
Efficient Two-Layered Cycle-Accurate Modeling Technique for

Processor Family with Same Instruction Set Architecture

Chien-De Chiang and Juinn-Dar Huang
Department of Electronics Engineering

National Chiao Tung University, Hsinchu, Taiwan

xander@acar.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract�In this paper, we propose a new processor modeling

technique that partitions a cycle-accurate model into two layers,

an inner functional kernel and an outer timing shell. The kernel

is an untimed but high-speed instruction set simulator (ISS) and

is suitable for software development; while the timing shell

provides additional timing details for cycle-accurate hardware

behavior. When a new processor member is added to the family,

it demands only a new timing shell because the kernel is identical

to that of its ancestors sharing the same instruction set

architecture (ISA). It not only helps ensure functional

consistency but significantly reduces the model development time.

We take two processors with a same ISA, an ARM7-like one and

an ARM9-like one, as our modeling examples to demonstrate the

feasibility of the proposed technique. Finally, the experimental

results show that, on average our two-layered cycle-accurate

model is about 30 times faster than the RTL model in simulation.

I. INTRODUCTION

High-level behavioral models are widely demanded in recent ESL

design methodologies [1]. They are usually in different abstraction

views for different purposes as shown in TABLE I [2]. In general, a

model with higher abstraction view has faster simulation speed and

relatively shorter development time so that it is suitable for software

development. On the other hand, one with lower abstraction view is

slower in simulation and takes more time to be elaborated. But it can

provide more accurate timing details about the hardware behaviors,

which is extremely useful for system and hardware verification.

In modern ESL design flows, software and hardware are under

development in parallel so that a set of models in different levels of

abstraction views are required throughout the design process.

Conventionally, each member of a processor family needs its own

complete set of those models though all members actually share a

same ISA. Developing all those models for every single processor

certainly takes significant time. Moreover, if those models are

developed separately, functional behaviors among different

processors in a same family may likely be variant, which requires

additional debugging efforts to achieve overall consistency.

However, in general, processors in a same family produce the

identical output, in terms of the contents of user-visible registers,

output ports and memory, instruction by instruction since they all

share a same ISA. The only difference among them is the cycle

timing behavior due to their different implementation details. For

example, two embedded processors ARM7TDMI and ARM9TDMI

both implement the ARMv4T ISA, while the former has a three-stage

pipeline and the later has a five-stage one. This fact suggests a great

idea that a cycle-accurate model can be partitioned into two layers,

an inner untimed functional kernel and an outer timing shell. The

functional kernel is merely elaborated once and can then be shared

by all processors within a family. Each processor only needs its own

specific timing shell. In this way, not only the model development

time can be greatly reduced but also the functional consistency

among processors is automatically preserved.

In this paper, we propose an efficient two-layered architecture for

cycle-accurate processor modeling, in which the untimed functional

kernel is only responsible for generating correct values of user-

visible registers, output ports and memory data for given instructions,

while the timing shell is in charge of interacting with the external

system through the cycle-accurate model interface and updating

those user-visible values provided by the functional kernel at the

right time (cycle). Hence, when introducing a new processor member,

it is no longer necessary to develop its complete model but only its

specific timing shell. Fig. 1 points out the idea.

According to an existing work [3], the simulation performance of

PV and AV models in SystemC are about 500 and 18 times better

than that of RTL model. However, the performance of VV model is

not addressed in [3]. Using the newly proposed technique, we have

successfully created the PV model (i.e., functional kernel) and VV

models (i.e., kernel + timing shell) for an ARM7TDMI-like core and

an ARM9TDMI-like core in SystemC. The experimental results

show that our VV model, which is cycle-accurate, can simulate about

30 times faster than RTL model. That is, our VV model runs even

faster than the cycle-approximate AV model in [3]. Meanwhile, our

PV model can run about 860 times faster than RTL model.

The rest of this paper is organized as follows. Section II presents

the two-layered architecture for the cycle-accurate model. Section III

discusses the implementation concerns and details. The extensive

experimental results are reported in Section IV and Section V gives

the concluding remarks for the paper.

TABLE I DIFFERENT ABSTRACTION VIEWS

View Accuracy and Purpose

Functional

View (FV)

Event ordering.

Functional specification and algorithm

development.

Programmer’s

View (PV)

Bit accurate.

Software development and verification.

Architecture

View (AV)

Cycle approximate.

Architecture exploration and verification.

Verification

View (VV)

Cycle accurate.

Hardware verification.

System level verification.

Fig. 1. Models partitioned into a functional kernel and timing shells.

