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Abstract

Fuzzy association rules described by the natural language are well suited for the thinking of human subjects and will help to increase the

flexibility for supporting users in making decisions or designing the fuzzy systems. In this paper, a new algorithm named fuzzy grids based rules

mining algorithm (FGBRMA) is proposed to generate fuzzy association rules from a relational database. The proposed algorithm consists of two

phases: one to generate the large fuzzy grids, and the other to generate the fuzzy association rules. A numerical example is presented to illustrate

a detailed process for finding the fuzzy association rules from a specified database, demonstrating the effectiveness of the proposed algorithm.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Relational databases have been widely used in data

processing and support of business operations, and there

the size has grown rapidly. For the activities of decision-

making and market prediction, knowledge discovery from

a database is very important for providing necessary

information to a business. Association rules are one of

the ways of representing knowledge, having been applied

to analyze market baskets to help managers realize which

items are likely to be bought at the same time [1,2]. For

example, rule {P} ) {Q} represents that if a customer

bought P, then he should buy Q at the same time. The

left-hand side of ‘ ) ’ is the antecedence of rule, and the

right-hand side is the consequence. We call {P} and {Q}

itemsets. Two important parameters are required to

generate effective association rules; one is support and

the other is confidence [2]. Support is the number of

transactions with all the items in the rule; and confidence

is the ratio of the number of transactions with all the

items in the rule to the number of transactions with just

the items in the condition [1]. Hence, the support of {P,

Q} can be described as (Number of transactions which

contains both P and Q )/(Number of transactions in the

database); and the confidence of {P} ) {Q} can be

described as (Number of transactions which contains both

P and Q )/(Number of transactions contains P ).

Generally, there are two phases for mining association

rules [3]. In the first phase, we first find all the large

itemsets. The supports of large itemsets are larger than the

minimal supports specified by users. If there are k items in a

large itemset, then we call it a large k-itemset. We can find

that a subset of a large itemset must also be large.

Subsequently, we use the large itemsets generated in the

first phase to generate effective association rules. If the

confidence of an association rule is larger than or equal to

the minimum confidence specified by users, then it is

effective. The key work for finding the association rules is to

find all the large itemsets.

Initially, Agrawal et al. [4] proposed a method to find the

large itemsets. Subsequently, Agrawal et al. [5] also

proposed the Apriori algorithm. However, these algorithms

must scan a database many times to find the large itemsets.

Moreover, when they generated a candidate itemset, the

apriori-gen function must have wasted much time to check

if its subsets are large or not.

Wur and Leu [6] proposed the Boolean algorithm to

scan a database only once, not wasting much time

reading data from disk. Moreover, it used Boolean

operations (AND, OR and XOR) on the table structure
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they proposed to generate the large itemsets and the

association rules. For discovering association rules, it

seems that Boolean algorithm works more efficient than

other algorithms.

By partitioning quantitative attributes, Srikant and

Agrawal [7] proposed the partial completeness to be the

criterion for finding association rules. Fukuda et al. [8] also

proposed concepts of optimized association rules. In the rule

representation, the consequent part was required to be a

fixed value, and the antecedent part was composed of one or

two quantitative attributes. However, it seems that such

representations were restricted.

A clustering method named CLIQUE was further

proposed by Agrawal et al. [9]. In general, data clusters

were distributed in the feature subspaces which were

constructed by some quantitative attributes, and CLIQUE

could efficiently find the subspaces where data clusters were

really distributed. To do this, CLIQUE divided each

quantitative attribute into many partitions with equal length,

and viewed each partition as a candidate 1-itemset. There-

fore, a k-itemset (k $ 1) is an itemset that consisted of k

partitions distributed in k quantitative attributes. Finally,

large k-itemsets could be found. In comparison with other

clustering methods, including c-means [1] and BIRCH [10],

we can find that CLIQUE worked more efficient because it

cannot directly find clusters that were constructed by all

quantitative attributes.

The well-known methods (i.e. partial completeness,

optimized association rules and CLIQUE) we have

mentioned above, divided the quantitative attributes into

many crisp partitions. There were no intersections

between the partitions. However, crisp partitions may

be unreasonable for some situations. For example, if we

tried to divide the range (170, 180 cm) of the attribute

‘height’ into two partitions, then the separable point was

not different between 175.01 and 174.99 cm. Hence,

intersection between any of the neighborhood partitions

can be promised. Moreover, we considered that the fuzzy

association rules described by the natural language are

well suited for the thinking of human subjects and will

help to increase the flexibility for users in making

decisions or designing the fuzzy systems. The fuzzy

partition methods are thus used to find the fuzzy

association rules.

In this paper, an effective algorithm named fuzzy

grids based rules mining algorithm (FGBRMA) is

proposed. For the proposed algorithm, both quantitative

and categorical attributes are divided into various

linguistic values. Large fuzzy grids and effective fuzzy

association rules can be determined by the proposed

fuzzy support and the fuzzy confidence, respectively.

Like Boolean algorithm, FGBRMA uses the proposed

table structures to generate both large fuzzy grids and

fuzzy association rules. It seems that the proposed

algorithm is also an efficient algorithm because it also

scans a database only once and applies Boolean

operations on the proposed table structures to generate

both large fuzzy grids and fuzzy association rules.

In the following sections, the cases for fuzzy partitioning

in quantitative and qualitative attributes are introduced in

Section 2. In Section 3, the definitions of the fuzzy support

and the fuzzy confidence are proposed. We present the

proposed algorithm in Section 4. In Section 5, a numerical

example is presented to illustrate a detailed process for

finding the fuzzy association rules from a specified database

relation, demonstrating the effectiveness of the proposed

algorithm. Discussions and conclusions are presented in

Sections 6 and 7, respectively.

2. Fuzzy partition method

Notations used in this paper are stated as follows:

K: prespecified number of linguistic values in a

linguistic variable;

d: number of attributes of a database relation, where

1 # d;

k: dimension of a fuzzy grid, where 1 # k # d;

A
xm

K;im
: imth linguistic value of K various linguistic value

defined in xm, where 1 # im # K;

m
xm

K;im
: membership function of A

xm

K;im
;

tp: pth tuple of a database relation, where tp ¼

ðtp1
; tp1

;…; tpd
Þ and p $ 1.

