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In this paper, a low-power design for the Reed–Solomon (RS) decoder is presented. Our
approach includes a novel two-stage syndrome calculator that reduces the syndrome
computations by one-half, a modified Berlekamp–Massey algorithm in the key equa-
tion solver and a terminated mechanism in the Chien search circuit. The test chip for
(255, 239) and (208, 192) RS decoders are implemented by 0.25 µm CMOS 1P5M and
0.35 µm CMOS SPQM standard cells, respectively. Simulation results show our approach
can work successfully and achieved large reduction of power consumption on the average.
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1. Introduction

Among the most well-known error-correcting codes, the Reed–Solomon (RS) codes

are undoubtedly the most widely used block codes in communications and storage

systems to enhance the immunity to burst errors. An (N,K) RS code contains

N coded symbols with K message symbols in each codeword, and is capable of

correcting up to t = �(N −K)/2� symbol errors, where each symbol belongs to the

finite field.1 Due to the increasing demand for high capacity communication systems

and portable wireless applications, low-power implementations of RS decoders are

desirable to meet higher data rates for system-level integration.

The most popular RS decoder architecture can be summarized into four steps:

(1) calculating the syndromes from the received codeword, (2) computing the error

locator polynomial and the error evaluator polynomial, (3) finding the error loca-

tions, and (4) computing error values. The second step in the four-step procedure

involves solving the key equation,2 which is

Ω(x) = S(x)σ(x)mod x2t , (1)

where S(x) represents the syndrome polynomial, σ(x) is the error locator polyno-

mial, and Ω(x) is the error evaluator polynomial. As a consequence, existing RS de-

coders usually contain a syndrome calculator, a key equation solver, a Chien search,
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Fig. 1. Reed–Solomon decoding flowchart.

and an error value evaluator, which are illustrated in Fig. 1. The syndrome calcula-

tor generates a set of syndromes from the received codeword polynomial R(x). From

the syndromes, the key equation solver produces the error locator polynomial σ(x)

and the error evaluator polynomial Ω(x), which can be used by the Chien search

and the error value evaluator to determine the error locations and error values,

respectively. The received data memory is used to store the received symbols. In

accordance with the error value and its location, the output of the finite-field adder

shown in Fig. 1 is the corresponding corrected symbol.

While implemented for portable storage systems or optical communications with

higher data rates, all existing RS decoders cause relatively large power consump-

tion, leading to difficulty in system-level integration. As a result, we propose a

low-power design for RS decoders using a novel two-stage syndrome calculator,

which is addressed in Sec. 2, to detect whether the received codeword carrying

errors. If there is no error occurring, the power consumption can be reduced sig-

nificantly by terminating the follow-up decoding procedure. Section 3 illustrates

a modified Berlekamp–Massey algorithm to reduce many unnecessary calculation

counts and Sec. 4 describes the Chien search with the terminated mechanism and

an area-efficient architecture for the error value evaluator. The (255, 239) as well

as (208, 192) RS decoder are implemented as the design examples and simulation

results are shown in Sec. 5. Finally, the conclusion is given in Sec. 6.

2. The Novel Syndrome Calculator

By definition, the syndrome polynomial S(x) is denoted as S1+S2x+· · ·+S2tx2t−1,
where Si = R(α

i) with the received polynomial R(x) = R0+R1x+ · · ·+RN−1xN−1
in (N,K) RS codes. If the received codeword contains no errors, it can be shown

that all syndromes, S1 through S2t, will all equal zeros. From the relations between

syndromes and the coefficients of the error locator polynomial σ(x) given by3:




S1 S2 · · · Sν

S2 S3 · · · Sν+1
...

...

Sν Sν+1 · · · S2ν−1







σν

σν−1
...

σ1



=




−Sν+1
−Sν+2

...

−S2ν
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R(x)=

R0 , R1 , ... , RN-1 Si

x αi

(a)

Received Data Memory

S_9

S_10

S_16

...

