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A critical aspect of wire bonding is the quality of the bonding strength that contributes the major part
of yield loss to the integrated circuit assembly process. This paper applies an integrated approach
using a neural networks and genetic algorithms to optimize IC wire bonding process. We first use a
back-propagation network to provide the nonlinear relationship between factors and the response
based on the experimental data from a semiconductor manufacturing company in Taiwan. Then, a
genetic algorithms is applied to obtain the optimal factor settings. A comparison between the
proposed approach and the Taguchi method was also conducted. The results demonstrate the

superiority of the proposed approach in terms of process capability.
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1. Introduction

The packaging of integrated circuit (IC) chips often
affects significantly overall electrical performance,
reliability, and cost. In recent times, the major cause
of failure in IC packaging has been the wire bonding
(Fig. 1) (Rich, 1999). To prevent the facilities from
producing unreliable products, failure in semicon-
ductor packaging, especially in wire bonding, must be
eliminated. Wire bonding today is applied throughout
the semiconductor industry as a means of connecting
the chips, the substrates and the output pins. Wire
bonding designs include ultra fine pitch and cavity-up,
which can dissipate heat from the die through the
substrate and interconnect. Because of the intrinsic
design, bond pads and outer-lead pads of IC packages
are technically difficult to bond. Moreover, most wire
bonding processes are designed for high I/O counts,
normally reaching up to 500 leads. As a result, these
processes demand both fine-pitch (<85 um) wire
bonding and require long wire lengths, straight loops

as well as small first and second bond areas. With the
requirements of high I/O count, fine pitch wire bonds,
and long wire lengths, wire bonding in an IC assembly
becomes critical. Optimizing a manufacturing process
for the wire bonding technology requires a thorough
study of all parameters relating to wire bonding.
Wire bonding is used throughout the semiconductor
industry as a means of interconnecting the dies,
substrates and I/O pins. Figure 2 depicts the
mechanism of wire bonding. The wire bonding
process begins with targeting the capillary on the
bond pad and then positions above the die with a ball
of which it is formed on the end of the wire. The
capillary descends, forcing the ball in contact with the
die. An inside cone, or radius, grips the ball and forms
the bond. In a thermosonic system, ultrasound
vibration is then applied. After the ball is bonded to
the die, the capillary raises to the position of loop
height. The clamps are open and the wire is free to
feed out the end of the capillary. The lead of the
device is positioned under the capillary, which is then
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Fig. 1. Flow chart and its corresponding yield loss for IC assembly.

lowered to the lead. The wire is fed out the end of the
capillary, forming a loop. The capillary deforms the
wire against the lead producing a wedge-shaped bond,
which has a gradual transition into the wire. The
capillary then raises away from the lead and leaves the
stitch bond. At a pre-set height the clamps are closed,
while the capillary is still rising with the bonding lead.
This prevents the wire from feeding out the capillary
and pulls at the bond. The wire will break at bond’s
thinnest cross section. A new ball is formed on the tail
of the wire, which extends from the end of the
capillary. A hydrogen flame or an electronic spark
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Fig. 2. The mechanism of wire bonding process.
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may be used to form the ball. The cycle is completed
to be ready for the next ball bond.

The objective of wire bonding operation is to
develop a high yield interconnect and low wire sweep
process with a sufficient long-term reliability to
satisfy customers. Wire bonding failures can attribute
to many different causes, however, considerable
evidence indicates that insufficient bonding strength
is one of the main causes. Figures 3 and 4 show some
defect pictures of wire bonding. To achieve a high
standard of performance and quality for wire bonding,
it is necessary to accurately identify and control
appropriate parameters with respect to bonding
process.

The task of the process engineers is to identify and
control these parameters to obtain the desired wire
bonding quality based on either their experience or
equipment vender’s recommendation to optimize
response factors (e.g., maximum ball shear strength).
Therefore, many industry practitioners have made
their efforts in setting up tests to model actual field
conditions and to find the cause-effect relationship of
design to performance. However, their knowledge is
limited in terms of providing a nonlinear relationship
between control parameters and responses and
searching for the optimum parameter settings. This
task is complicated and difficult because wire bonding
is a coupled multivariable system, which makes the
adjustment of any single parameter inevitable without
affecting the other ones within the system. Therefore,
this multivariate operation reveals the necessities of
having an intelligent system to be used for evaluating
the process and determining the best adjustments (Tay
and Bulter, 1997.)