Fuzzy set was proposed by Zadeh [16], and the division

of the features into various linguistic values has been widely

used in pattern recognition and fuzzy inference. From this,

various results have been proposed, such as application to

pattern classification by Ishibuchi et al. [10–12], the fuzzy

rules generated by Wang and Mendel [13], and methods for

partitioning feature space were also discussed by Sun [14]

and Bezdek [15].

In this paper, we view each attribute as a linguistic

variable, and the variables are divided into various linguistic

values. A linguistic variable is a variable whose values are

linguistic words or sentences in a natural language [17–20].

For example, the values of the linguistic variable ‘Age’ may

be ‘close to 30’ or ‘very close to 50’, and referred to as

linguistic values. Triangular membership functions are used

for each linguistic value defined in each quantitative

attribute for simplicity. Hence, each linguistic value is a

fuzzy number, which is a fuzzy subset in the universe of

discourse that is both convex and normal [20,21].

The cases for fuzzy partitioning in quantitative and

categorical attributes are introduced in Sections 2.1 and 2.2,

respectively.

2.1. Fuzzy partitioning in quantitative attributes

A quantitative attribute can be divided into K various

linguistic values ðK ¼ 2; 3; 4…Þ: For example, for
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the attribute ‘Age’ (range from 0 to 60), we describe K ¼ 2;

K ¼ 3 and K ¼ 4 in Figs. 1–3, respectively. Moreover,

A
Age
K;im

can be used to represent a candidate 1-dim fuzzy grid.

Then, m
Age
K;im

can be represented as follows:

m
Age
K;im

ðxÞ ¼ max{1 2 lx 2 aK
im
l=bK

; 0} ð1Þ

where

aK
im
¼ mi þ ðma 2 miÞ·ðim 2 1Þ=ðK 2 1Þ ð2Þ

bK ¼ ðma 2 miÞ=ðK 2 1Þ ð3Þ

where ma is the maximum value of the attribute’s domain,

and mi is the minimum value. It is clear that ma ¼ 60 and

mi ¼ 0 for ‘Age’. Generally, A
Age
K;im

can be described in a

linguistic sentence such as:

A
Age
K;1 : young; and below 60=ðK 2 1Þ ð4Þ

A
Age
K;K : old; and above ½60 2 60=ðK 2 1Þ� ð5Þ

A
Age
K;im

: close to ðim 2 1Þ·½60 2 60=ðK 2 1Þ�; and

between ðim 2 2Þ·½60 2 60=ðK 2 1Þ� and

im·½60 2 60=ðK 2 1Þ�; for 1 , im , K ð6Þ

A high-dimensional fuzzy grid can be further generated. For

example, if we divide both ‘Age’ (x1) and ‘Salary’ (x2) into

three linguistic values, then a feature space can be divided

into 3 £ 3 2-dim fuzzy grids, as shown in Fig. 4. For the

shaded 2-dim fuzzy grid shown in Fig. 4, we can use a 2-dim

fuzzy grid whose linguistic value is A
Age
3;1 £ A

Salary
3;3 to stand

for it. This concept is similar to the k-itemset used in

CLIQUE [9].

2.2. Fuzzy partitioning in qualitative attributes

Qualitative attributes of a relational database have a finite

number of possible values, with no ordering among values

(e.g. sex, color) [11]. If the distinct attribute values are n0 (n0 is

finite), then this attribute can only be partitioned by n0

linguistic values. For example, the linguistic sentence of each

linguistic value defined in ‘Sex’ can be stated as follows:

ASex
2;1 : male ð7Þ

ASex
2;2 : female ð8Þ

Each linguistic value distributed in either quantitative or

categorical attributes is viewed as a candidate 1-dim fuzzy

grid. The subsequent task is how to use these candidate 1-dim

fuzzy grids to generate the other large fuzzy grids and fuzzy

association rules. As we have mentioned above, the

definitions of fuzzy support and the fuzzy confidence must

be proposed.

3. Determine large fuzzy grids

After all candidate 1-dim fuzzy grids have been generated,

we need to determine how to find the other large fuzzy grids

and fuzzy association rules. The model for generating fuzzy

association rules is described in Fig. 5, from which we can see

that large fuzzy grids and fuzzy association rules are

generated by phases I and II, respectively.

Suppose each linguistic variable, xm, is divided into K

various linguistic values. Given a candidate k-dim fuzzy grid,

say A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
; the degree which tp

belongs to this fuzzy grid can be computed as

m
x1

K;i1
ðtp1

Þ·m
x2

K;i2
ðtp2

Þ· · ·m
xk21

K;ik21
ðtpk21

Þ·m
xk

K;ik
ðtpk

Þ:

To check whether this fuzzy grid is to be large or not, we

define its fuzzy support FSðA
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
A

xk

K;ik
Þ

Fig. 3. K ¼ 4 for ‘Age’.

Fig. 2. K ¼ 3 for ‘Age’.

Fig. 1. K ¼ 2 for ‘Age’.

Fig. 4. Both ‘Age’ and ‘Salary’ are divided into three linguistic values.
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as follows:

FSðA
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
Þ

¼
Xn

p¼1

m
x1

K;i1
ðtp1

Þ·m
x2

K;i2
ðtp2

Þ· · ·m
xk21

K;ik21
ðtpk21

Þ·m
xk

K;ik
ðtpk

Þ

2
4

3
5=n

ð9Þ

When FSðA
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
Þ is larger than

or equal to the user-specified minimum fuzzy support (i.e.

min FS), we can say that A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
is a large k-dim fuzzy grid. For any two large grids, say

A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
and A

x1

K;i1
£ A

x2

K;i2
£ · · · £

A
xk21

K;ik21
£ A

xk

K;ik
£ A

xkþ1

Kkþ1;jkþ1
; since mA

x1
K1 ;j1

£A
x1
K2 ;j2

£· · ·£A
xk21
Kk21 ;jk21

£

A
xk
Kk ;jk

£A
xkþ1
Kkþ1 ;jkþ1

ðtpÞ#mA
x1
K1 ;j1

£A
x1
K2 ;j2

£· · ·£A
xk21
Kk21 ;jk21

£A
xk
Kk ;jk

ðtpÞ from

Eq. (9), A
x1

K;i1
£A

x2

K;i2
£ · · ·£A

xk21

K;ik21
£A

xk

K;ik
£A

xkþ1

Kkþ1;jkþ1
#A

x1

K;i1
£

A
x2

K;i2
£ · · ·£A

xk21

K;ik21
£A

xk

K;ik
thus holds. It is clear that any

subset of a large fuzzy grid must also be large.

