
AgentGateway: A communication tool
for multi-agent systems

Jason Jen-Yen Chen a,*, Shih-Wei Su b

a Department of Computer Science and Information Engineering, National Central University,

Jung-Li, Taiwan
b Department of Computer Science and Information Engineering, National Chiao-Tung University,

Hsin-Chu, Taiwan

Received 30 December 2001; received in revised form 17 March 2002; accepted 4 July 2002

Abstract

With the rapid growth of multi-agent systems (MAS), there is a pressing need to

communicate between different MAS. Various MAS communication standards have

been proposed. However, MAS is usually designed to meet special need, thus making it

difficult to follow a standard. This paper presents a tool called AgentGateway trying to

solve this problem using a simple, effective approach. The tool translates messages from

one MAS to intermediate XML-based messages, which then are translated to messages

for another MAS. AgentGateway is scalable, meaning that new MAS can easily join it.

Furthermore, it provides transparent and reliable communication. A prototype is de-

veloped that shows communication between two MAS, namely, Java Agent Template

Lite (JATLite) and OAA, can be done using this approach.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Software agent; Multi-agent system; Agent communication language

1. Introduction

Agent is a new and powerful software abstraction with: (1) autonomy, that

is, agent controls its behavior and internal states, (2) social ability, meaning

Information Sciences 150 (2003) 153–164

www.elsevier.com/locate/ins

*Corresponding author. Tel.: +886-3-4227151x4515; fax: +886-3-4222681.

E-mail addresses: jychen@csie.ncu.edu.tw (J.J.-Y. Chen), swsuh@csie.nctu.edu.tw (S.-W. Su).

0020-0255/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0020 -0255 (02)00374 -2

mail to: jychen@csie.ncu.edu.tw

that through agent communication language (ACL), agent is able to collabo-

rate with other agents, and (3) reactivity, meaning that agent senses environ-

ment, including other agents� states, and reacts accordingly. In one sense,

autonomy results from reactivity. The rationale is that agent behaves auton-
omously by reacting to its environment, rather than behaves passively by re-

ceiving messages as in object abstraction. As for ACL, commonly seen ones

include Knowledge Query and Manipulation Language (KQML) [2], Foun-

dation for Intelligent Physical Agents (FIPA) [3], and so on.

Let us explore the power of agent from software engineering perspective.

Large and complex distributed systems are always bothered by interoperation

problem, because heterogeneous components in those systems involve different

developers, different languages, and different interfaces. Let us envision that
each component can be developed as an agent, and all the agents can com-

municate through some ACL, the system can then be decomposed into rela-

tively autonomous agents [1].

A software system composed of multiple agents is called a multi-agent

system (MAS). From distributed problem solving viewpoint, MAS is regarded

as:

A MAS is a loosely coupled network of problem-solver entities that work
together to find answers to problems that are beyond the individual capa-

bility or knowledge of each entity [4].

A more general meaning of MAS is that it is composed of autonomous

components (agents) such that [5]:

• each agent has incomplete capability to solve a problem;

• there is no global system control;

• data is decentralized; and,
• computation is asynchronous.

As just mentioned, each agent in MAS has its own capability and knowl-

edge. Collectively, agents collaborate to solve a problem. When a new agent

joins the MAS, the agent will declare its needs and capabilities. Hopefully, it

will find the agent providing the service it needs through a system program

called middle agent [6]. Middle agent can assist agent to advertise, find, use,

manage, and update agent services and information. There are many kinds of

middle agents such as Facilitators [7], Mediators [8], Brokers [9], Matchmakers
[10], Yellow pages [9], and Blackboards [11]. They are so roughly defined that

sometimes it is difficult to distinguish one from another.

Recently, MAS by different developers has increased rapidly. Thus, a

mechanism is definitely needed to make agents of different MAS interoperable.

Several independent industrial or research groups have begun to pursue the

standardization of multi-agent technology. However, because that MAS is

often designed to meet special need and requirement, a MAS usually cannot

154 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

conform to any standard whatsoever. To solve that, this paper presents a

simple and effective tool called AgentGateway. The tool enables agents to

access services and information provided by agents of different MAS. Note that

communication within one MAS is not the issue to be addressed here.
Design considerations of AgentGateway are:

1. AgentGateway should be scalable so that a new MAS can easily join to

share information and capabilities. To facilitate that, there should be an in-

termediate agent communication language that different ACL can be trans-

lated to.

2. Agent communication between different MAS should be transparent. In

other words, an agent can communicate with agents in different MAS with-

out knowing the existence of other MAS. By doing so, MAS need not be
modified for the purpose of communication.