Conventionally, engineers apply the Taguchi
method to conduct parameter design in a variety of
industrial practices. The Taguchi method offered a
revolutionary concept, but the dramatic success of this
methodology lies in the implementation of combining
statistical design of experimental methods with a deep
understanding of process problems. The usage of
Taguchi’s approach in the area of semiconductor
manufacturing has been proven to be very beneficial
to process modeling, optimization and control. For
example, Phadke (1989) used the Taguchi method to
study the surface defects and thickness of a
polysilicon deposition process used in a VLSI circuit
technology. However, the Taguchi method is not a
panacea to all parameter design problems. It has
certain limitations when used in practice, that is, the
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Fig. 4. Some defects of lifted lead bond.

optimal solutions obtained still remain uncertain
(Goh, 1993; Dabade and Ray, 1996; Chao and
Hwang, 1997). Those drawbacks are summarized as
follows:

(1) The Taguchi method can only obtain the
optimal solution within the specified level of control
factors. Once the parameter setting is determined, the
range of optimal solution is constrained concurrently.

(2) The Taguchi method is unable to find the real
optimal values when the specified parameters have
continuous in nature, because it only addresses the
discrete control factors.

(3) The Taguchi method lacks of efficiency to deal
with interactions among parameters.

This study presents an integrated technique not
only to explore empirical models between process
parameters and response via neural networks, but also
to optimize the process through certain parameter
settings using genetic algorithms for IC wire bonding
process. A comparison through confirmatory trials

between the Taguchi method and the proposed
approach with respect to the response is conducted
as well.

This paper is organized as follows. A brief
description of neural networks and genetic algorithms
is made. The next section proposes an integrated
procedure for optimizing IC wire bonding process. An
experimental design for the implementation of
proposed approach and the Taguchi method is then
illustrated; followed by a comparison between the
proposed procedure and the Taguchi method in terms
of process performance. Finally, a concluding remark
is provided.

2. Modeling and optimization approach

2.1. Neural networks

Due to the breakthrough of neural networks tech-
nology, there has been an increasing amount of
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research application of neural network in the last
decade. Neural networks are beginning to be used for
modeling of complex manufacturing processes,
usually for process and quality control (Coit et al.,
1998). Often times, these models are used to identity
optimal process setting. In fact, neural networks
possess a unique capability of learning arbitrary
nonlinear mappings between noisy sets of input and
output patterns (Lee et al., 2000). Basically, a neural
network approach can usually be constructed without
requiring any assumptions being made concerning the
functional form of the relationship between factors
and responses (Stern, 1996). Besides, it learns and
extracts the process behavior from the past operating
information. It can also be used as a model for process
optimization. The principal strength of a neural
network outperforms the statistical method due to
the fact that the neural network is explicitly nonlinear
through hidden layers. It is a more general mapping
procedure with respect to which a specific function
format is not required in model building (Chang
and Su, 1995; Chen et al., 1999). Therefore, this
advantage particularly fits for the highly complex
process of IC wire bonding.

Recently, neural networks have emerged as an
attractive alternative to physically construct models
used for optimizing semiconductor processing. The
general structure of a feedforward, multilayer neural
network is shown in Fig. 5 after its being trained via
back-propagation to be used in this study. The back-
propagation networks have already been applied to a
wide range of problems (speech synthesis, pattern
recognition, etc.) and have demonstrated good results
in most cases (Lipmann, 1987). A back-propagation
network, once trained, can be evaluated very
quickly—an advantage during the optimization
phase. Recent overviews of applications to neural
networks in manufacturing were compiled by Zhang
and Huang (1995), and they have cited usages of
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Fig. 5. Topology of a back-propagation neural network.
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neural networks from various factories such as
milling, metal cutting, injection molding, arc welding
and spray painting. In addition, Liao and Chen (1998)
presented not only several MLP training algorithms
for manufacturing process modeling but also three
methods for process optimization. In their work, the
transformation method is used to convert a con-
strained objective function into an unconstrained one
and then used as the error function at the process
optimization stage. More related applications can be
found in (Tay and Butler, 1997; Chiu et al., 1997; Liao
and Chen, 1998; Chen et al., 1999; Lee et al., 2000;
Chen and Liu, 2000).