978-1-4244-2782-6/09/$25.00 ©2009 IEEE 235

II. TWO-LAYERED MODEL ARCHITECTURE

To make the proposed layered architecture perfectly work, it is

essential to properly describe the role of each layer and clearly define

the interface between layers. Here, the functional kernel acts as an

untimed instruction set simulator (ISS), while the timing shell

provides cycle timing details and communicates with the outside

world. The proposed two-layered architecture for cycle-accurate

model is shown in Fig. 2.

The timing shell samples input signals from the outside of the

model, which include clock, reset, interrupts, instruction bus, data

input bus, and so on. Then it takes proper actions based on the

sampled input signals and the current processor states. When the

result of an executing instruction is demanded, it queries the

functional kernel by issuing a command packet. After receiving a

command packet, the functional kernel, which is actually an ISS,

computes then returns the instruction execution outcomes by sending

a result packet back to the timing shell. Finally, the timing shell

updates the output signals, containing user-visible registers, address

bus, data output bus, and so on, using the values obtained from the

functional kernel at the appropriate cycles.

There are two types of command packet, step packet and interrupt

packet. Step packets are issued during normal program execution

flow. A step packet orders the functional kernel to fetch the next

instruction, execute it, update the processor state, and return a result

packet. Alternatively, if an external reset or interrupt arises, an

interrupt packet is issued instead. An interrupt packet informs the

functional kernel to redirect its instruction fetch to the corresponding

exception handler, execute it, update the state, and return the results.

In every processor non-stall cycle, the timing shell always issues a

command packet and the functional kernel always executes the

specified instruction and returns the corresponding result packet.

The result packet contains a part of the instruction execution

outcomes that are necessary for the timing shell to properly update

the output signals. It contains three kinds of information which are

instruction information, register information, and update information,

as listed in TABLE II. The instruction information indicates what

instruction has just been executed by the functional kernel so that the

timing shell knows the exact sequence about when to update the

output values in cycle-by-cycle fashion. The register information

contains a list of registers being read and/or written by the executed

instruction so that the timing shell can correctly detect all kinds of

hazards and take proper forwarding or stall operations. It implies that

the timing shell has to know the pipeline details and that is why

every processor needs its own timing shell. The update information

holds updated values so that the timing shell can properly refresh the

related output signals. In brief, under the proposed two-layered

architecture, the combination of untimed functional kernel and

timing shell can successfully act as a cycle-accurate model for sure.

Group Contents

Instruction

Information

Type of instruction.

For cycle count calculation.

Register

Information

Registers being read and/or written.

For hazard detection.

Update

Information

New values.

For output signals updates.

TABLE II CONTENTS OF RESULT PACKET

III. MODEL IMPLEMENTATION

A. Functional Kernel

As mentioned, the functional kernel actually acts as an untimed

ISS. Thus the primary components inside are instruction execution

engine, program counter, register file, and mirrored instruction/data

memory, as depicted in Fig. 3. The instruction executing engine is

responsible for instruction decoding and datapath operations. The

entire functional kernel is built solely based on the ISA specification

and absolutely no processor-dependent information can be referred.

That is the key reason why the kernel can be safely shared by every

processor implementing the same ISA.

Note that the contents of registers inside the kernel cannot be

directly accessed outside the model. Due to the untimed nature, they

usually get updated earlier than they should be in the model outside.

That is exactly why the timing shell is required for performing proper

timing synchronization.

To maximize the model performance, the functional kernel is

implemented in pure C++ without invoking any routines provided by

SystemC libraries [4]. It is applicable since the functional kernel is

completely untimed. It is also worth mentioning that the kernel itself

can be promoted as a PV model or even a standalone ISS just by

adding a very simple software wrapper.

B. Timing Shell

In contrast to the functional kernel, the timing shell is completely

nothing to do with the instruction evaluation. Its job is to properly

communicate with the external system under a target abstraction

view. The main tasks of the timing shell are: sampling the external

inputs to identify incoming instructions and interrupts, querying the

functional kernel and getting the execution results, and updating the

outputs at the right time based on the desired abstraction view. It can

directly pass the results from the kernel to the model outside just as a

PV model does; or it can perform certain scheduling to make the

model behave as a cycle-approximate model (AV) or even a cycle-

accurate model (VV).

Functional

Kernel

Timing

Shell

Command

Packet

Result

Packet

Inputs

Outputs

Fig. 3. The architecture of functional kernel. Fig. 2. Two-layered architecture for cycle-accurate model.

