered with C1 first.

The result M|C1 , however, is no longer cluster-able

with C2; but still cluster-able with C3 (see Fig. 8(b)).

Finally, M is clustered with C1 and C3 (see Fig. 8(c)).

The clustering is performed after the self-occlusion-

error test is applied for all objects, and before the

derivation of SVMesh. The objects in the same cluster

are considered as a single object that possesses an

SVMesh. The SVMesh derivation can be slightly

modified to construct an SVMesh for the clustered

objects. In consequence, surfaces that are occluded by

others in the cluster will be culled out in the simplifica-

tion process. Such an SVMesh derivation for clustered

objects implicitly performs occlusion culling among

objects.

3.1.7. Regional conservative occlusion culling

Since SVMesh or MVMesh is object based and our

scheme does space subdivision for utilizing view locality,

it will be advantageous to do the regional conservative

occlusion culling in the preprocessing phase. Such

operations will enhance the rendering efficiency, espe-

cially for densely occluded scenes. Methods proposed

recently can be used. For example, the extended

projection [8] can be easily modified to fit into our

system. This extended projection can also handle the

case of multiple occluders by using occluder fusion. The

selection of occluders is based on the meshes’ projected

sizes. Only those meshes whose projected sizes are larger

than a user-specified threshold are selected to be

occluders.

3.2. Run-time phase

At the run-time phase, within the current navigation

cell, we first set up a lower priority thread for

prefetching the geometry and image data belonging to

neighboring cells, and then do the following steps when

navigating inside the cell: (see also the followchart in

Fig. 9.)

(1) Ensure that the geometry and image data for the

current navigation cell has been loaded into memory.

(2) Perform window culling and view-frustum culling

for the whole scene.

(3) (Optional) Perform a run-time occlusion culling for

all meshes.

(4) (Optional) Perform a run-time back-face culling for

the meshes inside the current cell.

(5) Render the meshes outside the current cell using

projective texture mapping, followed by rendering

meshes inside the cell as normal.

(6) Prefetch data for neighboring cells when the CPU

load is relatively low.

A view with an FOV sees through a fixed number of

windows, which are faces of the navigating cell. Window

culling can be considered as an effective precalculation

of the view-frustum culling. As optional operations, the

run-time back-face culling and occlusion culling can be

applied to further reduce the polygon count. Back-

facing culling is performed only for objects inside the

navigation cell, while occlusion culling is applied to all

meshes in the scene.

SVMeshes are simply rendered by projective texture

mapping [33] while the rendering of MVMeshes involves

texture blending as part of view-dependent projective

texture mapping [34]. As mentioned previously in

MVMesh derivation, a simplified polygon is associated

with a set of views to which it is visible. If the set is empty,

normal map approach [18] can be applied to that polygon.

If the set contains only one view, then the polygon is

rendered by standard projective texture mapping. If the

set contains three or more views, two views are chosen

from the set according to the vector defined from the

viewer to the polygon. The textures corresponding to

these two views are then mapped onto the polygon using

projective texture mapping with blending.

(a)

C3
C2

C1

(b) (c)

C3
C2 C2

MUC1 MUC1 UC3M

Fig. 8. Repeat clustering. Fig. 9. Run-time phase.
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One of the major problems arising in our cell-based

navigation is how to achieve smooth cell transition.

When the view point moves across from one cell to its

neighbors, the geometry and textures will be switched.

The prefetching is a mechanism to preload the geometry

and texture data of neighboring cells when CPU load is

relatively low during navigating inside the cell. It will

amortize the loading time to several inside-cell frames

and hence reduce the FPS gap between inside-cell frames

and a cross-boundary frame.

The proposed scheme runs in a lower priority thread

and prefetches data of neighboring cells that will be

possibly visited in a short time. We set a timestamp for

the navigation system. The timestamp is initially 0 and

gets increased by 1 whenever the viewer has moved by a

predefined distance or have turned by a predefined

angle. When the timestamp gets increased by 1, we

identify those cells that need to be prefetched and add

them to a priority queue that maintains those cells

waiting for prefetching, and then begin the prefetching.