The back-propagation learning algorithm employs
a heuristic with descending gradient to enable a
network to self-organize in such a way that it
improves its performance over a period of time. The
training of a back-propagation network involves three
stages: the feedforward of the input training data, the
calculation and back-propagation of the associated
error, and the adjustment of the connected weights.
The equation utilized to adjust the weights following
the presentation of an input/output pair for the output
layer k is (Brainmaker, 1989):

where AW,; is the change to be made in the weight
from the jth to kth unit following the presentation of
an input pattern; # the learning rate that governs how
fast the network will encode a set of input/output
patterns; 0, the error signal for unit k after the
presentation of an input pattern; and O; the jth element
of the output pattern produced by the presentation of
an input pattern.

The back-propagation rule for changing weights
following the presentation of an input/output pair for
the hidden layer j is

where AW, is the change to be made in the weight
from the ith to kth unit following the presentation of
an input pattern; # the learning rate that governs how
fast the network will encode a set of input/output
patterns; 0; the error signal for unit j after the
presentation of an input pattern; O; the ith element
of the output pattern produced by the presentation of

an input pattern.
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2.2. Genetic algorithms (GAs)

Genetic algorithms (GAs) are optimization techniques
based on the concepts of natural selection and genetics
(Goldberg, 1989). Many conventional optimization
methods start from one point in the search area and
then move step by step with the intention of achieving
the optimum, thus operating rather locally. Therefore,
they are sensitive to falling inside a coincidental local
optimum. In contrast, GAs counteract the entrapment
in a local optimal solution by learning the principles
of natural genetics and natural selection to conduct
procedure of searching and optimization. They per-
form a global, random, and parallel search for an
optimal solution with simple computations. The
studies by Huang and Adeli (1994), Sette et al.
(1997), Hsu and Su (1998) have demonstrated the
superior capability regarding the optimum search
using GAs.

GAs use the randomized operators operating on a
population of candidate solution to generate a new
population of candidates in the search space
(Goldberg, 1989). In this paper, since large dimen-
sions are involved in the parameters-to-responses
function and the fact that a mathematical formulation
is not available, this study applies genetic algorithms
to optimize the complicated production system. Three
essential operators, i.e., reproduction, crossover, and
mutation, are used in GAs to evolve the possible
solution. They are described as follows:

2.2.1. Reproduction

The main parameters must first be identified and
coded as genes in the form of a string of finite length
called a chromosome. The initial population of
chromosomes can be randomly selected to ensure
that the population is diverse. Reproduction is a
process in which individual strings (chromosomes)
are copied according to their fitness values. The
higher the fitness values, the more will chromosomes
have a higher number of offspring in the succeeding
generation. Once a string has been selected for
reproduction, an extract replica is made out of it.
This string is then entered into a tentative new
population for further operation performed by genetic
operator.

2.2.2. Crossover

Having randomly initialized the population, the GAs
will try to evolve the population to find the best
solution. The crossover operation is applied to two
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parent structures selected probabilistically from the
population. That is, a random point along the parent
strings is chosen and designated as the crossover
point. A new population with same size is created this
way from the ‘‘old’’ population. Reproduction and
crossover provide GAs with considerable flexibility
and direct the search toward areas having better
optimal values.

2.2.3. Mutation

The mutation operator is a simple one-unit operation
on a single population member; it can be seen as a
random walk through the whole string space. Using it
cautiously can prevent a genetic system from
premature death or stalling. Hence, a child inherits
all bits from one parent up to the crossover point, and
inherits all remaining bits from the other parent.
Having done that, the GAs may also flip a small
number of bits in the children to mimic the
randomizing effect of biological mutation (Sette et
al., 1997).

3. Proposed approach for the IC wire bonding
optimization

This section proposes an integrated neuro-genetic
algorithm capable of optimizing the parameters
setting in the IC wire bonding process. The proposed
approach consists of two stages. The first stage
involves using a BP network to derive the relationship
model between input parameters and output
responses. Note that the trained network can
accurately predict the behavior of possible parameter
combinations. Thus, tuning the input parameters in
the trained network allow us to obtain the corre-
sponding response. At the second stage, GAs are
applied to obtain the optimum parameters setting.
Herein, the chromosome is used to represent the
possible solution. Each gene in the chromosome
represents the value of the input parameter. For
example, a manufacturing process has three input
parameters X, Y, and Z. A chromosome can repre-
sent the value of the three parameters (X,Y,Z),
respectively. The essential genetic operations are
conducted to obtain the optimal response, which is
evaluated by the fitness function. Therefore, the
optimal parameters of the problem can be obtained.
Figure 6 schematically depicts the proposed optimiza-
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Fig. 6. Schematic diagram of the proposed procedure.

tion procedure. The detailed procedure is summarized
as follows:

Step 1. Collect the input parameters and the
corresponding responses.

