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Abstract�In this paper, we propose a new processor modeling 

technique that partitions a cycle-accurate model into two layers, 

an inner functional kernel and an outer timing shell. The kernel 

is an untimed but high-speed instruction set simulator (ISS) and 

is suitable for software development; while the timing shell 

provides additional timing details for cycle-accurate hardware 

behavior. When a new processor member is added to the family, 

it demands only a new timing shell because the kernel is identical 

to that of its ancestors sharing the same instruction set 

architecture (ISA). It not only helps ensure functional 

consistency but significantly reduces the model development time. 

We take two processors with a same ISA, an ARM7-like one and 

an ARM9-like one, as our modeling examples to demonstrate the 

feasibility of the proposed technique. Finally, the experimental 

results show that, on average our two-layered cycle-accurate 

model is about 30 times faster than the RTL model in simulation. 

I.  INTRODUCTION 

High-level behavioral models are widely demanded in recent ESL 

design methodologies [1]. They are usually in different abstraction 

views for different purposes as shown in TABLE I [2]. In general, a 

model with higher abstraction view has faster simulation speed and 

relatively shorter development time so that it is suitable for software 

development. On the other hand, one with lower abstraction view is 

slower in simulation and takes more time to be elaborated. But it can 

provide more accurate timing details about the hardware behaviors, 

which is extremely useful for system and hardware verification. 

In modern ESL design flows, software and hardware are under 

development in parallel so that a set of models in different levels of 

abstraction views are required throughout the design process. 

Conventionally, each member of a processor family needs its own 

complete set of those models though all members actually share a 

same ISA. Developing all those models for every single processor 

certainly takes significant time. Moreover, if those models are 

developed separately, functional behaviors among different 

processors in a same family may likely be variant, which requires 

additional debugging efforts to achieve overall consistency. 

 

 

 

 

 

 

 

 

However, in general, processors in a same family produce the 

identical output, in terms of the contents of user-visible registers, 

output ports and memory, instruction by instruction since they all 

share a same ISA. The only difference among them is the cycle 

timing behavior due to their different implementation details. For 

example, two embedded processors ARM7TDMI and ARM9TDMI 

both implement the ARMv4T ISA, while the former has a three-stage 

pipeline and the later has a five-stage one. This fact suggests a great 

idea that a cycle-accurate model can be partitioned into two layers, 

an inner untimed functional kernel and an outer timing shell. The 

functional kernel is merely elaborated once and can then be shared 

by all processors within a family. Each processor only needs its own 

specific timing shell. In this way, not only the model development 

time can be greatly reduced but also the functional consistency 

among processors is automatically preserved. 

In this paper, we propose an efficient two-layered architecture for 

cycle-accurate processor modeling, in which the untimed functional 

kernel is only responsible for generating correct values of user-

visible registers, output ports and memory data for given instructions, 

while the timing shell is in charge of interacting with the external 

system through the cycle-accurate model interface and updating 

those user-visible values provided by the functional kernel at the 

right time (cycle). Hence, when introducing a new processor member, 

it is no longer necessary to develop its complete model but only its 

specific timing shell. Fig. 1 points out the idea. 

According to an existing work [3], the simulation performance of 

PV and AV models in SystemC are about 500 and 18 times better 

than that of RTL model. However, the performance of VV model is 

not addressed in [3]. Using the newly proposed technique, we have 

successfully created the PV model (i.e., functional kernel) and VV 

models (i.e., kernel + timing shell) for an ARM7TDMI-like core and 

an ARM9TDMI-like core in SystemC. The experimental results 

show that our VV model, which is cycle-accurate, can simulate about 

30 times faster than RTL model. That is, our VV model runs even 

faster than the cycle-approximate AV model in [3]. Meanwhile, our 

PV model can run about 860 times faster than RTL model. 

The rest of this paper is organized as follows. Section II presents 

the two-layered architecture for the cycle-accurate model. Section III 

discusses the implementation concerns and details. The extensive 

experimental results are reported in Section IV and Section V gives 

the concluding remarks for the paper. 

TABLE I   DIFFERENT ABSTRACTION VIEWS 

View Accuracy and Purpose 

Functional 

View (FV) 

Event ordering. 

Functional specification and algorithm 

development. 

Programmer’s 

View (PV) 

Bit accurate. 