3. AgentGateway should be reliable. AgentGateway is responsible for agent

communication between different MAS, and all replies and queries will be

transmitted through it. Thus, AgentGateway should be robust enough to

ensure that messages will not get lost in transmission.

Besides, AgentGateway should register agent capabilities to other MAS so

that agents can access capabilities of other MAS. Furthermore, because of

open architecture of MAS, agent can join or leave MAS at any time. Therefore,
the registration should be done in real-time manner.

This paper is organized as follows. Section 2 introduces MAS communi-

cation standards and related work. Architecture of this tool, including the

XML-based ACL, and some considerations regarding implementation are

depicted in Section 3. Then, an example in Section 4 illustrates the commu-

nication between two different MAS in details. Finally, benefits of this tool are

concluded in Section 5.

2. Related work

Recently, several research groups started to standardize MAS. They include

Object Management Group (OMG), the FIPA, and the Knowledgeable Agent-

oriented System (KAoS) group.
OMG proposed a reference model [12], which describes an agent environ-

ment as composed of agents and agencies (the environment where agents live).

In the model, agents are described based on their capabilities, types of inter-

action supported, and mobility. Agents are capable of communicating with

other agents and agencies through pre-defined policies of interaction. An

agency should support concurrent execution, security, and mobility of its

agents.

FIPA proposes another reference model [13] which specifies the standard
environment in which an agent can live and work, including an agent platform

J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164 155

that specifies agents deployment and interaction, and an agent management

system that describes agents� creation, deletion, suspension, and resumption.

KAoS [10] describes the implementation of agent, and the planning of

agent-to-agent communication protocol using agent conversation policies. In
addition, KAoS provides a mechanism for KAoS agents and non-KAoS agents

to communicate with each other, and an agent structure to manage beliefs,

desires, intensions, and capabilities of agents.

However, as mentioned earlier, a MAS is designed to meet special need and

requirement. Thus, design of MAS usually cannot conform to any standard.

Consequently, such MAS will not be able to communicate with other MAS

through a standard. To solve that, we try taking another approach of non-

standardized agent communication. RETSINA–OAA InterOperator (ROI) [14]
is a good example using this approach. ROI is an interoperate agent between

two MAS, namely, RETSINA [15] and Open Agent Architecture (OAA) [16].

This tool called AgentGateway uses the approach similar to that of ROI.

However, the two differ in three regards as below:

(1) Scalability: ROI focuses only on two specific MAS, namely, RETSINA

and OAA, which lacks flexibility to expand. ROI should be redesigned if it is

needed to communicate with MAS other than the two. On the other hand,

AgentGateway is scalable, meaning that different communication interfaces
can be designed to handle different MAS. In addition, AgentGateway uses

XML-based intermediate ACL. Since XML is simple and well formed, it is easy

for agents to understand the meaning and relationship of message constructed

by XML. This facilitates designing different interfaces for various MAS.

(2) Transparency: The first two of three layers of ROI are: (1) MAS-specific

Agent Session Layer that maintains agent communication session and proto-

col, (2) MAS-specific API Layer that provides different libraries of MAS for

the development of particular system, such as Communicator of RETSINA
and Agent Library of OAA. Thus, Agents in RETSINA and OAA can com-

municate without being aware of the existence of each other. ROI is treated as

an agent in both RETSINA and OAA. Thus, architecture of either one need

not be modified. Similarly, AgentGateway follows the communication protocol

of MAS, and uses library API provided by different MAS to maintain system

boundary of different agent systems.

AgentGateway thus has the advantage of transparency, because it hides the

detailed process of messages translation and transmission to make agents be-
lieve as if they were communicating only with AgentGateway.

(3) Reliability: AgentGateway keeps agent communication messages and

MAS service records in the database. When a message gets lost or Agent-

Gateway crashes, the communication message can be resent based on those

data. The query table in ROI does similar things. There are three tables in the

top layer of ROI, namely: (1) OAA–RETSINA Query Table, (2) RETSINA–

OAA Query Table (ROQT), and (3) Persistent Query Table. The first two

156 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

tables record communication messages, respectively, from OAA to RETSINA

and from RETSINA to OAA. The third table is simply a variant of the second

table. It is used when there are multiple facilitators in OAA. One difference

between ROI and AgentGateway is that the latter records the messages to be
used later, while the former does not seem to record them.

3. AgentGateway architecture

In this section, firstly, XML-based ACL is introduced. Next, tool ar-

chitecture of AgentGateway is described, followed by its current implemen-

tation.