The general form of a fuzzy association rule, say R, can

be formulated as follows:

Rule R : A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xb
K;ib

) A
xbþ1

K;ibþ1
£ A

xbþ2

K;ibþ2
£ · · · £ A

xa21

K;ia21
£ A

xa
K;ia

with FCðRÞ; for 1 # a;b # d

ð10Þ

where FC(R ) is the fuzzy confidence of the above-

mentioned rule. The left-hand side of ‘ ) ’ is the antecedent

part of R, and the right-hand side is the consequent part.

The linguistic description of this rule is that: if x1 is A
x1

K;i1
and

x2 is A
x2

K;i2
and…and xb is A

xb
K;ib

; then xbþ1 is A
xbþ1

K;i
bþ1

and xbþ2

is A
xbþ2

K;ibþ2
and…and xa is A

xa
K;ia

:

Since R is generated by two large fuzzy grids (i.e.

A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xb
K;ib

£ A
xbþ1

K;ibþ1
£ · · · £ A

xa21

K;ia21
£ A

xa
K;ia

and

A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xb
K;ib

), we define its fuzzy confidence as

follows:

FCðRÞ ¼ FSðA
x1

K;i1
£A

x2

K;i2
£ · · ·£A

xb
K;ib

£A
xbþ1

K;ibþ1
£ · · ·

£A
xa21

K;ia21
£A

xa
K;ia

Þ=FSðA
x1

K;i1
£A

x2

K;i2
£ · · ·£A

xb
K;ib

Þ ð11Þ

If its fuzzy confidence is larger or equal to min FC, then it is

effective. The minimum fuzzy confidence is also user-

specified. Here, we give a simple example to demonstrate

how we generate the large 1-dim fuzzy grids.

3.1. Example

As shown in Fig. 6, the quantitative attribute ‘Age’

denoted by x1 was divided into three various linguistic

values. These three candidate 1-dim fuzzy grids could be

described as follows:

A
Age
3;1 : young

A
Age
3;2 : medium

A
Age
3;3 : old

The degrees which tp (1 # p # 12) belong to A
Age
3;1 ; A

Age
3;2

and A
Age
3;3 are shown in Table 1. We can thus compute the

fuzzy support of these three candidate 1-dim fuzzy grids:

FSðA
Age
3;1 Þ ¼

X12

p¼1

m
Age
3;1 ðtp1

Þ=12 ¼ 0:275 ð12Þ

FSðA
Age
3;2 Þ ¼

X12

p¼1

m
Age
3;2 ðtp1

Þ=12 ¼ 0:475 ð13Þ

FSðA
Age
3;3 Þ ¼

X12

p¼1

m
Age
3;3 ðtp1

Þ=12 ¼ 0:250 ð14Þ

If the user-specified minimum fuzzy confidence is 0.30, then

only A
Age
3;2 is the large 1-dim fuzzy grid.

In the subsequent section, an effective algorithm named

FGBRMA is proposed to discover the fuzzy association

rules.

Fig. 6. Attribute ‘Age’ is divided into three various linguistic values.Fig. 5. The model for generating fuzzy association rules.
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4. Fuzzy grids based rules mining algorithm

For the proposed algorithm, a table structure named

FGTTFS is implemented to generate large fuzzy grids. This

table consists of the following substructures:

(a) Fuzzy grids table (FG): each row represents a fuzzy

grid, and each column represents a linguistic value

A
xm

K;im
:

(b) Transaction table (TT): each column represents a tuple

tp, while each element records the membership degree

to which tp belongs to the corresponding fuzzy grid.

(c) Column FS: stores the fuzzy support corresponding to

the fuzzy grid in FG.

An initial tabular FGTTFS is shown as Table 2 as an

example, from which we can see that there are two tuples t1
and t2, and two attributes x1 and x2 in a given relation. Both

x1 and x2 are divided into two linguistic values. Since each

row of FG is a bits string consisting of 0 and 1, we can

apply Boolean operations on FG[u ] (i.e. the uth row of

FG) ¼ (FG[u,1], FG[u,2], FG[u,3], FG[u,4]) and FG[v ]

(i.e. the vth row of FG) ¼ (FG[v,1], FG[v,2], FG[v,3],

FG[v,4]) to generate some desired results. For example,

FG[1] OR FG[3] ¼ (1, 0, 0, 0) OR (0, 0, 1, 0) ¼ (1, 0, 1, 0),

corresponding to a candidate 2-dim fuzzy grid A
x1

2;1 £ A
x2

2;1;

is generated. Then, FSðA
x1

2;1 £ A
x2

2;1Þ ¼ TT½1�·TT½3� ¼

½m
x1

2;1ðt11
Þ·m

x2

2;2ðt12
Þ þ m

x1

2;1ðt21
Þ·m

x2

2;1ðt22
Þ�=2 is obtained to

compare with the min FS. However, any two linguistic

values defined in the same linguistic variable cannot be

contained in the same candidate k-dim fuzzy grid (k $ 2).

Therefore, both (1, 1, 0, 0) and (0, 0, 1, 1) are invalid.