Software development and verification. 

Architecture 

View (AV) 

Cycle approximate. 

Architecture exploration and verification.

Verification 

View (VV) 

Cycle accurate. 

Hardware verification. 

System level verification. 

 

 

 

 

 

 
Fig. 1. Models partitioned into a functional kernel and timing shells.
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II.  TWO-LAYERED MODEL ARCHITECTURE 

To make the proposed layered architecture perfectly work, it is 

essential to properly describe the role of each layer and clearly define 

the interface between layers. Here, the functional kernel acts as an 

untimed instruction set simulator (ISS), while the timing shell 

provides cycle timing details and communicates with the outside 

world. The proposed two-layered architecture for cycle-accurate 

model is shown in Fig. 2. 

The timing shell samples input signals from the outside of the 

model, which include clock, reset, interrupts, instruction bus, data 

input bus, and so on. Then it takes proper actions based on the 

sampled input signals and the current processor states. When the 

result of an executing instruction is demanded, it queries the 

functional kernel by issuing a command packet. After receiving a 

command packet, the functional kernel, which is actually an ISS, 

computes then returns the instruction execution outcomes by sending 

a result packet back to the timing shell. Finally, the timing shell 

updates the output signals, containing user-visible registers, address 

bus, data output bus, and so on, using the values obtained from the 

functional kernel at the appropriate cycles. 

There are two types of command packet, step packet and interrupt 

packet. Step packets are issued during normal program execution 

flow. A step packet orders the functional kernel to fetch the next 

instruction, execute it, update the processor state, and return a result 

packet. Alternatively, if an external reset or interrupt arises, an 

interrupt packet is issued instead. An interrupt packet informs the 

functional kernel to redirect its instruction fetch to the corresponding 

exception handler, execute it, update the state, and return the results. 

In every processor non-stall cycle, the timing shell always issues a 

command packet and the functional kernel always executes the 

specified instruction and returns the corresponding result packet. 

The result packet contains a part of the instruction execution 

outcomes that are necessary for the timing shell to properly update 

the output signals. It contains three kinds of information which are 

instruction information, register information, and update information, 

as listed in TABLE II. The instruction information indicates what 

instruction has just been executed by the functional kernel so that the 

timing shell knows the exact sequence about when to update the 

output values in cycle-by-cycle fashion. The register information 

contains a list of registers being read and/or written by the executed 

instruction so that the timing shell can correctly detect all kinds of 

hazards and take proper forwarding or stall operations. It implies that 

the timing shell has to know the pipeline details and that is why 

every processor needs its own timing shell. The update information 

holds updated values so that the timing shell can properly refresh the 

related output signals. In brief, under the proposed two-layered 

architecture, the combination of untimed functional kernel and 

timing shell can successfully act as a cycle-accurate model for sure. 

 

 

 

 

 

 

 

 

 

Group Contents 
 

Instruction 

Information 

Type of instruction. 

For cycle count calculation. 

Register 

Information 

Registers being read and/or written. 

For hazard detection. 

Update 

Information 

New values. 

For output signals updates. 

TABLE II   CONTENTS OF RESULT PACKET 

 

 

 

 

 

III.  MODEL IMPLEMENTATION 

A. Functional Kernel 

As mentioned, the functional kernel actually acts as an untimed 

ISS. Thus the primary components inside are instruction execution 

engine, program counter, register file, and mirrored instruction/data 

memory, as depicted in Fig. 3. The instruction executing engine is 

responsible for instruction decoding and datapath operations. The 

entire functional kernel is built solely based on the ISA specification 

and absolutely no processor-dependent information can be referred. 

That is the key reason why the kernel can be safely shared by every 

processor implementing the same ISA. 

Note that the contents of registers inside the kernel cannot be 

directly accessed outside the model. Due to the untimed nature, they 

usually get updated earlier than they should be in the model outside. 

That is exactly why the timing shell is required for performing proper 

timing synchronization. 

To maximize the model performance, the functional kernel is 

implemented in pure C++ without invoking any routines provided by 

SystemC libraries [4]. It is applicable since the functional kernel is 

completely untimed. It is also worth mentioning that the kernel itself 

can be promoted as a PV model or even a standalone ISS just by 

adding a very simple software wrapper. 