The cell is added to the priority queue according to its t-

priority, which is the sum of the current timestamp and a

priority value. The addition of timestamp in the t-

priority allows us to distinguish the freshness of the cells

in the priority queue. The priority value of a cell

conceptually indicates how urgent it is for prefetching

and is in the range of [0, 1). In principle, cells that are

within the view frustum get higher priorities than those

outside, the cells closer to the aiming vector get higher

priorities, and cells closer to the viewpoint get higher

priorities. The prefetching repeatedly removes the cell of

the highest t-priority from the priority queue and loads

the cell’s data from disk to main memory, and removes

those cells which are out of date by checking if t-priority

values are smaller than the current timestamp minus 2.

Disk I/O can run in parallel; however, the system bus

that loads texture data from main memory to texture

memory can hardly run in parallel. To this end, textures

that have been loaded from disk to main memory are

put into a texture queue and get loaded in FIFO order.

The loading of texture from main memory to texture

memory runs in main thread, in which an amount of

texture constrained by a budget is loaded before each

frame. One practical concern is that the size of texture

varies a lot. A texture that is not the first in the texture

queue and is of size larger than the remaining budget is

put back as the first in the texture queue.

4. Experiments

4.1. Setup

The test platform is a PC with an AMD AthlonXP

1800+CPU, 512MB main memory, and an nVIDIA

GeForce4 Ti 4400 with 128MB DDR RAM graphics

accelerator. The OS is Windows XP Pro. The output

image is in a resolution of 1024� 1024� 32. S3’s S3TC

DXT3 is used to compress textures (in a ratio of 1/4).

For efficiency consideration, polygons and objects are

represented by vertex IDs and object IDs, respectively.

The original meshes are loaded into main memory

before the navigation. In prefetching objects, SVMeshes,

and MVMeshes, only their object IDs and vertex IDs

are loaded.

4.1.1. Scene statistics

The three scenes tested are statuary parks consisting

of eight kinds of object that are randomly distributed in

the same area of 1650� 2035. The three scenes are called

2M-scene, 4M-scene, and 8M-scene, and have 2017700,

4188885 and 8004863 polygons, respectively. The scenes

are generated such that 2M-scene is a subset of the 4M-

scene, which in turn is a subset of 8M-scene. Table 2 lists

data statistics for the objects that compose the scenes,

including polygon number, dimension, and distribution

of polygon numbers for the scenes. A bird’s eye view of

the 8M-scene is shown in Fig. 10.

4.1.2. Settings

Performance on frame rate and image quality may

vary for different settings of parameters. We set Ts ¼
3; 5; or 7 pixels for self-occluding-error tolerance, Tl ¼
3:0; 4.5, or 6.0 for edge’s project length tolerance, and 50

or 100 for cell size. The parameters TC0 and TC1 for pixel

categorizing are fixed in this experiment as 3.4� 10�4

and 1.28� 10�4, respectively. For simplicity, we denote

the kM-scene with cell size c, parameters Ts and Tl as

kM-c-Ts-Tl; for example, the 4M-scene with cell size 50,

Ts ¼ 5; and Tl ¼ 4:5 is denoted as 4M-50-5-4.5.

All experimental results are collected by following the

navigation path shown in red in Fig. 10 with a maximum

speed of 30/s., a maximum rotation of 451/s., and an

FOV of 601.

Table 2

Object and scene statistics

Object

name

Polygon

no.

Dimension

(w� d� h)

2M 4M 8M

Dragon 202,520 57.3� 25.6� 40.4 4 10 18

Bunny 69,451 43.6� 33.8� 43.2 7 12 26

Statue 35,280 11.8� 13.4� 23.4 13 21 40

Cattle 12,398 40.0� 40.8� 30.7 9 19 42

Horse 7,257 38.3� 57.2� 82.6 13 29 51

Easter 4,976 12.4� 10.7� 30.8 6 14 22

Camel 3,969 49.4� 16.8� 46.6 4 14 26

Venus 1,396 10.2� 8.4� 21.9 8 13 28

Total object number 64 132 253
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4.2. Image quality measurement