Generally, a candidate k-dim fuzzy grid, say A
x1

K;i1
£

A
x2

K;i2
£ · · · £ A

xk21

K;ik21
£ A

xk

K;ik
; is derived by joining two large

(k 2 1)-dim fuzzy grids (i.e. A
x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk22

K;ik22
£

A
xk

K;ik
; and A

x1

K;i1
£ A

x2

K;i2
£ · · · £ A

xk22

K;ik22
£ A

xk21

K;ik21
) and these two

large grids share (k 2 2) linguistic values. For example,

we can use A
x1

3;2 £ A
x2

3;2 and A
x1

3;2 £ A
x3

3;3 to generate a candidate

3-dim fuzzy grid A
x1

3;2 £ A
x2

3;1 £ A
x3

3;3 because A
x1

3;2 £ A
x2

3;1 and

A
x1

3;2 £ A
x3

3;3 share the linguistic value A
x1

3;2: However, A
x1

3;2 £

A
x2

3;1 £ A
x3

3;3 can also be generated by joining A
x1

3;2 £ A
x2

3;1 to

A
x2

3;1 £ A
x3

3;3: This implies that we must select one of many

possible combinations to avoid redundant computations.

The method we adopt here is that if there exist integers e1,

e2,…, ek21, ek where 1 # e1 , e2 , · · · , ek21 , ek # d,

such that FG[u, e1] ¼ FG[u, e2] ¼ · · · ¼ FG[u,

ek22] ¼ FG[u, ek21] ¼ 1 and FG[v, e1] ¼ FG[v,

e2] ¼ · · · ¼ FG[u, ek22] ¼ FG[u, ek] ¼ 1, where FG[u ]

and FG[v ] correspond to large (k 2 1)-dim fuzzy grids,

then FG[u ] and FG[v ] can be paired to generate a candidate

k-dim fuzzy grid.

On the other hand, we still apply Boolean operations to

obtain the antecedent part and consequent part of each

rule. For example, if there exists FG[u ] ¼ (1, 0, 0, 0) and

FG[v ] ¼ (1, 0, 0, 1) corresponding to large fuzzy grids Lu

and Lv, where Lv , Lu, respectively; then the antecedent

part A
x1

2;1 and the consequent part A
x2

2;1 of one rule, say R,

can be obtained by computing (FG[u ] AND FG[v ]) (i.e.

(1, 0, 0, 0)) and (FG[u ] XOR FG[v ]) (i.e. (0, 0, 1, 0)),

respectively. FCðRÞ ¼ FSðA
x1

2;1 £ A
x2

2;1Þ=FSðA
x1

2;1Þ is further

obtained to compare with the min FC to determine

whether R is effective or not. FGBRMA is described as

follows.

Algorithm. Fuzzy grids based rules mining algorithm

Input: a. a specified database; b. the user-specified minimum

fuzzy support; c. and the user-specified minimum fuzzy

confidence.

Output: phase I: Generate large fuzzy grids; phase II:

Generate effective fuzzy association rules.

Method:

Phase I. Generate large fuzzy grids

Step 1. Perform the fuzzy partition

Step 2. Scan the database, and construct the initial table

FGTTFS

Step 3. Generate large 1-dim fuzzy grids

3-1. Set k ¼ 1 and eliminate the rows of initial

FGTTFS corresponding to the candidate 1-dim

fuzzy grids which are not large.

3-2. Reconstruct FGTTFS.

Step 4. Generate large k-dim fuzzy grids

Set k þ 1 to k. If there is only one (k 2 1)-dim

fuzzy grid, then go to Step 5.

Table 1

The degrees which tp (1 # p # 12) belong to A
Age
3;1 ; A

Age
3;2 A

Age
3;3

tp A
Age
3;1 A

Age
3;2 A

Age
3;3

t1 0.95 0.05 0.00

t2 0.00 0.90 0.10

t3 0.45 0.55 0.00

t4 0.00 0.10 0.90

t5 0.00 1.00 0.00

t6 0.00 0.20 0.80

t7 0.90 0.10 0.00

t8 0.00 0.80 0.20

t9 0.35 0.65 0.00

t10 0.00 0.95 0.05

t11 0.65 0.35 0.00

t12 0.00 0.05 0.95

Table 2

Initial tabular FGTTFS

Fuzzy grids FG TT FS

A
x1

2;1 A
x1

2;2 A
x2

2;1 A
x2

2;2 t1 t2

A
x1

2;1 1 0 0 0 m
x1

2;1ðt11
Þ m

x1

2;1ðt21
Þ FSðA

x1

2;1Þ

A
x1

2;2 0 1 0 0 m
x1

2;2ðt11
Þ m

x1

2;2ðt21
Þ FSðA

x1

2;2Þ

A
x2

2;1 0 0 1 0 m
x2

2;1ðt12
Þ m

x2

2;1ðt22
Þ FSðA

x2

2;1Þ

A
x2

2;2 0 0 0 1 m
x2

2;2ðt12
Þ m

x2

2;2ðt22
Þ FSðA

x2

2;2Þ

Y.-C. Hu et al. / Knowledge-Based Systems 16 (2003) 137–147 141



For any two unpaired rows, FGTTFS[u] and

FGTTFS[v] (u – v), corresponding to large

(k 2 1)-dim fuzzy grids do

4-1. From (FG[u ] OR FG[v ]) that corresponds to

a candidate k-dim fuzzy grid c, if any two

linguistic values are defined in the same

linguistic variable, then discard c and skip

Steps 4-2, 4-3 and 4-4. That is, c is invalid.

4-2. If FG[u ] and FG[v ] do not share (k 2 2)

linguistic terms, then discard c and skip Steps 4-3

and 4.4. That is, c is invalid.

4-3. If there exist integers 1 # e1 , e2 , · · ·

,ek such that (FG[u ] OR FG[v ])[e1] ¼ (FG[u ]

OR FG[v ])[e2] ¼ · · · ¼ (FG[u ] OR FG[v ])

[ek21] ¼ (FG[u ] OR FG[v ])[ek] ¼ 1, then com-

pute (TT[e1]· TT[e2]· · ·TT[ek]) and the fuzzy

support fs of c.

4-4. Add (FG[u ] OR FG[v ]) to table FG, (TT[e1]·

TT[e2]· · ·TT[ek]) to TT and fs to FS when fs is

larger than or equal to the min FS; otherwise,

discard c.

End

Step 5. Check whether or not any large k-dim fuzzy grid

is generated

If any large k-dim fuzzy grid is generated,

then repeat by going to Step 4, else continue

to execute the phase II. It is noted that that the

final FGTTFS only stores large fuzzy grid.