R(x)

m

m

m

S_1

S_2

S_8

...

8 R_enb

(b)

Fig. 2. (a) Syndrome calculator cell S i. (b) Proposed two-staged structure of the syndrome
calculator over GF (2m) for t = 8.

Sν+1, Sν+2, . . . , and S2ν will be all zeros if both ν ≤ t and S1 = S2 = · · · = Sν = 0,

where ν represents the number of actual errors and t is the number of correctable

errors. Therefore, the first half of the syndromes can be seen as an error detector.

Once there are t continuous syndromes equaling zeros, all 2t syndromes will equal

zeros. Then the follow-up decoding procedure can be terminated and all error values

are set to zeros directly whether no-error (ν = 0) codeword or out-of-correction

codeword (ν > t) received. The novel syndromes calculating procedure can be

shown as follows:

Let continue = FALSE ;

For (i = 1 to t)

{ Calculate Si;

If (Si �= 0) continue = TRUE ; }
IF (continue = TRUE)

{ For(i = t+ 1 to 2t) Calculate Si; }
Else Finish;

The syndrome calculator cell S i is shown in Fig. 2(a), where the partial syn-

drome is multiplied with αi and accumulated with the received symbol at each

cycle. After all received symbols from RN−1 to R0 are processed, the accumulated

result is the ith syndrome, Si. In Fig. 2(b), the proposed two-staged structure of

the syndrome calculator is illustrated for t = 8. After N cycles, the syndromes S1
through S8 are obtained and then the signal R enb is used to control the access

of the data memory. The syndrome calculator cells S 9 through S 16 will remain

idle except the controlling signal R enb goes to high.

Moreover, the look-forward architecture4 can be used to improve the throughput

rate. For example, the process of calculating the ith syndrome in (255, 239) RS codes
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Si

x α3i

x α2i

x αi

x α4i

R2 , ... , R250 , R254

R3 , ... , R251 , 0

R1 , ... , R249 , R253

R0 , ... , R248 , R252

Fig. 3. Syndrome calculator cell of S i using the look-forward architecture. Note that R255 = 0
in the (255, 239) RS code.

can be derived as

Si =

63∑
j=0

(R4j +R4j+1x+R4j+2x
2 +R4j+3x

3)x4j
∣∣∣∣
x=αi

. (2)

The syndrome calculator cell S i using the look-forward architecture to process four

symbols per cycle is illustrated in Fig. 3. At each cycle, the partial syndrome is

multiplied with α4i, accumulated with the received symbols and their multiplying

results of αi to α3i in parallel. After all the received symbols are processed, the

accumulated result is Si. Thus, our proposed two-stage syndrome calculator can be

also applied to applications of higher data rate.

Note that the finite-field multipliers (FFMs) implemented in the syndrome cal-

culator are all constant–variable FFMs, which have one input as a constant and

the other input as a variable, indicating that the circuit complexity and power con-

sumption are much lower than that of variable–variable FFMs, whose inputs are

both variables. Since the transmission data in realistic systems are almost correct

(i.e., S1 = S2 = · · · = St = 0), our proposal reduces by almost half the syndrome

computations, leading to a good effect on the power consumption of the entire

RS decoder.

3. The Key Equation Solver

The techniques frequently used to solve the key equation include the Berlekamp–

Massey (BM) algorithm2,5 and the Euclidean algorithm.6 The BM algorithm is

generally considered to be the one with the least hardware complexity for solving

the key equation. Another advantage is that the constant term of σ(x) and Ω(x)

always equals 1 and S1, suggesting an efficient decoding procedure to eliminate

redundant computations in the BM algorithm. However, the BM algorithm is an

iterative procedure and after calculating the first iteration in advance, the modified

BM algorithm with some differences in initial conditions can be shown as follows:

Initial condition:

δ = ∆(0) = S1 , D(0)(x) = 1 ,

σ(0)(x) = 1 + S1x , τ (0)(x) = Ω(0)(x) = γ(0)(x) = 1 ,
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For (i = 1 to 2t− 1)

∆(i)(x) = Si+1 + Siσ
(i−1)
1 + · · ·+ Si−t+1σ(i−1)t , (3)

σ(i)(x) = σ(i−1)(x) +
∆(i)

δ
xτ (i−1)(x) , (4)

Ω(i)(x) = Ω(i−1)(x) +
∆(i)

δ
xγ(i−1)(x) , (5)

If (∆(i) = 0 or 2D(i−1) ≥ i+ 1)

D(i) = D(i−1) ,

τ (i)(x) = xτ (i−1)(x) , γ(i)(x) = xγ(i−1)(x) ,

Else

D(i) = i+ 1−D(i−1) , δ = ∆(i) ,

τ (i)(x) = σ(i−1)(x) , γ(i)(x) = γ(i−1)(x) ,

where σ(i)(x) is the ith error locator polynomial, Ω(i)(x) is the ith error evaluator

polynomial, and σ
(i)
j ’s are the coefficients of σ(i)(x); ∆(i) is the ith discrepancy and

δ is the previous discrepancy;D(i) is an auxiliary degree variable in the ith iteration,

and τ (i−1)(x) and γ(i−1)(x) are auxiliary polynomials for calculating σ(i)(x) and

Ω(i)(x), respectively. Note that the ith error locator polynomial σ(i)(x) calculated

by Eq. (4) will be equal to the previous polynomial σ(i−1)(x) if ∆(i) = 0. After 2t−1
iterations, σ(2t−1)(x) and Ω(2t−1)(x) are equivalent to the error locator polynomial

σ(x) and the error locator polynomial Ω(x), respectively.

The conventional way to compute the error evaluator polynomial Ω(x), shown

as above, is to do it in parallel with the computation of σ(x). From the key equation

and Newton’s identity, the computation of Ω(x) can be shown as follows:

Ω(x) = S(x)σ(x) mod x2t

�
= Ω0 +Ω1x+ · · ·+Ω(t−1)x

t−1 ,
(6)

⇒ Ω0 = S1 ,

Ω1 = S2 + S1σ1 ,
...

Ωt−1 = St + St−1σ1 + · · ·+ S1σt−1 ,
where Ωj ’s are the coefficients of the error evaluator polynomial Ω(x). Note that

the proposed direct computation of Ω(x) after σ(x) is computed requires fewer

multiplications and additions than the original BM algorithm. Table 1 compares

the average calculation counts between the original Euclidean and BM algorithm

with the modified BM algorithm after many random test patterns are simulated.

In addition, the computation of the ith coefficient Ωi is similar to that of the ith

discrepancy ∆(i). Therefore, the same hardware used to compute ∆(i) can be recon-

figured to compute the coefficient Ωi. Depending on the implementation, there are
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Table 1. Comparison of calculation counts in different

architectures.

Type Euclidean6 BM2,5 Modified BM

Division 8.92 4.44 4.44
Addition 156.07 113.43 94.55
Multiplication 155.15 121.30 94.54

Mod
m

...

σσσσ1

Si+1

2m-1

Bit-wise
Mul

Mod
m

σσσσ2

2m-1

Bit-wise
Mul

Si

Si-1

Si-t+1
Mod

m

σσσσt

2m-1

Bit-wise
Mul

m

∆∆∆∆(i) or

m ΩΩΩΩi

(a)

Mod

m

∆∆∆∆(i) or

m2m-1

σσσσ1

2m-1

Bit-wise
Mul

σσσσ2

2m-1

Bit-wise
Mul

Si

Si-1

Si-t+1

σσσσt

2m-1

Bit-wise
Mul

...
Si+1

ΩΩΩΩi

(b)