To identify how much is the quality loss, we use the

peak signal-to-noise ratio PSNR (dB) defined as

PSNR ¼ 10 log10
2552

1=HW
� 	PW�1

x¼0

PH�1
y¼0

#f x; yð Þ � f x; yð Þ
h i2;

where f(x, y) and #f(x, y) are the pixel colors of the

original image and approximated image at position

(x, y), respectively, W and H are the dimensions of

the image. Before applying PSNR, the RGB color is

mapped to a single luminance value Y since human eyes

are more sensitive to the changes in luminance. Such a

mapping [35] is

Y ¼ 0:299*R þ 0:587*G þ 0:114*B

4.3. Mesh simplification

4.3.1. Self-occluding-error tolerance

The value of self-occluding-error tolerance Ts deter-

mines the distribution of SVMesh and MVMesh. For

the scene 4M-50-Ts-4.5, where Ts ¼ 3; 5, 7, Table 3

shows the averaged percentages of objects that are

represented by SVMesh and MVMesh and their

averaged polygon counts over all cells. Larger Ts implies

higher percentage of SVMesh, more objects are clus-

tered, higher simplification rate, less texture size, and

finally higher frame rate. Note that numbers in the

parenthesis under Avg. polygon count inside view

frustum are Avg. polygon count for SVMesh and

MVMesh inside view frustum. Fig. 11 depicts the

distribution of SVMesh and MVMesh for the particular

cell at the scene’s center, on which MVMeshes are

colored in blue, SVMeshes from single objects are in

purple, and SVMeshes from clustered objects are in

other colors.

4.3.2. Projected edge-length tolerance

Through projected edge-length tolerance Tl, the edge

collapsing can be tested for termination. Fig. 12 shows

the MVMeshes of bunny derived by setting Tl=3.0, 4.5,

6.0. Table 4 depicts the average polygon counts of

SVMesh and MVMesh and simplification ratio for all

cells. As we can see, larger Tl implies higher simplifica-

tion rate, larger texture size, and finally higher frame

rate.

4.3.3. Cell size consideration

Setting an optimal cell size is in general difficult. To

test the effect of cell size, we continue to use the same

Fig. 10. A Bird’s eye view of the 8M-scene.

Table 3

Simplification performance under different self-occluding-error tolerance Ts

4M-50-Ts-4.5 Ts=3 Ts=5 Ts=7

Statistics for object’s represenatations and polygon counts

Avg. percentage of SVMeshes from clustered objects (%) 9.8 18.7 25.5

Avg. percentage of SVMeshes from a single objects (%) 64.8 64.9 62.4

Avg. percentage of MVMeshes (%) 25.3 16.3 12.1

Avg. polygon no. inside a viewcell 9,308 9,308 9,308

Avg. polygon no. for SVMesh & MVMesh 40,742 39,981 39,360

Avg. polygon no. for a viewcell 50,050 49,290 48,669

Simplified:original 1:83.7 1:85.0 1:86.1

Performance statistics

Avg. FPS 271.5 278.0 281.9

Avg. PSNR (dB) 39.64 39.54 39.46

Avg. texture size (KB) inside view frustum 592.0 544.1 516.6

Avg. polygon count inside view frustum 13,235 (11,532) 13,102 (11,418) 13,026 (11,367)
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data set and set Ts ¼ 5 and Tl ¼ 4:5 for cell sizes 50 and

100. Table 5 depicts the average polygon counts of

SVMesh and MVMesh and simplification ratio for all

cells. Larger cell size in general results in smaller

simplification ratio and, in turn, lower frame rate, since

the number of polygons inside a cell may increase

dramatically.

4.4. Run-time performance

The three rendering configurations used to test the

performance comparison are:

* A: (Pure geometry)—render the original scene geo-

metry using the traditional graphics pipeline.

(a) (b) (c)

Fig. 11. Distribution of SVMesh and MVMesh for the scenes 4M-50-Ts-4.5: (a) Ts=3; (b) Ts=5; and (c) Ts=7.

(a) (b) (c)

Fig. 12. MVMeshes of bunny for different Tl: (a) Tl ¼ 3:0 (2,353 polygons), (b) Tl ¼ 4:5 (1,605), and (c) Tl ¼ 6:0 (1,227).