236

Fig. 4 presents the architecture overview of the timing shell. At

the beginning of a cycle, the timing shell checks the processor state

and interrupt inputs to determine whether this cycle should be stalled.

For a non-stall cycle, in which the processor needs to execute a new

instruction, the shell issues a command packet (step or interrupt) to

the kernel and receives a result packet from the kernel. Then a

scheduler inside the shell is responsible for correctly scheduling

output update events based on the information carried in result

packets. For a stall cycle, on the other hand, there would be no

activity between the kernel and the shell.

A time wheel is adopted to record the future update events in

coming cycles. Each time slot in a time wheel represents a specific

real cycle in the system and carries the necessary information to

properly update the outputs in that cycle. In addition, it also records

whether the cycle should be stalled possibly due to a branch

instruction or a detected hazard. The information mentioned above is

written into the time wheel by the scheduler. It is not uncommon that

update events carried by a result packet are placed into several slots

since virtually all processors nowadays are pipelined. As time

advances, the time wheel also moves one cycle ahead, the events

recorded in the most recent slot are carried out, and thus the

corresponding output signals are updated accordingly.

Fig. 5 gives an example which shows how a branch instruction

(located at address 100 with target address 120) gets executed by an

ARM9TDMI-like cycle-accurate model created by the proposed

technique. A branch instruction is not able to stop the processor

from fetching the next two consecutive instructions because it cannot

change the instruction fetch flow until the third pipeline stage.

However, these two fetched instructions are eventually invalidated

by the processor, which results in two stall cycles. As shown in Fig.

5, the branch instruction is fetched in cycle i. Because it is a valid

instruction, the shell issues a command packet and gets a result

packet in return. Then three events describing that the values on the

instruction address bus (IA) should be 104/108/120 for cycle

i+1/i+2/i+3 are inserted into the time wheel. In addition, both cycle

i+1 and i+2 are marked as stall cycles as explained. It indicates that

in those two cycles the instruction is still fetched as usual in the first

place. But the commander instantly finds it invalid based on the mark

recorded in the time slot and therefore no longer sends it to the kernel

for execution. Notice that even though a slot is marked as a stall

cycle, there could still be some output update events, which are

placed in there from earlier cycles. Hence, even in a stall cycle, the

shell still has to update those model outputs accordingly though there

is no request to the kernel and of course no response from the kernel

in that specific cycle.

Fig. 4. The architecture of timing shell.

 Fig. 5. The execution steps for a branch instruction.

The scheduler is another key component inside the timing shell. It

must know all implementation details, such as instruction cycle

timing, actions taken in each pipeline stage, control/data dependency

among various types of instructions, hazard detection principles, and

forwarding/stall mechanism, of the modeled processor. That is, it

must have complete knowledge about exactly how in reality the

modeled processor schedules all output update events in cycle-

accurate fashion.

By doing so, a scheduler can correctly place each of the update

events contained in a result packet returned by the kernel into the

right slot (cycle). For example, if an add instruction is fetched by an

ARM9TDMI core in the current cycle and there are no branches and

hazards detected, then the destination register should be updated and

presented at the output exactly 4 cycles later though the new value is

already known (via the result packet) now. Of course, the scheduling

task can be far more complicated than that described in the previous

example if interrupts, branches, multi-cycle instructions, and data

hazards are all mixed up in a scenario.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the models created by the

proposed technique, we have implemented PV models and VV

models using SystemC for an in-house three-stage ARM7TDMI-like

processor and an in-house five-stage ARM9TDMI-like processor,

and compare these models against their Verilog RTL counterparts.

The benchmark programs adopted in our experiments are part of

MiBench [5], which is a popular benchmark suite aiming at general

embedded applications. Seven programs from varied categories, as

shown in TABLE III, are selected for extensive analysis and

comparisons.

237

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the

simulator for RTL models. All PV and VV models are compiled

using SystemC 2.2.0 library offered by OSCI [6]. Additionally, when

verifying an RTL model, it is highly desirable to have a golden

cycle-accurate model that can be co-simulated within the same

environment for fast on-the-fly instant result comparisons. Hence,

after adding Verilog wrappers, our VV models are also evaluated

under Cadence NCSC co-simulation environment. The experimental

results are presented in TABLE IV and V.