Fig. 4. (a) Original approach for calculating ∆(i) or Ωi. (b) Separated approach for calculating
∆(i) or Ωi.

two different approaches illustrated in Fig. 4 to compute ∆(i) or Ωi over GF (2
m).7

From the finite-field arithmetic, the multiplication of two operands can be split into

a bit-wise multiplying operation and a modular operation. In Fig. 4(a), the origi-

nal approach indicates that each multiplier requires both the bit-wise multiplying

operation and the modular operation. However, the separated approach, shown as

Fig. 4(b), reduces t− 1 modular operations and only requires an extra m− 1 XOR

gates of t-input. Simulation results show the separated approach can achieve ap-

proximately both a 30% reduction of power consumption and a 15% reduction of

circuit complexity as compared with the original approach for calculating ∆(i) or

Ωi within (t,m) = (8, 8).

4. Chien Search and the Error Value Evaluator

In the (N,K) RS decoding algorithm, the Chien search is used to check whether the

error locator polynomial σ(x) equals zero or not while x = α−n, n = 0, 1, . . . , N−1.
If σ(α−n) = 0, it means there is an error at Rn. In Ref. 8, McEliece proposed three

conditions to determine whether the received codeword can be corrected or not.
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x α-i

M
U

Xσi

(a)

σσσσood(x)

C1

C3

C7

C5

σ1

σ3

σ7

σ5

σ0

C2

C4

C8

C6

σ2

σ4

σ8

σ6 8

(b)

Fig. 5. (a) Chien search cell Ci. (b) Chien search structure for t = 8.

The corresponding hardware is to compare the degree of σ(x) with the number

of roots found by the Chien search. While the out-of-correction received codeword

is detected, we stop the follow-up decoding procedure of error value evaluation.

Figure 5(a) shows the circuit of the Chien search cell Ci and the structure of the

Chien search with t cells is illustrated in Fig. 5(b).

At the ηth cycle after initialization, the finite-field adder (FFA) in the right

hand side of Fig. 5(b) calculates the value of σ(α−η) and the NOR gate is used

to check whether the final sum equals zero or not. Note that σodd(x) = σ1x +

σ3x
3 + · · ·+ σtoddxtodd is prepared to calculate the error value. For t = 8, todd = 7

represents the largest odd number less than or equal to t. However, Fig. 5 checks

one root at one cycle, whereas Fig. 6 illustrates another structure of the Chien

search to check eight roots at each cycle for applications of higher data rate.

Note that all input ports to the shadowed cells in Fig. 6 are identical. In the jth

iteration after initialization, the outputs of the FFA in shadowed cells are σ(α
−8j),

σ(α
−8j−1), . . . , σ(α

−8j−7), respectively.

For calculating the error value, the Forney algorithm proposed in Ref. 9 is

utilized and can be expressed as:

el =
Ω(χl

−1)

σ′(χ−1l )
=

Ω(χ−1l ) · χ−1l
σodd(χ

−1
l )

, (7)

where χ−1l indicates the root of σ(x), for l = 1, . . . , t. Figure 7 shows an area-efficient

architecture for the error value evaluator, which requires only one variable–variable

FFM. Note that the Buffer-1 and Buffer-2 store all the roots χ−1l found by the

Chien search and the corresponding values of σodd(χ
−1
l ) respectively. The Ω(x)-

buffer is composed of one “0” and the coefficients of the error evaluator polynomial

Ω(x), Ω0 through Ων−1, where ν represents the number of the actual errors. At

the first ν cycles after initialization, the output of the multiplexer in Fig. 7 is χ−1l ,
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x α-64

x α-16

x α-8

....
M

U
X

σ8

M
U

X

σ2

σ0 = 8'b 01

M
U

X

σ1

σ( α-8j )

x α-7

σ( α-8j-7 )

.
.

.
.

. . . .

x α-1

σ( α-8j-1 )

.
.

.
.