Table 4

Simplification performance under different projected edge-length tolerance Tl

4M-50-5-Tl Tl ¼ 3:0 Tl ¼ 4:5 Tl ¼ 6:0

Statistics for polygon counts

Avg. polygon no. inside a viewcell 9,308 9,308 9,308

Avg. polygon no. for SVMesh & MVMesh 46,249 39,981 35,226

Avg. polygon no. for a viewcell 55,557 49,290 44,535

Simplified:original 1:75.4 1:85.0 1:94.1

Performance statistics

Avg. FPS 265.4 278.0 289.2

Avg. PSNR (dB) 39.98 39.54 39.13

Avg. texture size (KB) inside view frustum 538.4 544.1 545.4

Avg. polygon count inside view frustum 14,741 (13,008) 13,102 (11,418) 11,701 (10,048)

C.-C. Chen et al. / Computers & Graphics 27 (2003) 189–204 199



* B: (Pure geometry with view frustum culling)—same as

A, but with software view frustum culling.
* C: (Proposed hybrid scheme)—render the scene using

proposed hybrid scheme, without regional occlusion

culling, run-time back-face culling, and run-time

occlusion culling.

The parameter setting for the following performance

tests is Ts ¼ 5; Tl ¼ 4:5; and cell size 50. All simulations

follow the navigation path shown in Fig. 10.

Table 6 lists the run-time performance of three

configurations on the scene 8M-50-5-4.5. Without

regional occlusion culling, back-face culling, and run-

time occlusion culling, configuration C achieves 274.8

gain factor over configuration A, and 76.9 gain factor

over configuration B, with little quality loss at PSNR

37.34 dB.

Fig. 13 represents the images rendered at views that

are far from the cell center by configurations B and C. In

Figs. 13(c) and (f), the MVMeshes are flat shaded with

gray wireframes, SVMeshes from single objects are in

purple, and SVMeshes from clustered objects in other

colors.

Table 7 depicts the performance of configuration C

for different scene complexities: 2M-50-5-4.5, 4M-50-5-

4.5, and 8M-50-5-4.5. It reveals that as the scene

complexity goes up from 2M, 4M, to 8M, the FPS goes

down from 353, 278, to 220. This is due to the fact that

all objects outside a navigation cell are in the form of

SVMesh or MVMesh, which have much less varied

polygon counts.

Fig. 14 shows the run-time statistics of running

configuration C on the scene 8M-50-5-4.5. In Fig. 14(a),

FPS plots are shown for different prefetching schemes.

From the plot for prefetching under a cold cache, we can

see that the frame rate changes rapidly after a cell

transition (illustrated by yellow vertical line) and

becomes more stable frame rate after a while. The frame

rate for the prefetching under a warm cache is quite

stable except some sudden decreases appear. The

suddenly decreased FPS in the plots indicates the

presence of objects inside the navigation cell. Along this

particular navigation path, among 7 cells that contain

objects, two of them contain the massive models such as

bunny and dragon, respectively, as shown also in the

plot for polygon count. Polygon count, texture size, and

PSNR follow the FPS plots which are shown in

Fig. 14(b). Note that most frames have PSNR above

37 dB.

4.5. Discussions

On problems and potential of the proposed hybrid

rendering scheme, we address the storage requirement

and loading time for very complex scenes. Since each

polygon and each object are presented by vertex IDs and

object ID, respectively, original meshes must be avail-

able in main memory during navigation, and meshes are

prefetched by loading their vertex IDs. Original meshes

of 2M-, 4M- and 8M-scenes account for 74, 141, and

261MB main memory, respectively. Taking into account

the prefetched data as well, the main memory require-

ment is 82, 153, and 287MB for 2M-, 4M- and 8M-

scenes respectively.

As shown in Table 8, storage requirement for 2M-,

4M-, and 8M-scene are 311, 659, and 1260MB,

respectively, which are roughly 11 times that for original

geometries. For each cell, the average size of polygons

Table 5

4M scene under different cell sizes 50 and 100

Cell size 50 100

Viewcells 22� 24 11� 12

Statistics for polygon counts

Avg. polygon no. inside a viewcell 9,308 38,986

Avg. polygon no. for SVMesh & MVMesh 39,981 45,356

Avg. polygon no. for a viewcell 49,290 84,342

Simplified:original 1:85.0 1:49.7

Performance statistics

Avg. FPS 278.0 255.5

Avg. PSNR (dB) 39.54 39.62

Avg. texture size (KB) inside view frustum 544.1 387.9

Avg. polygon count inside view frustum 13,102 (11,418) 17,457 (12,319)

Table 6

Performance of the three configurations on a 8M-scene

A B C

Avg. polygon count 8,004,863 2,443,969 23,580

Avg. frame time (ms) 1,247 349.1 4.54

Avg. frame rate (FPS) 0.802 2.864 220.4

Speedup 1.0 3.57 274.8
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and textures that needs to be in memory is 553, 1165,

and 2252KB for 2M-, 4M-, and 8M-scene, respectively.

