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The purpose of this paper is to give a brief review and trace the present-day perspectives to
exploit the spin–orbit interaction in conventional nonmagnetic semiconductor nanostructures.
We demonstrate theoretically that the structures can be used to design basic elements of high-
speed spintronic devices. In particular we discuss spin filtering, spin-dependent confinement,
and scattering in all-semiconductor nanostructures.
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1. INTRODUCTION

Studies of spin-dependent confinement and
transport phenomena in semiconductor nanostruc-
tures have been progressing significantly since spin-
tronics became a focus of recent interest (see [1–7]
and references therein). Basic elements of spintronic
devices were assigned in the first proposition of Datta
and Das [8] (see Fig. 1). Many possible structures
with the basic elements were investigated and dif-
ferent kinds of electron spin detection methods have
been developed. Most of them consist of magnetic
material elements (see [1, 4, 6, 7] for references).
Recently the coherent spin transport has been demon-
strated in homogeneous semiconductors and het-
erostructures [2]. Incorporating ferromagnetic semi-
conductors [6, 7], one can use an all-semiconductor
approach to generate, control, and detect the electron
spin polarization. This approach has the advantage
of being compatible with conventional semiconductor
technology.

The most important property of III–V semicon-
ductors to be utilized in all-semiconductor spintronic
devices is the spin–orbit interaction (SOI) [9,10]. In
III–V and II–VI semiconductors the SOI lifts the
conduction state spin-degeneracy and has been used
successfully to interpret experimental results in vari-
ous quantum well and wire structures [10–12]. In this
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paper we review (in brief) the present-day perspec-
tives to exploit the SOI in the conventional III–V non-
magnetic semiconductors to design basic, high-speed
spintronic devices. To achieve this, we concentrate on
spin-dependent electronic characteristics of semicon-
ductor nanostructures.

2. SPIN-DEPENDENT TUNELING,
CONFINEMENT, AND SCATTERING

The SOI in tunnel barrier structures can lead to
the spin-dependent tunneling phenomenon [13]. In
resonant tunnel heterostructures the spin filtering can
gain a high level. Results of our recent evaluation
for an asymmetric double-barrier structure are pre-
sented in Fig. 2. The polarization ratio is defined as
P(Ez, K‖) = (T↑ − T↓)/(T↑ + T↓) where T↑↓ is spin-
up (down) tunneling probability, Ez is the part of
the electronic energy, which corresponds to the per-
pendicular motion to the barrier, and k‖ is in-plane
wave vector. Because of the SOI symmetry to obtain
a nonzero spin polarization p = ( j↑ − j↓)/( j↑ + j↓) in
the electronic current j , we need an in-plane asymme-
try in the electron occupation probability. The asym-
metry can be created by an additional in-plane electric
field F‖. Figure 3 shows the calculated polarization
for the asymmetric tunnel structure [13]. Results of
other authors suggest that the spin filtering for all-
semiconductor tunnel devices can reach almost 100%
polarization for more sophisticated designs of the
structures [14–17].
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Fig. 1. Spin-FET (after Datta and Das). Basic spintronic elements.

The spin states in the quantum dots are promis-
ing candidates for realizations of qubit in the quan-
tum computing [18]. The SOI separates states with
the same orbital momentum and different spin direc-
tions [19]. The spin splitting at zero magnetic field
leads to an unusual behavior of the quantum dot en-
ergy spectrum when a magnetic field is present (an
analog of the general Paschen–Back effect). Figure 4
displays the calculated spectrum of InSb quantum dot
as a function of the magnetic field B. The crossing of
electron energy levels with different spins leads to un-
usual magnetic properties of quantum dots [20] and
an additional degree of freedom for the electron spin
state manipulation in quantum dots.

Fig. 2. Polarization ratio for InAs/GaAs/InAs/A1As/InAs barrier
structure at zero bias (barrier’s thickness = 3 and 1.5 nm, interbar-
rier distance = 6 nm).

Fig. 3. Polarization of the tunnel current in the structure of Fig. 2 for
F‖: (a) 1.6× 103; (b) 2.3× 103; (c) 2.5× 103 Vcm−1.

In absence of magnetic impurities at low temper-
atures the main source of the spin-dependent scatter-
ing processes for electrons is the SOI with local de-
fects. Recently it was proposed to detect the electron
spin polarization in paramagnetic metals and semi-
conductors through a “spin Hall effect” [21]. We in-
troduced a model of the spin-dependent electron scat-
tering from an array of nanoscale all-semiconductor
quantum dots (antidots)—“artificial defects.” The
differential cross-section (σ↑↓) for GaAs/InAs an-
tidots located in two-dimensional channels demon-
strates a large left–right asymmetry [22] (Fig. 5). The
asymmetry should lead to nonzero off-diagonal ele-
ments of the conductivity tensor for polarized elec-
trons in semiconductor structures with random ar-
rays of GaAs/InAs antidotes. This can provide an

Fig. 4. Energy spectrum of a parabolic InSb quantum dot in mag-
netic fields [20] (l = the angular quantum number). Inserts: (a) the
spectrum without the SOI; (b) only |l| = 1 levels with the SOL.
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Fig. 5. Differential cross-section of GaAs/InAs two-dimensional
antidot (radius = 5 nm).

opportunity to detect the spin polarization of the elec-
tron current at zero magnetic field [21].

3. CONCLUSION

Conventional semiconductor quantum struc-
tures are promising objects for spintronics. The SOI
can provide us with tools to control the electron spin
in all-semiconductor structures and it is worth to be
exploited in semiconductor nanostructures for spin-
tronics needs.
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