3.1. XML-based agent communication language

Extensible markup language (XML) [17] has quickly become a standard for

information exchange over the web. That is exactly the reason why it is chosen

in this paper as the message format for MAS communication. Actually, an
XML document is an information container, which contains reusable and

customizable components that can be used by the agent receiving a message.

Also, new message types can be defined by the XML format. Because that

XML-based communication message can be understood by agent and that it

can be used to easily define new message, better interoperability can thus be

expected.

There are three components of this XML-based ACL: (1) parameters of

agent communication such as sender, receiver, and so on; (2) the message in-
formation; and (3) the actual content of message (see Fig. 1).

Fig. 1 shows a message in XML-based ACL. In Fig. 1, <Message> denotes

the message where ‘‘id’’ denotes message id. The whole message contains

<COM>, <MSG>, and <CONTENT> three components. <COM> specifies

the parameters of communication such as ‘‘sender’’ for sender agent, ‘‘receiver’’

for receiver agent, ‘‘from’’ for original agent, and ‘‘to’’ for destination agent.

<ACT> denotes agent�s action. <InReplyTo> denotes identifier of the message

that triggered this message submission.
<MSG> describes some information about message, including <LANG>

for language used by message content (KQML in this example), and <ON-

TOLOGY> for domain knowledge associated with message (ONTOLOGY-1

in this example). And <CONTENT> denotes actual content of message.

Ontology refers to a set of vocabularies. A vocabulary consists of a word set

that describes attributes and actions for an application domain, and how the

agent system uses the vocabulary to structure interactions and access services

[1]. Note that ontology is not included in either RETSINA or OAA. Thus, it is
not addressed in this prototype.

J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164 157

3.2. Tool architecture

AgentGateway is composed of three parts as shown in Fig. 2 (note that

agent A belongs to MAS 1, and agent B belongs to MAS 2):

(1) Communication: This part contains communication interfaces to handle

communication with different MAS. If an MAS needs to communicate with
multiple MAS, one specific communication interface should be prepared for

each.

(2) Message: This part contains translators, Message History, and Agent

Service Registry. The translator will translate a message of another ACL into

the XML-based ACL. Message History keeps these messages. When a message

gets lost or AgentGateway crashes, the message can be resent based on what is

kept. The Message History is directional, meaning that messages from MAS 1

to MAS 2 and those from MAS 2 to MAS 1 are kept separately. Agent Service
Registry records services provided by the MAS. Both Message and Agent

Service Registry can be stored externally in databases.

(3) Management: This part contains a web server through which manager

can access messages and services in Message History and Agent Service His-

tory, respectively.

When using AgentGateway, it will register itself to both MAS, request

service lists of both MAS, record those services in Agent Service Registry,

and register services of one MAS to another MAS. For example, Agent-
Gateway will register services provided by MAS 1 to MAS 2, and similarly,

MAS 2 to MAS 1. By doing so, agent in MAS 1 will regard the services

provided by MAS 2 as provided by AgentGateway. Similar thing holds for

agent in MAS 2.

Fig. 1. A message in XML-based ACL.

158 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

Therefore, when agent A requests a service from AgentGateway. The re-
quest will be sent to the communication interface to be translated first to in-

termediate ACL, then to ACL of MAS 2 by the translator. The result of

translation will be sent to agent B where the service is actually provided. After

agent B finishes processing the service, the service result is sent back to agent A

via the same route.

All the messages in AgentGateway will be recorded in Message History,

through which AgentGateway can maintain the state of communication be-

tween two different MAS.
Because that new agents join, and old agents leave, an MAS all the time,

services provides by an MAS are ever changing. Therefore, AgentGateway will

constantly monitor current services provided by each MAS, and adjust its

Agent Service Registry accordingly.

3.3. Implementation

The current implementation establishes communication between JATLite

[18] and OAA.

JATLite is aMAS developed by Stanford University using Java. It provides a

basic infrastructure upon which agents use name and password to register with

Fig. 2. AgentGateway architecture.

J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164 159

Agent Message Router facilitator. It adopts KQML as ACL. Agent commu-

nication is built upon open Internet standards, TCP/IP, SMTP, and FTP.

On the other hand, OAA is an MAS developed by SRI. In OAA, the fa-

cilitator agent manages all communication among agents. That is, agent
communication has to go through the facilitator agent. Agents do not com-

municate directly. And OAA adopts Prolog-based Inter-agent Communication

Language (ICL) as ACL. Next, we like to discuss some implementation con-

siderations.

3.3.1. Architecture considerations

Differences in MAS architectures should be taken into consideration in
designing communication interface. For example, in JATLite, when an agent

requests a service, it first requests services list from Agent Message Router.