Step 2. Develop a BP network model to obtain
the relationship between input parameters and output
response. The trained network is referred to as a
fitness function.

Step 3. Set the GA operating conditions (e.g.,
population size, generation size, parameter number,
crossover rate, and mutation rate).

Step 4. Create an initial population by randomly
selecting the value of input parameters.

Step 5. Repeat steps 6—10 until the stopping
condition is reached.

Step 6. Calculate the fitness value by inputting
the parameter values to the fitness function.

Step 7. Select the parameter values according to
the computed response.

Step 8. Crossover the fitness parameter values.

Step 9. Mutate the parameter values to yield the
next generation.

Step 10. Obtain the current parameter values as
the optimal condition.

Step 11. Obtain the optimal parameter settings.
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Table 1. Control factors and their levels

Factor Level 1 Level 2 Level 3
USG Delay (A) 10 15 20
Ramp up (B) 0 6 12
Contact threshold (C) 25 35 45
Power (D) 30 40 50
Force time (E) 0 15 30
Force ramp time (F) 0 10 20
Ramp down (G) 0 25 50
Initial force (H) 0 15 30

4. Experiments and results

4.1. Training of neural networks

In this study, eight controllable factors were selected
to optimize the wire bonding strength. Table 1 lists
these factors and their alternative levels. An
engineering experiment on the 52 um fine pitch wire
bonding process was conducted. In order to measure
the bonding strength, a small hook is placed in the
center of the wire span between the substrate and the
lead frame and pulled up in a direction normal to the
bonding plane. Then, the wire is pulled to failure and a
pull force value recorded. Twenty-seven trials with six
replications were performed by a well-structured
orthogonal array L,,(3'%). Table 2 summarizes the
data of signal-to-noise ratio for these 27 trials. The
experimental data are then employed for constructing
the relationship model between parameters and
responses through the BP neural network.
Functionally, 80% (approximately 130 samples) are
used for training the neural network while the
remaining 20% (approximately 32 samples) are used
for testing.

Table 3 shows several options of the neural network
architecture in which the structure 8-4-1 under the
best convergence criterion of root of mean square
(RMSE) is selected to obtain a better performance.
The topology of the 8-4-1 network with a 0.30
learning rate and a momentum of 0.80 is depicted in
Fig. 7.

4.2. Optimization with genetic algorithms

In this study, the response (bonding strength) is the
larger-the-better (LTB) type and the required value is
at least 30 g. Herein, we used the GAs to optimize the
back-propagation neural network function. Each input
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Table 2. Summary of experiment data
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Experiment Factors Bonding strength
no.
A B C D E F G H Average S/N (dB)
1 1 1 1 1 1 1 1 1 25.62 28.09
2 1 1 1 1 2 2 2 2 33.35 30.41
3 1 1 1 1 3 3 3 3 39.49 32.34
4 1 2 2 2 1 1 1 2 37.92 31.55
5 1 2 2 2 2 2 2 3 27.30 28.55
6 1 2 2 2 3 3 3 1 30.01 29.49
7 1 3 3 3 1 1 1 3 34.13 30.61
8 1 3 3 3 2 2 2 1 36.01 31.11
9 1 3 3 3 3 3 3 2 39.00 31.76
10 2 1 2 3 1 2 3 1 32.00 30.08
11 2 1 2 3 2 3 1 2 36.02 31.08
12 2 1 2 3 3 1 2 3 29.29 29.23
13 2 2 3 1 1 2 3 2 27.50 28.77
14 2 2 3 1 2 3 1 3 29.91 29.46
15 2 2 3 1 3 1 2 1 36.23 31.15
16 2 3 1 2 1 2 3 3 37.30 31.41
17 2 3 1 2 3 1 2 2 36.29 31.16
18 2 3 1 2 3 1 2 2 32.39 30.14
19 3 1 3 2 1 3 2 1 35.06 30.86
20 3 1 3 2 2 1 3 2 28.25 28.99
21 3 1 3 2 3 2 1 3 31.67 29.95
22 3 2 1 3 1 3 2 2 28.84 29.15
23 3 2 1 3 2 1 3 3 34.49 30.73
24 3 2 1 3 3 2 1 1 36.51 31.18
25 3 3 2 1 1 3 2 3 28.38 29.03
26 3 3 2 1 2 1 3 1 28.22 28.94
27 3 3 2 1 3 2 1 2 36.91 31.30

Note: Average =137y, S/N;1p = — 10 log,o(1Z]

