Efficient Two-Layered Cycle-Accurate Modeling Technique for
Processor Family with Same Instruction Set Architecture

Chien-De Chiang and Juinn-Dar Huang
Department of Electronics Engineering
National Chiao Tung University, Hsinchu, Taiwan
xander@acar.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

Abstract—In this paper, we propose a new processor modeling
technique that partitions a cycle-accurate model into two layers,
an inner functional kernel and an outer timing shell. The kernel
is an untimed but high-speed instruction set simulator (ISS) and
is suitable for software development; while the timing shell
provides additional timing details for cycle-accurate hardware
behavior. When a new processor member is added to the family,
it demands only a new timing shell because the kernel is identical
to that of its ancestors sharing the same instruction set
architecture (ISA). It not only helps ensure functional

consistency but significantly reduces the model development time.

We take two processors with a same ISA, an ARM?7-like one and
an ARMO9-like one, as our modeling examples to demonstrate the
feasibility of the proposed technique. Finally, the experimental
results show that, on average our two-layered cycle-accurate
model is about 30 times faster than the RTL model in simulation.

1. INTRODUCTION

High-level behavioral models are widely demanded in recent ESL
design methodologies [1]. They are usually in different abstraction
views for different purposes as shown in TABLE I [2]. In general, a
model with higher abstraction view has faster simulation speed and
relatively shorter development time so that it is suitable for software
development. On the other hand, one with lower abstraction view is
slower in simulation and takes more time to be elaborated. But it can
provide more accurate timing details about the hardware behaviors,
which is extremely useful for system and hardware verification.

In modern ESL design flows, software and hardware are under
development in parallel so that a set of models in different levels of
abstraction views are required throughout the design process.
Conventionally, each member of a processor family needs its own
complete set of those models though all members actually share a
same ISA. Developing all those models for every single processor
certainly takes significant time. Moreover, if those models are
developed separately, functional behaviors among different
processors in a same family may likely be variant, which requires
additional debugging efforts to achieve overall consistency.

TABLEI DIFFERENT ABSTRACTION VIEWS

View Accuracy and Purpose
. Event ordering.
Functional Functional specification and algorithm
View (FV) P &

development.

Programmer’s | Bit accurate.

View (PV) Software development and verification.
Architecture | Cycle approximate.

View (AV) Architecture exploration and verification.
Verification EIZ:(liivzcrzu\f:;ieﬁcation

View (VV) :

System level verification.

978-1-4244-2782-6/09/$25.00 ©2009 |IEEE

However, in general, processors in a same family produce the
identical output, in terms of the contents of user-visible registers,
output ports and memory, instruction by instruction since they all
share a same ISA. The only difference among them is the cycle
timing behavior due to their different implementation details. For
example, two embedded processors ARM7TDMI and ARM9TDMI
both implement the ARMVAT ISA, while the former has a three-stage
pipeline and the later has a five-stage one. This fact suggests a great
idea that a cycle-accurate model can be partitioned into two layers,
an inner untimed functional kernel and an outer timing shell. The
functional kernel is merely elaborated once and can then be shared
by all processors within a family. Each processor only needs its own
specific timing shell. In this way, not only the model development
time can be greatly reduced but also the functional consistency
among processors is automatically preserved.

In this paper, we propose an efficient two-layered architecture for
cycle-accurate processor modeling, in which the untimed functional
kernel is only responsible for generating correct values of user-
visible registers, output ports and memory data for given instructions,
while the timing shell is in charge of interacting with the external
system through the cycle-accurate model interface and updating
those user-visible values provided by the functional kernel at the
right time (cycle). Hence, when introducing a new processor member,
it is no longer necessary to develop its complete model but only its
specific timing shell. Fig. 1 points out the idea.

According to an existing work [3], the simulation performance of
PV and AV models in SystemC are about 500 and 18 times better
than that of RTL model. However, the performance of VV model is
not addressed in [3]. Using the newly proposed technique, we have
successfully created the PV model (i.e., functional kernel) and VV
models (i.e., kernel + timing shell) for an ARM7TDMI-like core and
an ARM9TDMI-like core in SystemC. The experimental results
show that our VV model, which is cycle-accurate, can simulate about
30 times faster than RTL model. That is, our VV model runs even
faster than the cycle-approximate AV model in [3]. Meanwhile, our
PV model can run about 860 times faster than RTL model.

The rest of this paper is organized as follows. Section II presents
the two-layered architecture for the cycle-accurate model. Section III
discusses the implementation concerns and details. The extensive
experimental results are reported in Section IV and Section V gives
the concluding remarks for the paper.

Processor Family Processor Family
Functional Functional
Model Model Kernel Kernel
A B Timing Timing
C Shell A Shell B
Functional Functional
Model Model Kernel Kernel
c D Timing Timing
Shell C Shell D

Fig. 1. Models partitioned into a functional kernel and timing shells.