B. Timing Shell 

In contrast to the functional kernel, the timing shell is completely 

nothing to do with the instruction evaluation. Its job is to properly 

communicate with the external system under a target abstraction 

view. The main tasks of the timing shell are: sampling the external 

inputs to identify incoming instructions and interrupts, querying the 

functional kernel and getting the execution results, and updating the 

outputs at the right time based on the desired abstraction view. It can 

directly pass the results from the kernel to the model outside just as a 

PV model does; or it can perform certain scheduling to make the 

model behave as a cycle-approximate model (AV) or even a cycle-

accurate model (VV). 
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Fig. 3. The architecture of functional kernel. Fig. 2. Two-layered architecture for cycle-accurate model. 
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Fig. 4 presents the architecture overview of the timing shell. At 

the beginning of a cycle, the timing shell checks the processor state 

and interrupt inputs to determine whether this cycle should be stalled. 

For a non-stall cycle, in which the processor needs to execute a new 

instruction, the shell issues a command packet (step or interrupt) to 

the kernel and receives a result packet from the kernel. Then a 

scheduler inside the shell is responsible for correctly scheduling 

output update events based on the information carried in result 

packets. For a stall cycle, on the other hand, there would be no 

activity between the kernel and the shell. 

A time wheel is adopted to record the future update events in 

coming cycles. Each time slot in a time wheel represents a specific 

real cycle in the system and carries the necessary information to 

properly update the outputs in that cycle. In addition, it also records 

whether the cycle should be stalled possibly due to a branch 

instruction or a detected hazard. The information mentioned above is 

written into the time wheel by the scheduler. It is not uncommon that 

update events carried by a result packet are placed into several slots 

since virtually all processors nowadays are pipelined. As time 

advances, the time wheel also moves one cycle ahead, the events 

recorded in the most recent slot are carried out, and thus the 

corresponding output signals are updated accordingly. 

Fig. 5 gives an example which shows how a branch instruction 

(located at address 100 with target address 120) gets executed by an 

ARM9TDMI-like cycle-accurate model created by the proposed 

technique. A branch instruction is not able to stop the processor 

from fetching the next two consecutive instructions because it cannot 

change the instruction fetch flow until the third pipeline stage. 

However, these two fetched instructions are eventually invalidated 

by the processor, which results in two stall cycles. As shown in Fig. 

5, the branch instruction is fetched in cycle i. Because it is a valid 

instruction, the shell issues a command packet and gets a result 

packet in return. Then three events describing that the values on the 

instruction address bus (IA) should be 104/108/120 for cycle 

i+1/i+2/i+3 are inserted into the time wheel. In addition, both cycle 

i+1 and i+2 are marked as stall cycles as explained. It indicates that 

in those two cycles the instruction is still fetched as usual in the first 

place. But the commander instantly finds it invalid based on the mark 

recorded in the time slot and therefore no longer sends it to the kernel 

for execution. Notice that even though a slot is marked as a stall 

cycle, there could still be some output update events, which are 

placed in there from earlier cycles. Hence, even in a stall cycle, the 

shell still has to update those model outputs accordingly though there 

is no request to the kernel and of course no response from the kernel 

in that specific cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The architecture of timing shell. 

 Fig. 5. The execution steps for a branch instruction. 

The scheduler is another key component inside the timing shell. It 

must know all implementation details, such as instruction cycle 

timing, actions taken in each pipeline stage, control/data dependency 

among various types of instructions, hazard detection principles, and 

forwarding/stall mechanism, of the modeled processor. That is, it 

must have complete knowledge about exactly how in reality the 

modeled processor schedules all output update events in cycle-

accurate fashion. 

By doing so, a scheduler can correctly place each of the update 

events contained in a result packet returned by the kernel into the 

right slot (cycle). For example, if an add instruction is fetched by an 

ARM9TDMI core in the current cycle and there are no branches and 

hazards detected, then the destination register should be updated and 

presented at the output exactly 4 cycles later though the new value is 

already known (via the result packet) now. Of course, the scheduling 

task can be far more complicated than that described in the previous 

example if interrupts, branches, multi-cycle instructions, and data 

hazards are all mixed up in a scenario. 

IV.  EXPERIMENTAL RESULTS 

To evaluate the performance of the models created by the 

proposed technique, we have implemented PV models and VV 

models using SystemC for an in-house three-stage ARM7TDMI-like 

processor and an in-house five-stage ARM9TDMI-like processor, 

and compare these models against their Verilog RTL counterparts. 