From the services list, the agent that provides the service can be located. Then,

service request is sent directly to that agent to complete the service. Thus, the

requesting agent needs to know the name of the service provider agent re-

corded in Service Registry in AgentGateway.

On the other hand, in OAA, all communication messages have to go

through facilitator. An agent simply sends request to facilitator that will au-
tomatically sends the request to the agent that provides the service, if the agent

has registered the service into facilitator. And facilitator will send the result

back to the requesting agent. AgentGateway regards facilitator as the provider

of all the services.

Regarding service monitoring, AgentGateway should constantly query the

Message Router of JATLite to get the latest services list. In OAA, a trigger

mechanism is provided that performs some action upon some condition. Every

agent can install a trigger on itself or other agents. Taking advantage of this
mechanism, AgentGateway installs a trigger on OAA facilitator in such a way

that when services data in facilitator changes, the trigger will send the latest

data to AgentGateway. By doing so, AgentGateway is guaranteed to have the

latest services list.

3.3.2. Message translation considerations

The way AgentGateway supports message translation between JATLite and
OAA agents is to translate KQML messages by JATLite and Prolog-based

messages by OAA to the intermediate XML-based messages.

OAA messages use the following Prolog format:

Solvable (Goal, Parameters, Permissions)

where ‘‘Solvable’’ is used to advertise capabilities of agents, ‘‘Goal’’ reports

what queries the agent should solve, while ‘‘Permissions’’ specify limits to ac-
cess. For example, the solvable list of a mail agent may look like this:

160 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

[solvable (send (mail, ToPerson, Msg), [callback (send_mail)], []), solvable

(get_message (MessageNum, Msg), [callback (get_mail)], [])]).

On the other hand, the message format of JATLite agent looks like:

ServiceName Parameters

Let us take a look at the ‘‘get_message (MessageNum, Msg)’’ service of the

mail agent example above. JATLite agent sends this request as follows:

get_message 3001 ‘‘This is a test’’

After translation, it looks like this:

solvable (get_message (3001,’’This is a test’’))

OAA agent maps two variables ‘‘MessageNum’’ and ‘‘Msg’’ into ‘‘3001’’

and ‘‘This is a test’’, respectively, and then handles this message.

4. An example

In this section, a detailed example is used to illustrate the process of com-

munication in which a JATLite agent requests a service provided by an OAA

agent (see steps (1) through (8) in Fig. 3).

Initial step: When AgentGateway starts, it will register to JATLite Router
and OAA Facilitator, request latest services list, and cross-register services to

another system.

Step 1: JATLite agent sends a message to JATLite Router to ask for a

calculation service. And the content of message is ‘‘ Calculateþ 3 5’’.

Step 2: The router thought the service were provided by AgentGateway, and

returns the address of AgentGateway. Actually, OAA agent provides the ser-

vice.

Steps 3, 4: JATLite agent sends a request to AgentGateway (Step 3). Upon
receiving the request, AgentGateway translates it to XML-based message (see

Fig. 4). Then, AgentGateway finds service provider agent, and agent system it

resides, from Service Registry. In OAA, Facilitator provides all the services.

AgentGateway translates XML-based message to OAA ICL, and then trans-

mits it to Facilitator (Step 4).

Steps 5, 6, 7: Facilitator receives the request, forwards it to OAA agent (the

actual provider of calculation service) for processing (Step 5), gets the result

returned from OAA agent (Step 6), and returns the result to AgentGateway
(Step 7).

J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164 161

Step 8: AgentGateway gets the result, finds the original sender, translates

the message, and sends it back to the original sender.

From the viewpoint of JATLite agent, AgentGateway provides the service in

the process of message transmission and translation. On the other hand, from

the viewpoint of OAA Facilitator, AgentGateway makes the request. This

explains why the communication is transparent.

5. Conclusions

With the rapid growth of MAS over the Internet, there definitely is a

pressing need to be able to communicate among different MAS. One apparent

solution is to follow a communication standard. Standards such as OMG,
FIPA, KAoS, and so on have been proposed in that regard. Unfortunately,

Fig. 3. A JATLite agent requests a service by an OAA agent.

Fig. 4. Message translation.

162 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

most MAS at present do not conform to any standard due to their special

needs. Therefore, this paper proposes an entirely different approach without

using a standard.

A tool called AgentGateway is prototyped that translates agent communi-
cation messages from one MAS to an XML-based intermediate message, which

is then translated to messages for another MAS. This prototype shows that

communication between two MAS, namely, JATLite and OAA can be done

using this approach. Three benefits of this tool can be expected:

(1) Scalable architecture: The XML-based communication message is used

as intermediate ACL in this tool. For each MAS there is one communication

interface that translates messages of the MAS to the XML-based messages.