Phase II: Generate effective fuzzy association rules

For two unpaired rows, FG[u] and FG[v] (u , v),

corresponding to large fuzzy grids Lu and Lv respectively do

Step 1. Generate the antecedent part of the rule

1-1. Let temp be the number of nonzero elements

in (FG[u ] AND FG[v ]).

1-2. If the number of nonzero elements in FG[u ]

is equal to temp, then Lv , Lu is hold, and the

antecedent part of one rule, say R, is generated as

Lu; otherwise skip Steps 2 and 3.

Step 2. Generate the consequence of the rule

Use (FG[u ] XOR FG[v ]) to obtain the conse-

quent part of R.

Step 3. Check or not whether rule R can be generated

FCðRÞ ¼ FSðLvÞ=FSðLuÞ

If FC(R ) $ min FC, then R is effective.

End

It should be noted that the design of FGBRMA follows

that of the Apriori algorithm. In Section 5, a numerical

example is used to demonstrate the effectiveness of

FGBRMA.

5. Numerical example

A database relation EMP with 10 tuples tp (1 # p # 10)

is shown as Table 3. The purpose is to employ FGBRMA to

Table 4

An initial FG obtained from EMP

Fuzzy grids FG

A
Age
3;1 A

Age
3;2 A

Age
3;3 AMarried

2;1 AMarried
2;2 ANumcars

2;1 ANumcars
2;2 AIncome

3;1 · · · ACareer
4;3 ACareer

4;4

A
Age
3;1 1 0 0 0 0 0 0 0 · · · 0 0

A
Age
3;2 0 1 0 0 0 0 0 0 · · · 0 0

A
Age
3;3 0 0 1 0 0 0 0 0 · · · 0 0

AMarried
2;1 0 0 0 1 0 0 0 0 · · · 0 0

AMarried
2;2 0 0 0 0 1 0 0 0 · · · 0 0

ANumcars
2;1 0 0 0 0 0 1 0 0 · · · 0 0

ANumcars
2;2 0 0 0 0 0 0 1 0 · · · 0 0

A
Age
3;1 0 0 0 0 0 0 0 1 · · · 0 0

AIncome
3;2 0 0 0 0 0 0 0 0 · · · 0 0

AIncome
3;3 0 0 0 0 0 0 0 0 · · · 0 0

ACareer
4;1 0 0 0 0 0 0 0 0 · · · 0 0

ACareer
4;2 0 0 0 0 0 0 0 0 · · · 0 0

ACareer
4;3 0 0 0 0 0 0 0 0 · · · 1 0

ACareer
4;4 0 0 0 0 0 0 0 0 · · · 0 1

Table 3

Relation EMP

tp Age Married Numcars Income Career

t1 19 N 0 20 000 Student

t2 35 Y 1 50 000 Teacher

t3 23 N 1 33 000 Engineer

t4 33 Y 1 35 000 Engineer

t5 45 Y 1 50 000 Trader

t6 56 Y 1 45 000 Trader

t7 18 N 0 25 000 Student

t8 20 N 1 30 000 Engineer

t9 33 Y 1 35 000 Engineer

t10 35 Y 1 45 000 Trader
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find the fuzzy association rules from EMP. For simplicity,

some columns or rows of the subsequent tables are omitted

by ‘· · ·’.

Phase I. Generate large fuzzy grids

† Perform fuzzy partition

Since both ‘Age’ and ‘Income’ are quantitative attri-

butes, K ¼ 3 is considered for these two attributes for

simplicity. Also, suppose the domain interval of ‘Age’ is

[0,60], and that of Income is [15 000,60 000]. The linguistic

values used in this section are described as follows:

A
Age
3;1 : young; A

Age
3;2 : medium; A

Age
3;3 : old; AIncome

3;1 : low;

AIncome
3;2 : medium; AIncome

3;3 : high; AMarried
2;1 : Married;

AMarried
2;2 : Unmarried; ANumcars

2;1 : Owns zero car; ANumcars
2;2 :

Owns one car; ACareer
4;1 : student; ACareer

4;2 : teacher; ACareer
4;3 :

engineer; ACareer
4;4 : trader.

† Construct the initial table FGTTFS

After scanning EMP, the initial FGTTFS shown as

Tables 4 and 5 is built, from which we can see that all

candidate 1D fuzzy grids are generated.

† Generate large 1-dim fuzzy grids

Suppose the user-specified minimum FS is 0.3, those

1-dim fuzzy grids whose fuzzy supports are smaller than the

user-specified minimum FS can be removed from FGTTFS.

For simplifying the table structure, FGTTFS is recon-

structed as shown in Tables 6 and 7, respectively.

† Generate large 2-dim fuzzy grids

From Table 6, we can see that rows 1, 2, 3, 4, 5, 6 and 7

correspond to the large 1D fuzzy grids A
Age
3;2 ; AMarried

2;1 ;

AMarried
2;2 ; ANumcars

2;2 ; AIncome
3;2 ; ACareer

4;3 ; and ACareer
4;4 ; respectively.

The invalid fuzzy grids such as AMarried
2;1 £ AMarried

2;2 cannot be

inserted into FGTTFS.

To show how a large 2-dim fuzzy grid is generated, we

select A
Age
3;2 and AMarried

2;1 as an example. It is clear that FG[1]

and TT[1] corresponding to A
Age
3;2 are (1, 0, 0, 0, 0, 0, 0) and

(0.6333, 0.8333, 0.7667, 0.9000, 0.5000, 0.1333, 0.6000,

0.6667, 0.9000, 0.8333), respectively. Moreover, FG[2] and

TT[2] correspond to AMarried
2;1 are (0, 1, 0, 0, 0, 0, 0) and (0.0,

1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0), respectively. A

candidate 2D fuzzy grid A
Age
3;2 £ AMarried

2;1 is thus generated by

computing (FG[1] OR FG[2]) ¼ (1, 1, 0, 0, 0, 0, 0). The fuzzy

support (i.e. 0.4100) of A
Age
3;2 £ AMarried

2;1 can be further

obtained by computing (TT[1]·TT[2]) ¼ (0.0000, 0.8333,

0.0, 0.9000, 0.5000, 0.1333, 0.0000, 0.0000, 0.9000, 0.8333).