. . . .

x α-2

x α-8

x α-14

x α-56

Fig. 6. Chien search structure to check eight roots per cycle for t = 8.

error value

Buffer-1

Buffer-2
σσσσodd(χχχχl

-1)

χχχχl
-1

M
U
X

Ω(x)-buffer

GF(2m)
invertor

0, ΩΩΩΩ0, ΩΩΩΩ1, ..., ΩΩΩΩνννν-1

Fig. 7. The error value evaluator structure.

and the detailed computation of (Ω(x) · x)|x=χ−1l can be shown as

(Ω0 + · · ·+ (Ων−2 +Ων−1χ
−1
l )χ−1l · · ·)χ

−1
l

= Ω0χ
−1
l +Ω1(χ

−1
l )2 + · · ·+Ων−1(χ

−1
l )ν

≡ Ω(χ−1l ) · χ−1l .

At the (ν +1)th cycle, the output of the Ω(x)-buffer is 0 and the output of the

multiplexer in Fig. 7 should be altered to 1/[σodd(χ
−1
l )], then the output of the

FFM, which will be latched by the register shown in the right hand side of Fig. 7,

is the error value corresponding to the root χ−1l .
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Syndrome Calculator

640

S1~S8 S9~S16

128 192

σσσσ(x) ΩΩΩΩ(x)

160

Key Equation
Solver

Chien
Search

Error Value
Evaluator

Fig. 8. Pipelining diagram of our proposed (255, 239) RS decoder with t = 8.

5. Chip Implementation and Simulation Results

Here we propose two design examples to verify our low-power architecture. One is

the (255, 239) RS decoder, which is recommended in ITU-T G.975 to resist burst

errors for optical fiber submarine cable systems on the STM-16 basis. Note that

the STM-16 format has a data rate of 2.5 Gbps. For meeting a higher data rate

with a lower clock rate, the look-forward architecture is utilized in our (255, 239)

RS decoder to process four bytes at each cycle. Figure 8 shows the pipelining

diagram with the latency of 192 cycles. In the first pipelining stage, the front half

syndromes S1 through S8 are calculated and used to detect whether the received

codeword carrying errors. The received codeword without errors indicates that the

calculations of the later half syndrome, S9 through S16, are needless in the second

stage. However, the Chien search takes only half of the third stage, checking eight

roots at each cycle. The error value is evaluated and simultaneously added with the

corresponding received symbol for correcting errors in the fourth stage.

After being implemented by the Verilog and Synopsys design tool with the

Artisan 0.25 µm CMOS 1P5M standard cells, the (255, 239) RS decoder contains

four 2K bit embedded single-port synchronous memory and has gate counts of

32.9 K. The total size is 2.23 mm×2.23 mm with the RS core of 2.01 mm×1.01 mm.
The layout view and chip summary are shown in Fig. 9. While simulated at 1.8 V

of the supply voltage by EPIC PowerMill, our proposed RS decoder can work

successfully with the 2.5 Gbps data rate and consumes 14.8 mW core power and

53.7 mW memory power under the bit-error rate (BER) of 10−4, indicating an

approximately 20% error probability of the received codewords. For the BER less

than 10−5, only the syndrome calculator operates to detect errors and the other

three parts — key equation solver, Chien search, and error value evaluator — almost

remain idle.

The other design example is the (208, 192) RS decoders utilized for DVD ap-

plications. Since the data rate of 1 × DVD is below 4 MBps, the overall decoding

speed can be maintained by the two-stag approach of calculating syndromes, each
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Chip Summary

Power dissipation (83.68MHz, 1.8Volt)

(255,239) Reed-Solomon

Decoder

2k-bit
MEM#3

2k-bit
MEM#4

2k-bit
MEM#1

2k-bit
MEM#2 Chip Size

RS Core Size
2.23mm x 2.23mm
2.01mm x 1.01mm

Gate Counts
Embedded Memory

32.9 K
8K-bit SRAM

Technology .25µµµµm 1P5M CMOS

48.2 mW

RS core Memory

53.7 mW

70.2 mW

72.9 mW

13.5 mW

14.8 mW

22.5 mW

27.9 mW

BER < 10-5

BER = 10-4

BER = 10-3

BER > 10-2

Fig. 9. Layout view of the (255, 239) RS decoder chip.