Assuming that the tool currently handles MAS 1 and MAS 2, and a new MAS
3 joins in. All you need to do is to build one communication interface for MAS

3, and one translator (that translates MAS 3 messages to the XML-based

messages). Thus, new MAS can easily join in this tool.

(2) Transparent communication: Since this tool hides communication details,

agents thought they were communicating only with this tool, without being

aware of the existence of other MAS. Thus, MAS need not be modified for the

purpose of communication. This transparency of communication clearly sim-

plifies maintenance of the tool. Moreover, this communication is likely to serve
as a basis for building high-level intelligent social behavior among MAS.

(3) Reliable message transmission: Since this tool keeps all the messages in

persistent databases, in case that a crash occurs, a message can be resent based

on what is kept in databases. This is expected to guarantee reliable commu-

nication.

Acknowledgements

The authors wish to thank supports of the Ministry of Education in Taiwan

under project no.: EX-91-E-FA06-4-4.

References

[1] M.L. Griss, G. Pour, Accelerating development with agent components, IEEE Computer

(2001) 37–43.

[2] T. Finin, Y. Labrou, J. Mayfield, KQML as an agent communication language, Proceedings of

the 3rd International Conference on Information and Knowledge Management (CIKM�94),
1994.

[3] Foundation for Intelligent Physical Agents, FIPA 97 Specification Part 2: Agent Communi-

cation Language, Ver. 1.2, 1997.

[4] E.H. Durfee, V.R. Lesser, Corkill, Trends in cooperative distributed problem solving, IEEE

Transactions on Knowledge and Data Engineering KDE-1 (1) (1989) 63–83.

J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164 163

[5] N.R. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent research and development,

Autonomous Agents and Multi-Agent Systems Journal 1 (1998) 7–38.

[6] K. Decker, K. Sycara, M. Williamson, Middle-agents for the Internet, Proceedings of the

International Joint Conferences on Artificial Intelligence (IJCAI-97), 1997.

[7] J.M. Bradshaw, S. Dutfield, P. Benoit, J.D. Woolley, An Introduction to software agents, in:

Software Agents, AAAI Press, 1997, pp. 3–46.

[8] G. Wiederhold, Mediators in the architecture of future information systems, IEEE Computer

(1992) 38–49.

[9] K. Decker, K. Sycara, M. Williamson, Matchmaking and brokering, Proceedings of the

Second International Conference on Multi-Agent Systems (ICMAS-96), December 1996.

[10] J.M. Bradshaw, S. Dutfield, P. Benoit, J.D. Woolley, KAoS: Toward an industrial-strength

open agent architecture, Software Agents (1997) 375–418.

[11] H.P. Nii, Blackboard systems, in: The Handbook of Artificial Intelligence, vol. IV, 1982, pp. 1–

82 [Chapter XVI].

[12] S. Virdhagriswaran, D. Osisek, P. O�Connor, Standardizing agent technology, ACM

StandardView 3 (3) (1995) 96–101.

[13] Foundation for Intelligent Physical Agents, FIPA �97 Specifications Part 1: Agent Manage-

ment, Ver. 1.2, 1997.

[14] Joseph A. Giampapa, Massimo Paolucci, Katia Sycara, Agent interoperation across multagent

system boundaries, Proceedings of the Fourth International Conference on Autonomous

Agents, 2000.

[15] K. Sycara, K. Decker, A. Pannu, M. Williamson, D. Zeng, Distributed intelligent agents, IEEE

Expert, Intelligent Systems and their Applications (1996) 36–45.

[16] D. Martin, A. Cheyer, D. Moran, The open agent architecture: A framework for building

distributed software systems, Applied Artificial Intelligence 13 (1–2) (1996) 92–128.

[17] Extensible Markup Language. http://www.w3.org/XML.

[18] H. Jeon, C. Petrie, M.R. Cutkosky, JATLite: a Java agent infrastructure with message routing,

IEEE Internet Computing 4 (2000) 87–96.

164 J.J.-Y. Chen, S.-W. Su / Information Sciences 150 (2003) 153–164

http://www.w3.org/XML

	AgentGateway: A communication tool for multi-agent systems
	Introduction
	Related work
	AgentGateway architecture
	XML-based agent communication language
	Tool architecture
	Implementation
	Architecture considerations
	Message translation considerations

	An example
	Conclusions
	Acknowledgements
	References