Since 0.4100 is larger than 0.3, A
Age
3;2 £ AMarried

2;1 is inserted to

FGTTFS. Large 2D fuzzy grids are sequentially inserted to

the bottom of FGTTFS. Those large 2-dim fuzzy grids that

can be inserted to FGTTFS are shown as Tables 8 and 9. We

can also see that A
Age
3;2 £ AMarried

2;1 is the eighth row of FGTTFS.

† Generate large 3-dim fuzzy grids

To show how a large 3-dim fuzzy grid is generated, we

select A
Age
3;2 £ AMarried

2;1 and A
Age
3;2 £ ANumcars

2;2 as an example. It

is clear that FG[8] and TT[8] corresponding to A
Age
3;2 £

AMarried
2;1 are (1, 1, 0, 0, 0, 0, 0) and (0.0000, 0.8333, 0.0000,

0.9000, 0.5000, 0.1333, 0.0000, 0.0000, 0.9000, 0.8333),

respectively. Moreover, FG[9] and TT[9] corresponding to

A
Age
3;2 £ ANumcars

2;2 are (1, 0, 0, 1, 0, 0, 0) and (0.0000, 0.8333,

0.7667, 0.9000, 0.5000, 0.1333, 0.0000, 0.6667, 0.9000,

0.8333), respectively. A candidate 3-dim fuzzy grid A
Age
3;2 £

AMarried
2;1 £ ANumcars

2;2 can be generated by computing (FG[8]

OR FG[9]) ¼ (1, 1, 0, 1, 0, 0, 0). Since A
Age
3;2 £ AMarried

2;1 and

Table 5

An initial TTFS obtained from EMP

TT FS

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.3667 0.0000 0.2333 0.0000 0.0000 0.0000 0.4000 0.3333 0.0000 0.0000 0.1333

0.6333 0.8333 0.7667 0.9000 0.5000 0.1333 0.6000 0.6667 0.9000 0.8333 0.6767

0.0000 0.1667 0.0000 0.1000 0.5000 0.8667 0.0000 0.0000 0.1000 0.1667 0.1900

0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.6000

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.4000

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.2000

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.8000

0.7778 0.0000 0.2000 0.1111 0.0000 0.0000 0.5556 0.3333 0.1111 0.0000 0.2089

0.2222 0.4444 0.8000 0.8889 0.4444 0.6667 0.4444 0.6667 0.8889 0.6667 0.6133

0.0000 0.5556 0.0000 0.0000 0.5556 0.3333 0.0000 0.0000 0.0000 0.3333 0.1778

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.2000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.4000

0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.3000

Table 6

Reconstruction of FG

Fuzzy grids FG

A
Age
3;2 AMarried

2;1 AMarried
2;2 ANumcars

2;2 AIncome
3;2 ACareer

4;3 ACareer
4;4

A
Age
3;2 1 0 0 0 0 0 0

AMarried
2;1 0 1 0 0 0 0 0

AMarried
2;2 0 0 1 0 0 0 0

ANumcars
2;2 0 0 0 1 0 0 0

AIncome
3;2 0 0 0 0 1 0 0

ACareer
4;3 0 0 0 0 0 1 0

ACareer
4;4 0 0 0 0 0 0 1
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A
Age
3;2 £ ANumcars

2;2 share A
Age
3;2 and no any two linguistic values

are defined in the same linguistic variable, therefore, we are

sure that c is valid. The fuzzy support (i.e. 0.3277) of A
Age
3;2 £

AMarried
2;1 £ ANumcars

2;2 can be further obtained by computing

(TT[1]·TT[2]·TT[4]) ¼ (0.0000, 0.6944, 0.0000, 0.8100,

0.2500, 0.0178, 0.0000, 0.0000, 0.8100, 0.6944). Since

0.3277 is larger than 0.3, A
Age
3;2 £ AMarried

2;1 £ ANumcars
2;2 is

inserted to FGTTFS. Large 3-dim fuzzy grids are also

sequentially inserted to the bottom of FGTTFS. Those large

3-dim fuzzy grids that can be inserted to FGTTFS are shown

as Tables 10 and 11.

† Generate large 4-dim fuzzy grids

It is clear that no any large 4-dim fuzzy grid can be

generated, we thus stop to generate large fuzzy grids and

continue to execute the phase II.

Phase II: Generate effective fuzzy association rules

When all large fuzzy grids are generated, fuzzy

association rules can be easily generated. If the minimum

Table 7

Reconstruction of TTFS

TT FS

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.6333 0.8333 0.7667 0.9000 0.5000 0.1333 0.6000 0.6667 0.9000 0.8333 0.6767

0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.6000

1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.4000

0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.8000

0.2222 0.4444 0.8000 0.8889 0.4444 0.6667 0.4444 0.6667 0.8889 0.6667 0.6133

0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.4000

0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.3000

Table 8

FG with large 2D fuzzy grids

Fuzzy grids FG

A
Age
3;2 AMarried

2;1 AMarried
2;2 ANumcars

2;2 AIncome
3;2 ACareer

4;3 ACareer
4;4

A
Age
3;2 £ AMarried

2;1 1 1 0 0 0 0 0

A
Age
3;2 £ ANumcars

2;2 1 0 0 1 0 0 0

A
Age
3;2 £ AIncome

3;2 1 0 0 0 0 0 0

A
Age
3;2 £ ACareer

4;3 1 0 0 0 0 1 0

AMarried
2;1 £ ANumcars

2;2 0 1 0 1 0 0 0

AMarried
2;1 £ AIncome

3;2 0 1 0 0 0 0 0

AMarried
2;1 £ ACareer

4;4 0 1 0 0 0 0 1

ANumcars
2;2 £ AIncome

3;2 0 0 0 1 1 0 0

ANumcars
2;2 £ ACareer

4;3 0 0 0 1 0 1 0

ANumcars
2;2 £ ACareer

4;4 0 0 0 1 0 0 1

AIncome
3;2 £ ACareer

4;3 0 0 0 0 1 1 0

Table 9

TTFS with large 2D fuzzy grids

TT FS

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.0000 0.8333 0.0000 0.9000 0.5000 0.1333 0.0000 0.0000 0.9000 0.8333 0.4100