235

II. TWO-LAYERED MODEL ARCHITECTURE

To make the proposed layered architecture perfectly work, it is
essential to properly describe the role of each layer and clearly define
the interface between layers. Here, the functional kernel acts as an
untimed instruction set simulator (ISS), while the timing shell
provides cycle timing details and communicates with the outside
world. The proposed two-layered architecture for cycle-accurate
model is shown in Fig. 2.

The timing shell samples input signals from the outside of the
model, which include clock, reset, interrupts, instruction bus, data
input bus, and so on. Then it takes proper actions based on the
sampled input signals and the current processor states. When the
result of an executing instruction is demanded, it queries the
functional kernel by issuing a command packet. After receiving a
command packet, the functional kernel, which is actually an ISS,
computes then returns the instruction execution outcomes by sending
a result packet back to the timing shell. Finally, the timing shell
updates the output signals, containing user-visible registers, address
bus, data output bus, and so on, using the values obtained from the
functional kernel at the appropriate cycles.

There are two types of command packet, step packet and interrupt
packet. Step packets are issued during normal program execution
flow. A step packet orders the functional kernel to fetch the next
instruction, execute it, update the processor state, and return a result
packet. Alternatively, if an external reset or interrupt arises, an
interrupt packet is issued instead. An interrupt packet informs the
functional kernel to redirect its instruction fetch to the corresponding
exception handler, execute it, update the state, and return the results.
In every processor non-stall cycle, the timing shell always issues a
command packet and the functional kernel always executes the
specified instruction and returns the corresponding result packet.

The result packet contains a part of the instruction execution
outcomes that are necessary for the timing shell to properly update
the output signals. It contains three kinds of information which are
instruction information, register information, and update information,
as listed in TABLE II. The instruction information indicates what
instruction has just been executed by the functional kernel so that the
timing shell knows the exact sequence about when to update the
output values in cycle-by-cycle fashion. The register information
contains a list of registers being read and/or written by the executed
instruction so that the timing shell can correctly detect all kinds of
hazards and take proper forwarding or stall operations. It implies that
the timing shell has to know the pipeline details and that is why
every processor needs its own timing shell. The update information
holds updated values so that the timing shell can properly refresh the
related output signals. In brief, under the proposed two-layered
architecture, the combination of untimed functional kernel and
timing shell can successfully act as a cycle-accurate model for sure.

Command Inputs
Packet P
Functional | |
Kernel | |
| |
1 1
Result
Packet Outputs

Fig. 2. Two-layered architecture for cycle-accurate model.

TABLE II CONTENTS OF RESULT PACKET

Group Contents
Instruction Type of instruction.
Information | For cycle count calculation.
Register Registers being read and/or written.
Information | For hazard detection.
Update New values.
Information | For output signals updates.

III. MODEL IMPLEMENTATION

A. Functional Kernel

As mentioned, the functional kernel actually acts as an untimed
ISS. Thus the primary components inside are instruction execution
engine, program counter, register file, and mirrored instruction/data
memory, as depicted in Fig. 3. The instruction executing engine is
responsible for instruction decoding and datapath operations. The
entire functional kernel is built solely based on the ISA specification
and absolutely no processor-dependent information can be referred.
That is the key reason why the kernel can be safely shared by every
processor implementing the same ISA.

Note that the contents of registers inside the kernel cannot be
directly accessed outside the model. Due to the untimed nature, they
usually get updated earlier than they should be in the model outside.
That is exactly why the timing shell is required for performing proper
timing synchronization.

To maximize the model performance, the functional kernel is
implemented in pure C++ without invoking any routines provided by
SystemC libraries [4]. It is applicable since the functional kernel is
completely untimed. It is also worth mentioning that the kernel itself
can be promoted as a PV model or even a standalone ISS just by
adding a very simple software wrapper.

B. Timing Shell

In contrast to the functional kernel, the timing shell is completely
nothing to do with the instruction evaluation. Its job is to properly
communicate with the external system under a target abstraction
view. The main tasks of the timing shell are: sampling the external
inputs to identify incoming instructions and interrupts, querying the
functional kernel and getting the execution results, and updating the
outputs at the right time based on the desired abstraction view. It can
directly pass the results from the kernel to the model outside just as a
PV model does; or it can perform certain scheduling to make the
model behave as a cycle-approximate model (AV) or even a cycle-
accurate model (VV).

Functional Kernel
Mirrored
- Program
Instruction
Counter
Memory .
Instruction
Execution Engine
(Decoder, Datapath)
Mirrored .
Register
Data .
File
Memory

Fig. 3. The architecture of functional kernel.