N
3=
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parameter in the wire bonding process is normalized
to the value between 0 and 1 and they are combined
into one string. For example, the input parameters
listed in Table 1 are transformed into the chromosome
representation (A, B, C,...,H) in a string. Strings are

Table 3. Options for neural networks

Architecture RMSE

Training Testing
8-3-1 0.08221 0.11911
8-4-1 0.06431 0.09253
8-5-1 0.07082 0.10772
8-6-1 0.10676 0.10365
8-7-1 0.11883 0.11329

~3

[
e
N———

—_
i
@)}

randomly generated to form the initial population.
When GAs are applied to optimize the wire bonding
parameter selection, the essential operators including
reproduction, crossover, and mutation should be
determined in advance. Herein, a roulette wheel
approach is adopted as the selection procedure. The
crossover rate and mutation rates are set as 0.5 and
0.01, respectively. Fifty strings are randomly gener-
ated to establish the initial population. Notably, 3000
generations were processed. The above information is
used and the GAs are executed twenty runs. Table 4
summarizes the implementation results with the
largest fitness value being 42.3, and the optimum
chromosome is (19.8, 0.35, 45, 50, 29.8, 20, 47.6,
22.7). These settings are the optimal condition for
eight process parameters.
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Fig. 7. The BP network topology of the IC wire bonding process.

Table 4. Implementation results of GAs

Item Data
The largest fitness value in 20 runs 423
The smallest fitness value in 20 runs 39.7
Average fitness value 40.6
Standard deviation 0.58

4.3. Optimization using the Taguchi method

Many practitioners have previously applied Taguchi’s
approach along with their engineering experience to
tackle the optimization problem of wire bonding
process. The SN values for each trial that was listed in
Table 2 can be used to calculate the effect of each
factor’s level. According to the response graph shown
in Fig. 8, the optimum levels of factors can be set as
AB,C3D;EF G3H,.

32 Bonding strength —-S/N
31

S~ S N S~

28

A B C D E F G H

Fig. 8. Factors effects on S/N ratio.
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4.4. The comparison

This study finally conducted a comparison between
the Taguchi method and the proposed approach using
the optimum conditions respectively. Table 5 sum-
marizes the results from confirmatory trials using
optimal parameter settings obtained by both the
Taguchi method and the proposed approach.
According to the results listed in Table 5, the proposed
approach achieves a better performance by more than
24.5% in terms of short term process capability. The
feasibility of the proposed approach was conducted at
a semiconductor assembly line in Taiwan to optimize
the parameters of an IC wire bonding process. The
yield rate obtained after implementing the optimal
parameter settings under mass production could
increase from 98.9% to an average of around
99.99%. That is, there has been a reduction of
10,900 DPPM (defect parts per million). The annual
cost saving was expected to exceed 630,000 US
dollars, whereas the expenditure for the experiment
was below USD 1000.

5. Conclusions

Up till now, the major cause of failure in IC packaging
has been attributed to wire bonding. Engineers
conventionally apply the Taguchi method to optimize
the process; however, the Taguchi method has some
limitations in practice. For example, this method can
only get the optimal solution uncertainty in discrete
values. This paper presents an integrated approach of
a neural networks and genetic algorithms for the IC
wire bonding optimization problem. A back-propaga-
tion network is first used to develop the nonlinear
multivariate relationship model between factors and
the response. Then, a genetic algorithms is applied to
obtain the optimal factor settings of wire bonding

Table 5. A comparison of the proposed approach and the Taguchi method

Results of the
proposed approach

Results of the
Taguchi method

1. Optimal factors settings

(19.8, 0.35, 45, 50, 29.8,

(10, 6, 45, 50, 30, 0, 50, 0)

20, 47.6, 22.7)
2. Sample size of comparison 40 40
3. Mean and Std. deviation (41.5, 2.15) (40.5, 2.45)
4. Short term process capability (C,;) 1.78 1.43
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process. Advantages of neural networks are their
easy-and-quick capability to explore a nonlinear
multivariate relationship between parameters and
responses. Moreover, GAs are known for their
robustness and effectiveness of overall search cap-
abilities.

This paper also conducts a comparison, using real
experimental data from an IC assembly company in
Taiwan, between the proposed approach and the
Taguchi method. The results demonstrate superiority
and feasibility of the proposed approach in terms of
process capability. Future study may include (1) to
compare the proposed approach with Liao and Chen’s
method, and; (2) to apply other local search methods
such as simulated annealing, ant and tabu search
algorithms.
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