Syndrome Calculator

2080

S1~S8 S9~S16

516 724

Key Equation Solver

Chien
Search

Error Value
Evaluator

548

σσσσ(x)

652

ΩΩΩΩ(x)

Fig. 10. The pipelining diagram of our proposed (208, 192) RS decoder with t = 8.

taking 208 cycles to finish. Figure 10 illustrates the pipelining diagram with the

latency of 724 cycles. From our proposal, the Chien search takes only half of the

third stage, checking two roots at each cycle and therefore, 104 cycles are required

totally. The error value is evaluated after the Chien search and 72 cycles are needed

in the worst case of eight errors occurring.

We implement the (208, 192) RS decoder by the 0.35 µm CMOS SPQM standard

cell library. The RS decoder has the core size of 1.05 mm× 1.07 mm and the gate

counts of 16.3 K, including 3.2 K for the syndrome calculator, 8.0 K for the key

equation solver, and 5.1 K for Chien search and the error value evaluator. Figure 11

shows the layout view and chip summary.

While simulated at the supply voltage of 3.3 V by EPIC PowerMill, our proposed

RS decoder can work successfully with the clock rate of 100 MHz. Table 2 shows

the circuit complexity and simulation results of power consumption between the
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Power dissipation

54.9 mWBER < 10-5Key Equation
Solver

Syndrome
Calculator

Chien Search

Error Value
Evaluator

Chip Summary

RS Core Size

Gate Counts

Technology

1.05mm x 1.07mm

16.3 K

.35µµµµm 1P4M CMOS

BER = 10-4

BER = 10-3

BER > 10-2

60.2 mW

109.4 mW

135.6 mW

Fig. 11. Layout view of the (208, 192) RS decoder chip. Note that the power dissipation is
simulated at the clock rate of 100 MHz and the supply voltage of 3.3 V.

Table 2. Comparison of hardware complexity (gates) and power consumption (mW) with the pre-
vious architecture.

Previous10 Proposed

Gates (K) 8 errors 0 error Gates (K) 8 errors 0 error

Syndrome Calculator 3.1 88.1 87.9 3.2 83.1 54.9
Key Equation Solver 2.9 120.2 115.5 8.0 81.5 0
Chien Search 2.8 56.7 53.2 2.8 46.6 0
Error Value Evaluator 1.8 37.9 7.1 2.3 19.8 0

Total 10.6 302.9 263.7 16.3 231.0 54.9

previous architecture10 and our proposal in this paper. Although the architecture

proposed in Ref. 10 has less complexity, the proposed RS decoder consumes only

60% of the power dissipation of Ref. 10 and approximately no power consumption

in the key equation solver, Chien search, and error value evaluator when no-error

codewords are received. Note that the two different results in each architecture

correspond to two extreme cases of the received codewords carrying eight errors

and without errors. In realistic communication systems, the probability of no error

is much larger than that of error. Our proposed two-stage syndrome calculator of

reducing half syndrome calculations, and of terminated mechanisms in other parts

can lead to a very power efficient solution for the RS decoder.

6. Conclusion

In this paper, the design and implementation of a low-power RS decoder is

presented. The proposed architecture features the novel two-stage syndrome
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calculator, the key equation solver using the modified BM algorithm, and the Chien

search with the terminated mechanism. The test chip of the (255, 239) RS decoder

and the (208, 192) RS decoder are implemented to verify our proposal. Since there

are almost correct codewords in realistic communication systems, our derived struc-

ture can lead to a very power efficient solution for the RS decoder.
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