0.0000 0.8333 0.7667 0.9000 0.5000 0.1333 0.0000 0.6667 0.9000 0.8333 0.5533

0.1407 0.3703 0.6134 0.8000 0.2222 0.0889 0.2666 0.4445 0.8000 0.5556 0.4302

0.0000 0.0000 0.7667 0.9000 0.0000 0.0000 0.0000 0.6667 0.9000 0.0000 0.3233

0.0000 1.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.6000

0.0000 0.4444 0.0000 0.8889 0.4444 0.6667 0.0000 0.0000 0.8889 0.6667 0.4000

0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.3000

0.0000 0.4444 0.8000 0.8889 0.4444 0.6667 0.0000 0.6667 0.8889 0.6667 0.5467

0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.4000

0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.3000

0.0000 0.0000 0.8000 0.8889 0.0000 0.0000 0.0000 0.6667 0.8889 0.0000 0.3245
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fuzzy confidence is 0.75, then fuzzy association rules with

individual fuzzy confidences that are extracted from EMP

are shown as Table 12. Obviously, the larger minimum fuzzy

confidence, the smaller number of fuzzy association rules.

The main purpose of this numerical example is to

demonstrate the effectiveness and usefulness of FGBRMA.

In fact, the meaning of the fuzzy terms can be changed by

linguistic hedge, as discussed in Section 6.

6. Discussions and analysis

In this paper, we propose the FGBRMA. As we have

explained above, FGBRMA consists of two phases: one to

generate the large fuzzy grids, and the other to generate the

fuzzy association rules. It seems that the proposed algorithm

is an efficient algorithm since it scans a database only once

and applies Boolean operations on tables to generate large

fuzzy grids and fuzzy association rules.

However, some significant topics must be discussed as

follows.

6.1. Use the linguistic hedge to change the meaning

of the fuzzy terms

The meaning of the linguistic values of a quantitative

attribute, say xm, can be changed by a linguistic hedge

[20,21], such as ‘very’ or ‘more or less’. For example,

ðA
xm

K;im
Þ0 ¼ very A

xm

K;im
¼ ðA

xm

K;im
Þ2 ð15Þ

ðA
xm

K;im
Þ00 ¼ more or less A

xm

K;im
¼ ðA

xm

K;im
Þ1=2 ð16Þ

The membership functions, shown as Fig. 7, of ðA
xm

K;im
Þ0 and

ðA
xm

K;im
Þ00 are ½m

xm

K;im
ðxÞ�2 and ½m

xm

K;im
ðxÞ�1=2; respectively.

It seems that these use of linguistic hedge will provide

usefully linguistic values, which will make the fuzzy

association rules discovered from the database more flexible

for the users.

Table 10

FG with large 3D fuzzy grids

Fuzzy grids FG

A
Age
3;2 AMarried

2;1 AMarried
2;2 ANumcars

2;2 AIncome
3;2 ACareer

4;3 ACareer
4;4

A
Age
3;2 £ AMarried

2;1 £ ANumcars
2;2 1 1 0 1 0 0 0

A
Age
3;2 £ ANumcars

2;2 £ AIncome
3;2

1 0 0 1 1 0 0

A
Age
3;2 £ ANumcars

2;2 £ ACareer
4;3 1 0 0 1 0 1 0

AMarried
2;1 £ ANumcars

2;2 £ AIncome
3;2

0 1 0 1 1 0 0

AMarried
2;1 £ ANumcars

2;2 £ ACareer
4;4 0 1 0 1 0 0 1

ANumcars
2;2 £ AIncome

3;2 £ ACareer
4;3

0 0 0 1 1 1 0

Table 11

TTFS with large 3D fuzzy grids

TT FS

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

0.0000 0.8333 0.0000 0.9000 0.5000 0.1333 0.0000 0.0000 0.9000 0.8333 0.4100

0.0000 0.3703 0.6134 0.8000 0.2222 0.0889 0.0000 0.4445 0.8000 0.5556 0.3895

0.0000 0.0000 0.7667 0.9000 0.0000 0.0000 0.0000 0.6667 0.9000 0.0000 0.3233

0.0000 0.4444 0.0000 0.8889 0.4444 0.6667 0.0000 0.0000 0.8889 0.6667 0.4000

0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.3000

0.0000 0.0000 0.8000 0.8889 0.0000 0.0000 0.0000 0.6667 0.8889 0.0000 0.3245

Table 12

Fuzzy association rules from EMP

Fuzzy association rules FC

A
Age
3;2 ) ANumcars

2;2 0.8176

ACareer
4;3 ) A

Age
3;2

0.8083

AMarried
2;1 ) ANumcars

2;2 1.0

ANumcars
2;2 ) AMarried

2;1
0.75

ACareer
4;4 ) AMarried

2;1 1.0

AIncome
3;2 ) ANumcars

2;2
0.8914

ACareer
4;3 ) ANumcars

2;2 1.0

ACareer
4;4 ) ANumcars

2;2
1.0

ACareer
4;3 ) AIncome

3;2 0.8113

A
Age
3;2 £ AMarried

2;1 ) ANumcars
2;2

0.7993

AMarried
2;1 £ AIncome

3;2 ) ANumcars
2;2

1.0

AMarried
2;1 £ ACareer

4;4 ) ANumcars
2;2

1.0

ANumcars
2;2 £ ACareer

4;4 ) AMarried
2;1

1.0

ANumcars
2;2 £ ACareer

4;3 ) AIncome
3;2

0.8113

AIncome
3;2 £ ACareer

4;3 ) ANumcars
2;2

1.0
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6.2. Define different number of linguistic values in each

quantitative attribute

The number of linguistic values defined in each

quantitative attribute need not be equal to K. For

example, ‘Age’ can be divided into three fuzzy sets,

and ‘Income’ can be divided into four fuzzy sets. Thus, a

fuzzy association rule such as A
Age
3;2 £ AIncome

4;1 ) A
Height
5;3

may be generated. In fact, decision makers

may specify possible linguistic values for one quantitat-

ive attribute by using their preferences or domain

knowledge.