The performance of each configuration given in the tables is

normalized to that of RTL simulation (RTL@NCV). The results

suggest that on average the VV model created by the proposed

modeling technique is about 30 times faster than the RTL model in a

pure SystemC environment (VV@OSCI). Note that it is even faster

than the cycle-approximate PV model, which is only 18 times faster,

presented in [3]. Moreover, the VV model is about 11 times faster

than the RTL model in a hardware co-verification environment

(VV@NCSC). It apparently confirms that building a VV model in a

higher level language with higher abstract view (SystemC) is a fairly

good idea in terms of simulation performance, verification, and

model encryption.

Here, we emphasize again that the same functional kernel is

actually used for the PV models of both processors and is

implemented without invoking any routines provided by SystemC

libraries for achieving highest possible performance. The

experimental results report that on average the PV model can even

simulate almost three orders faster than the RTL model (PV@OSCI).

This makes our PV model very attractive in software development

and system-level verification.

V. CONCLUSION

Models in different abstraction views are widely demanded in

current ESL design methodology for analysis, development, and

verification of software and/or hardware. It is not uncommon that

several models with varied abstraction levels are needed in a project.

How to correctly build these models in a short time is becoming a

critical issue today.

In this paper, we propose a processor modeling technique that

partitions the cycle-accurate model into two layers, the functional

kernel and the timing shell, where the functional kernel acts as an

untimed ISS (or a PV model) while the timing shell provides detailed

timing information. In this way, the functional kernel can be shared

within an entire processor family with a same ISA, and only a

customized timing shell is required for a processor. Therefore, not

only the model development time can obviously be reduced but also

the chances of functional inconsistency among processors can be

greatly minimized.

Finally, the experimental results reveal that our VV model is

30/11 times faster than the RTL model in a SystemC/co-simulation

environment, respectively. Our cycle-accurate VV model is even

faster than the cycle-approximate AV model presented in an existing

art. Our PV model can simulate about 860 times faster than the RTL

model. These results repeatedly highlight the efficiency of models

created by the proposed two-layered modeling technique.

ACKNOWLEDGEMENT

This work was supported in part by the Ministry of Economic

Affairs, Taiwan, R.O.C., under Grant 94-EC-17-A01-S1-038, and the

National Science Council of Taiwan under Grant NSC 95-2220-E-

009-006.

REFERENCES

[1] F. Bacchini, G. Smith, A. Hosseini, A. Parikh, H. T. Chin, P.

Urard, E. Girczyc, and S. Bloch, “Building a common ESL

design and verification methodology – is it just a dream?”

Design Automation Conference, pp. 370–371, Jul. 2006.

[2] Open SystemC Initiative (OSCI), “The SystemC community,”

http://www.systemc.org/, 2006.

[3] Y.-J. Lu, C.-T. Lin, C.-F. Wu, S.-A. Hwang, and Y.-H. Lin,

“Microprocessor modeling and simulation with SystemC,”

IEEE Int’l Symp. on VLSI Design, Automation, and Test, pp.

1–4, Apr. 2007.

[4] T. Rissa, A. Donlin, and W. Luk, “Evaluation of SystemC

modelling of reconfigurable embedded systems,” Conf. on

Design, Automation and Test in Europe, vol. 3, pp. 253–258,

Mar. 2005.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.

Mudge, and R. B. Brown, “MiBench: a free, commercially

representative embedded benchmark suite,” IEEE Int’l

Workshop on Workload Characterization, pp. 3–14, Dec. 2001.

[6] Open SystemC Initiative, http:// www.systemc.org.

Category Benchmark Program

Auto/Industrial bitcount, qsort

Consumer jpeg

Office stringsearch

Network dijkstra

Security sha

Telecomm. CRC32

TABLE III BENCHMARK PROGRAMS USED IN EXPERIMENTS

TABLE IV PERFORMANCE OF ARM7TDMI-LIKE MODELS

RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount 1 11.43 31.76 773.53

jpeg 1 11.45 31.82 868.97

CRC32 1 10.23 29.07 858.06

dijkstra 1 10.94 31.51 968.57

qsort 1 8.51 23.94 727.08

sha 1 10.53 29.55 808.93

strsearch 1 11.86 31.32 1037.50

Avg. 1 10.71 29.85 863.23

 RTL@NCV VV@NCSC VV@OSCI PV@OSCI

bitcount

TABLE V PERFORMANCE OF ARM9TDMI-LIKE MODELS

1 11.77 31.17 784.85

jpeg 1 12.25 32.80 816.67

CRC32 1 11.92 31.71 893.75

dijkstra 1 11.59 31.49 960.00

qsort 1 10.86 27.64 808.51

sha 1 11.44 30.34 796.43

strsearch 1 10.75 34.82 1075.00

Avg. 1 11.51 31.42 876.46

238