The benchmark programs adopted in our experiments are part of 

MiBench [5], which is a popular benchmark suite aiming at general 

embedded applications. Seven programs from varied categories, as 

shown in TABLE III, are selected for extensive analysis and 

comparisons. 

237



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the 

simulator for RTL models. All PV and VV models are compiled 

using SystemC 2.2.0 library offered by OSCI [6]. Additionally, when 

verifying an RTL model, it is highly desirable to have a golden 

cycle-accurate model that can be co-simulated within the same 

environment for fast on-the-fly instant result comparisons. Hence, 

after adding Verilog wrappers, our VV models are also evaluated 

under Cadence NCSC co-simulation environment. The experimental 

results are presented in TABLE IV and V. 

The performance of each configuration given in the tables is 

normalized to that of RTL simulation (RTL@NCV). The results 

suggest that on average the VV model created by the proposed 

modeling technique is about 30 times faster than the RTL model in a 

pure SystemC environment (VV@OSCI). Note that it is even faster 

than the cycle-approximate PV model, which is only 18 times faster, 

presented in [3]. Moreover, the VV model is about 11 times faster 

than the RTL model in a hardware co-verification environment 

(VV@NCSC). It apparently confirms that building a VV model in a 

higher level language with higher abstract view (SystemC) is a fairly 

good idea in terms of simulation performance, verification, and 

model encryption. 

Here, we emphasize again that the same functional kernel is 

actually used for the PV models of both processors and is 

implemented without invoking any routines provided by SystemC 

libraries for achieving highest possible performance. The 

experimental results report that on average the PV model can even 

simulate almost three orders faster than the RTL model (PV@OSCI). 

This makes our PV model very attractive in software development 

and system-level verification. 

V.  CONCLUSION 

Models in different abstraction views are widely demanded in 

current ESL design methodology for analysis, development, and 

verification of software and/or hardware. It is not uncommon that 

several models with varied abstraction levels are needed in a project. 

How to correctly build these models in a short time is becoming a 

critical issue today. 

In this paper, we propose a processor modeling technique that 

partitions the cycle-accurate model into two layers, the functional 

kernel and the timing shell, where the functional kernel acts as an 

untimed ISS (or a PV model) while the timing shell provides detailed 

timing information. In this way, the functional kernel can be shared 

within an entire processor family with a same ISA, and only a 

customized timing shell is required for a processor. Therefore, not 

only the model development time can obviously be reduced but also 

the chances of functional inconsistency among processors can be 

greatly minimized. 

Finally, the experimental results reveal that our VV model is 

30/11 times faster than the RTL model in a SystemC/co-simulation 

environment, respectively. Our cycle-accurate VV model is even 

faster than the cycle-approximate AV model presented in an existing 

art. Our PV model can simulate about 860 times faster than the RTL 

model. These results repeatedly highlight the efficiency of models 

created by the proposed two-layered modeling technique. 
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Category Benchmark Program 

Auto/Industrial bitcount, qsort 

Consumer jpeg 

Office stringsearch 

Network dijkstra 

Security sha 

Telecomm. CRC32 

TABLE III   BENCHMARK PROGRAMS USED IN EXPERIMENTS 

 

TABLE IV   PERFORMANCE OF ARM7TDMI-LIKE MODELS 

RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount 1 11.43 31.76 773.53 

jpeg 1 11.45 31.82 868.97 

CRC32 1 10.23 29.07 858.06 

dijkstra 1 10.94 31.51 968.57 

qsort 1 8.51 23.94 727.08 

sha 1 10.53 29.55 808.93 

strsearch 1 11.86 31.32 1037.50 

Avg. 1 10.71 29.85 863.23 

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount 

TABLE V   PERFORMANCE OF ARM9TDMI-LIKE MODELS 

1 11.77 31.17 784.85 

jpeg 1 12.25 32.80 816.67 

CRC32 1 11.92 31.71 893.75 

dijkstra 1 11.59 31.49 960.00 

qsort 1 10.86 27.64 808.51 

sha 1 11.44 30.34 796.43 

strsearch 1 10.75 34.82 1075.00 

Avg. 1 11.51 31.42 876.46 
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