Let us take as an example the hard disks having reading

speeds at 35MB/s. For the 8M-scene, the loading time

for each cell requires 64.4ms. Under the assumption that

the maximum navigation speed is 30/s and the cell size is

50, the time between cell transitions will be 2887ms for

the path 1 shown in Fig. 15. The ratio of the average

loading time for a cell over the time between transitions

is only 2.23%. On the other hand, for the case of path 2,

the ratio is 4.46%. Several implementation details can be

included to smooth out the loading time. First of all, the

loading can be easily amortized into in-cell frames

without notice since disk I/O can run in parallel.

Secondly, when navigating in high speed, user percep-

tion is more sensitive to smooth frame rate than image

quality. In this case, the texture can be mapped with

lower resolutions, which implies smaller size for loading.

In the experiment, we found that textures can only be

loaded from the hard disk to main memory, and then to

texture memory. Transferring data to texture memory,

however, has to compete with the data transferring

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 13. Rendered images by configuration B and C: (a) Configuration B: 5,207,350 polygons in view frustum; (b) Configuration C:

35,216 polygons, PSNR 35.33 dB, 178.8 FPS; (c) Configuration C: flat shaded with wireframes; and (d) Configuration B: 4,693,355

polygons in view frustum; (e) Configuration C: 29,641 polygons, PSNR 36.39 dB, and 199.3 FPS; (f) Configuration C: flat shaded with

wireframes.
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between CPU and graphics accelerator. Another pro-

blem appeared is that textures in general have size in a

wide range, for example, from several bytes to hundred

kilobytes. In consequence, the prefetching of textures

cannot be easily amortized effectively to in-cell frames.

5. Concluding remarks

We have presented a hybrid rendering scheme for

real-time display of complex scenes. The scheme

partitions the model space into cells, thus explores the

Table 7

Performance of configuration C for different scene complexities

Scene complexity 2M 4M 8M

Statistics for polygon counts

Avg. polygon no. inside a viewcell 4,145 9,308 18,302

Avg. polygon no. for SVMesh & MVMesh 18,829 39,981 75,891

Avg. polygon no. for a viewcell 22,974 49,290 94,193

Simplified:original 1:87.8 1:85.0 1:85.0

Performance statistics

Avg. FPS 353.3 278.0 220.4

Avg. PSNR (dB) 44.92 39.54 37.34

Avg. texture size (KB) inside view frustum 112.4 544.1 992.4

Avg. polygon count inside view frustum 4,548 (3,991) 13,102 (11,418) 23,580 (21,735)
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Fig. 14. Run-time statistics of configuration C on scene 8M-50-5-4:5: (a) the frame rates with prefetching under a cold cache and a

warm cache, and without prefetching and (b) the polygon count, texture requirements, and image quality.
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locality of visibility based on which the objects outside a

cell are rendered as textured LOD meshes and inside

objects are rendered as normal. Such a hybrid repre-

sentation allows us to avoid problems that are com-

monly found in image-based rendering; such as the gap

problem due to resolution mismatch and the hole

problem due to occlusion among objects. The represen-

tation also constrains the hole due to self-occlusion to be

within a user-specified tolerance. A prefetching mechan-

ism has also been proposed to predict data of which

neighboring cells will be needed shortly and how the

loading can be amortized to frames before crossing the

cell boundary. In the proposed scheme, acceleration

techniques such as regional occlusion culling, back-

facing culling, and run-time occlusion culling can be

easily integrated. We have demonstrated our system on

several scenes consisting of millions of polygons and

observed very encouraging results. For a scene of 8

millions of polygons, we have achieved higher than 200

frames/s with a little loss of image quality (average

PSNR 37.34 dB). The polygons and textures require

about 1260MB secondary storage space and about

294MB main memory on average.
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