6.3. Other topics

We do not restrict the shapes of the membership

functions defined in the quantitative attributes. That is,

trapezoid functions can also be used. In Lin and Lee [22],

and Jang [23], the adjustment of the membership functions

by learning from examples was proposed. Therefore, it

seems to be possible to refine the membership functions of

linguistic values by using various machine learning

techniques.

On the other hand, database mining problems involving

classification can be viewed within a common framework of

rule discovery [24]. Based on FGBRMA, it is feasible to

develop effective algorithms to discover the fuzzy classifi-

cation rules.

7. Conclusions

Fuzzy association rules described by the natural

language are well suitable for the thinking of human

subjects. Thus, fuzzy association rules will be helpful to

increase the flexibility for the users in making any

decisions or designing the fuzzy systems. Furthermore, it

seems that the goal of knowledge acquisition can be

achieved for users by checking the fuzzy classification

rules. Therefore, finding fuzzy association rules is

necessary.

In this paper, the definitions of fuzzy support and fuzzy

confidence for determining large fuzzy grids and effective

fuzzy association rules, respectively, are proposed. An

effective algorithm named FGBRMA consisting of two

phases is further proposed. From the numerical example

described in Section 5, we can see that the proposed

algorithm is effective and useful for finding fuzzy

association rule.

As we have mentioned in discussions, we can also use

various partition methods or the linguistic hedge to make the

fuzzy association rules discovered from the database more

flexible to decision makers.

References

[1] M. Berry, G. Linoff, Data Mining Techniques: For Marketing, Sales,

and Customer Support, Wiley, New York, 1997.

[2] J.W. Han, M. Kamber, Data Mining: Concepts and Techniques,

Morgan Kaufmann, San Francisco, 2001.

[3] E.H. Han, G. Karypis, V. Kumar, Scalable parallel data mining for

association rules, IEEE Transactions on Knowledge and Data

Engineering 12 (3) (2000) 337–352.

[4] R. Agrawal, T. Imielinski, A. Swami, Mining association rules

between sets of items in large databases, Proceedings of the ACM

SIGMOD International Conference on Management of Data, May

1993, pp. 207–216.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo,

Fast discovery of association rules, in: U.M. Fayyad, G. Piatetsky-

Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge

Discovery and Data Mining, AAAI Press, Menlo Park, 1996,

pp. 307–328.

[6] S.Y. Wur, Y.H. Leu, An effective boolean algorithm for mining

association rules in large databases, 6th International Conference on

Database Systems for Advanced Applications (DASFAA), Hsinchu,

Taiwan, April 1999, pp. 19–21.

[7] R. Srikant, R. Agrawal, Mining quantitative association rules in

large relational tables, Proceedings of the ACM SIGMOD

International Conference on Management of Data, June 1996,

pp. 1–12.

[8] T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama, Mining

optimized association rules for numeric attributes,

Proceedings of Fifteenth ACM SIGACT–SIGMOD–SIGART

Symposium on Principles of Database Systems, June 1996, pp.

182–191.

[9] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic

subspace clustering of high dimensional data for data mining

applications, Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 1998, pp. 94–105.

[10] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data

clustering method for very large databases, Proceedings of the ACM

SIGMOD International Conference on Management of Data, June

1996, pp. 103–114.

[11] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting

fuzzy if–then rules for classification problems using genetic

algorithms, IEEE Transactions on Fuzzy Systems 3 (3) (1995)

260–270.

[12] H. Ishibuchi, K. Nozaki, H. Tanaka, Distributed representation of

fuzzy rules and its application to pattern classification, Fuzzy Sets and

Systems 52 (1) (1992) 21–32.

[13] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from

examples, IEEE Transactions on Systems, Man, and Cybernetics 22

(6) (1992) 1414–1427.

[14] C.T. Sun, Rule-base structure identification in an adaptive-network-

based fuzzy inference system, IEEE Transactions on Fuzzy Systems 2

(1) (1994) 64–73.

[15] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function

Algorithms, Plenum Press, New York, 1981.

[16] L.A. Zadeh, Fuzzy sets, Information Control 8 (3) (1965) 338–353.

Fig. 7. Linguistic hedge for A
xm

K;im
:

Y.-C. Hu et al. / Knowledge-Based Systems 16 (2003) 137–147146



[17] L.A. Zadeh, The concept of a linguistic variable and its application to

approximate reasoning, Information Science (Part 1) 8 (3) (1975)

199–249.
[18] L.A. Zadeh, The concept of a linguistic variable and its application to

approximate reasoning, Information Science (Part 2) 8 (4) (1975)

301–357.

[19] L.A. Zadeh, The concept of a linguistic variable and its application to

approximate reasoning, Information Science (Part 3) 9 (1) (1976)

43–80.
[20] S.M. Chen, W.T. Jong, Fuzzy query translation for relational database

systems, IEEE Transactions on Systems, Man, and Cybernetics 27 (4)

(1997) 714–721.

[21] W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets: Analysis and

Design, MIT Press, Cambridge, MA, 1998.

[22] C.T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic control and

decision system, IEEE Transactions on Computers 40 (12) (1991)

1320–1336.

[23] J.S.R. Jang, Self-learning fuzzy controllers based on temporal back

propagation, IEEE Transactions on Neural Networks 3 (5) (1992)

714–723.

[24] R. Agrawal, T. Imielinski, A. Swami, Database mining: a perform-

ance perspective, IEEE Transactions on Knowledge and Data

Engineering 5 (6) (1993) 914–925.

Y.-C. Hu et al. / Knowledge-Based Systems 16 (2003) 137–147 147


	Discovering fuzzy association rules using fuzzy partition methods
	Introduction
	Fuzzy partition method
	Fuzzy partitioning in quantitative attributes
	Fuzzy partitioning in qualitative attributes

	Determine large fuzzy grids
	Example

	Fuzzy grids based rules mining algorithm
	Numerical example
	Discussions and analysis
	Use the linguistic hedge to change the meaning &?show [br];of the fuzzy terms
	Define different number of linguistic values in each quantitative attribute
	Other topics

	Conclusions
	References