236

Command
Packet

Commander Inputs

T
I
I
| Outputs
I
I

I

I

Result I
Packet |
I

I

Fig. 4. The architecture of timing shell.

Fig. 4 presents the architecture overview of the timing shell. At
the beginning of a cycle, the timing shell checks the processor state
and interrupt inputs to determine whether this cycle should be stalled.
For a non-stall cycle, in which the processor needs to execute a new
instruction, the shell issues a command packet (step or interrupt) to
the kernel and receives a result packet from the kernel. Then a
scheduler inside the shell is responsible for correctly scheduling
output update events based on the information carried in result
packets. For a stall cycle, on the other hand, there would be no
activity between the kernel and the shell.

A time wheel is adopted to record the future update events in
coming cycles. Each time slot in a time wheel represents a specific
real cycle in the system and carries the necessary information to
properly update the outputs in that cycle. In addition, it also records
whether the cycle should be stalled possibly due to a branch
instruction or a detected hazard. The information mentioned above is
written into the time wheel by the scheduler. It is not uncommon that
update events carried by a result packet are placed into several slots
since virtually all processors nowadays are pipelined. As time
advances, the time wheel also moves one cycle ahead, the events
recorded in the most recent slot are carried out, and thus the
corresponding output signals are updated accordingly.

Fig. 5 gives an example which shows how a branch instruction
(located at address 100 with target address 120) gets executed by an
ARMITDMI-like cycle-accurate model created by the proposed
technique. A branch instruction is not able to stop the processor
from fetching the next two consecutive instructions because it cannot
change the instruction fetch flow until the third pipeline stage.
However, these two fetched instructions are eventually invalidated
by the processor, which results in two stall cycles. As shown in Fig.
5, the branch instruction is fetched in cycle i. Because it is a valid
instruction, the shell issues a command packet and gets a result
packet in return. Then three events describing that the values on the
instruction address bus (IA) should be 104/108/120 for cycle
i+1/i+2/1+3 are inserted into the time wheel. In addition, both cycle
i+1 and i+2 are marked as stall cycles as explained. It indicates that
in those two cycles the instruction is still fetched as usual in the first
place. But the commander instantly finds it invalid based on the mark
recorded in the time slot and therefore no longer sends it to the kernel
for execution. Notice that even though a slot is marked as a stall
cycle, there could still be some output update events, which are
placed in there from earlier cycles. Hence, even in a stall cycle, the
shell still has to update those model outputs accordingly though there
is no request to the kernel and of course no response from the kernel
in that specific cycle.

cycle i .
Time Wheel

== 1A =100

s |1A=104

s |1A=108

1A =120

cycle i+1 1 .
Time Wheel

1A = 104

IA =108

IA =120

cycle i+2 1
Time Wheel

IA =108

|
: 1A =120
|

cycle i+3
4 Time Wheel

I:I> 1A =120

[
|
|
I
Fig. 5. The execution steps for a branch instruction.

The scheduler is another key component inside the timing shell. It
must know all implementation details, such as instruction cycle
timing, actions taken in each pipeline stage, control/data dependency
among various types of instructions, hazard detection principles, and
forwarding/stall mechanism, of the modeled processor. That is, it
must have complete knowledge about exactly how in reality the
modeled processor schedules all output update events in cycle-
accurate fashion.

By doing so, a scheduler can correctly place each of the update
events contained in a result packet returned by the kernel into the
right slot (cycle). For example, if an add instruction is fetched by an
ARMOITDMI core in the current cycle and there are no branches and
hazards detected, then the destination register should be updated and
presented at the output exactly 4 cycles later though the new value is
already known (via the result packet) now. Of course, the scheduling
task can be far more complicated than that described in the previous
example if interrupts, branches, multi-cycle instructions, and data
hazards are all mixed up in a scenario.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the models created by the
proposed technique, we have implemented PV models and VV
models using SystemC for an in-house three-stage ARM7TDMI-like
processor and an in-house five-stage ARM9TDMI-like processor,
and compare these models against their Verilog RTL counterparts.
The benchmark programs adopted in our experiments are part of
MiBench [5], which is a popular benchmark suite aiming at general
embedded applications. Seven programs from varied categories, as
shown in TABLE III, are selected for extensive analysis and
comparisons.

237

TABLE III BENCHMARK PROGRAMS USED IN EXPERIMENTS

Category Benchmark Program
Auto/Industrial | bitcount, gsort
Consumer jpeg
Office stringsearch
Network dijkstra
Security sha
Telecomm. CRC32

TABLE IV PERFORMANCE OF ARM7TDMI-LIKE MODELS

RTL@NCV | VV@NCSC | VV@OSCI | PV@OSCI
bitcount 1 11.43 31.76 773.53
jpeg 1 11.45 31.82 868.97
CRC32 1 10.23 29.07 858.06
dijkstra 1 10.94 31.51 968.57
qgsort 1 8.51 23.94 727.08
sha 1 10.53 29.55 808.93
strsearch 1 11.86 31.32 1037.50
Avg. 1 10.71 29.85 863.23

TABLE V PERFORMANCE OF ARMI9TDMI-LIKE MODELS

RTL@NCV | VV@NCSC | VV@OSCI | PV@OSCI
bitcount 1 11.77 31.17 784.85
jpeg 1 12.25 32.80 816.67
CRC32 1 11.92 31.71 893.75
dijkstra 1 11.59 31.49 960.00
gsort 1 10.86 27.64 808.51
sha 1 11.44 30.34 796.43
strsearch 1 10.75 34.82 1075.00
Avg. 1 11.51 31.42 876.46

Meanwhile, Cadence NC-Verilog (NCV) is chosen as the
simulator for RTL models. All PV and VV models are compiled
using SystemC 2.2.0 library offered by OSCI [6]. Additionally, when
verifying an RTL model, it is highly desirable to have a golden
cycle-accurate model that can be co-simulated within the same
environment for fast on-the-fly instant result comparisons. Hence,
after adding Verilog wrappers, our VV models are also evaluated
under Cadence NCSC co-simulation environment. The experimental
results are presented in TABLE IV and V.

The performance of each configuration given in the tables is
normalized to that of RTL simulation (RTL@NCV). The results
suggest that on average the VV model created by the proposed
modeling technique is about 30 times faster than the RTL model in a
pure SystemC environment (VV@OSCI). Note that it is even faster
than the cycle-approximate PV model, which is only 18 times faster,
presented in [3]. Moreover, the VV model is about 11 times faster
than the RTL model in a hardware co-verification environment
(VV@NCSC). It apparently confirms that building a VV model in a
higher level language with higher abstract view (SystemC) is a fairly
good idea in terms of simulation performance, verification, and
model encryption.

Here, we emphasize again that the same functional kernel is
actually used for the PV models of both processors and is
implemented without invoking any routines provided by SystemC
libraries for achieving highest possible performance. The
experimental results report that on average the PV model can even
simulate almost three orders faster than the RTL model (PV@OSCI).
This makes our PV model very attractive in software development
and system-level verification.

V. CONCLUSION

Models in different abstraction views are widely demanded in
current ESL design methodology for analysis, development, and
verification of software and/or hardware. It is not uncommon that
several models with varied abstraction levels are needed in a project.
How to correctly build these models in a short time is becoming a
critical issue today.

In this paper, we propose a processor modeling technique that
partitions the cycle-accurate model into two layers, the functional
kernel and the timing shell, where the functional kernel acts as an
untimed ISS (or a PV model) while the timing shell provides detailed
timing information. In this way, the functional kernel can be shared
within an entire processor family with a same ISA, and only a
customized timing shell is required for a processor. Therefore, not
only the model development time can obviously be reduced but also
the chances of functional inconsistency among processors can be
greatly minimized.

Finally, the experimental results reveal that our VV model is
30/11 times faster than the RTL model in a SystemC/co-simulation
environment, respectively. Our cycle-accurate VV model is even
faster than the cycle-approximate AV model presented in an existing
art. Our PV model can simulate about 860 times faster than the RTL
model. These results repeatedly highlight the efficiency of models
created by the proposed two-layered modeling technique.

ACKNOWLEDGEMENT

This work was supported in part by the Ministry of Economic
Affairs, Taiwan, R.O.C., under Grant 94-EC-17-A01-S1-038, and the
National Science Council of Taiwan under Grant NSC 95-2220-E-
009-006.

REFERENCES

[1] F. Bacchini, G. Smith, A. Hosseini, A. Parikh, H. T. Chin, P.
Urard, E. Girczyc, and S. Bloch, “Building a common ESL
design and verification methodology — is it just a dream?”
Design Automation Conference, pp. 370-371, Jul. 2006.

[21 Open SystemC Initiative (OSCI), “The SystemC community,”
http://www.systemc.org/, 2006.

[31 Y.J. Ly, C.-T. Lin, C.-F. Wu, S.-A. Hwang, and Y.-H. Lin,
“Microprocessor modeling and simulation with SystemC,”
IEEE Int’l Symp. on VLSI Design, Automation, and Test, pp.
1-4, Apr. 2007.

[4] T. Rissa, A. Donlin, and W. Luk, “Evaluation of SystemC
modelling of reconfigurable embedded systems,” Conf. on
Design, Automation and Test in Europe, vol. 3, pp. 253-258,
Mar. 2005.

[51 M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: a free, commercially
representative embedded benchmark suite,” [EEE Int’l
Workshop on Workload Characterization, pp. 3—14, Dec. 2001.

[6] Open SystemC Initiative, http:// www.systemc.org.

238

