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[1] An approach using the extended Kalman filter (EKF) and cubic spline is proposed to
identify the aquifer parameters in both confined and unconfined aquifer systems. The
cubic spline applied to the observation data can generate interpolated data with uniform
time intervals and facilitates the implementation of EKF. The EKF combined with the
Theis solution or Neuman’s model, using the interpolated drawdown data produced by
cubic spline, can optimally determine the parameters through the recursive process. The
proposed approach can quickly identify the parameters, using only part of observed
drawdown data, and the obtained parameters are shown to have good accuracy. Thus
length of time of pumping tests may be shortened. Comparisons of results from nonlinear
least squares combined with finite difference Newton’s method (NLN) and EKF show that
the EKF allows a wider range of initial guess values than NLN and have the accuracy
of the results on the same order of magnitude as that of NLN. When determining the
aquifer parameters, the identification process of specific yield reflects the effect of gravity
drainage on the drawdown curve and conforms to the physical nature of an unconfined
aquifer. Furthermore, this study shows that EKF can be successfully applied to analyze the
drawdown data even with white noises or temporally correlated noises. INDEX TERMS:
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1. Introduction

[2] In the past, analysis of pumping test data in a confined
aquifer was usually made using a graphical procedure with
the type curve plotted from a Theis nonequilibrium formula.
Theis [1935] obtained the solution for unsteady ground-
water flow toward a well in a confined aquifer by analogy to
the problem of heat conduction. Cooper and Jacob [1946]
developed an approximation for the Theis equation,
together with a data analysis method which does not require
type-curve matching. Chow [1952] presented a graphical
method based on the Theis equation to obtain the trans-
missivity and storage coefficient of a confined aquifer.
Boulton [1954, 1963] developed the analytical solution by
introducing the concept of delayed yield for unconfined
formations. Prickett [1965] described a systematic approach
to determine the parameters, using a graphical procedure
based on Boulton’s type of curves. Cooley and Case [1973]
showed that Boulton’s equation yields an exact solution
where it describes a flow system with a rigid phreatic
aquitard on top of the main aquifer, and the unsaturated
flow above the phreatic surface is neglected. Neuman [1972,
1974] presented a solution that considers the effects of
elastic storage and anisotropy of aquifers on drawdown
behavior. Neuman’s model treated the unconfined aquifer as
a compressible system and the phreatic surface as a moving
boundary. His theory was also extended to account for the

effect of a partially penetrating pumping well or/and an
observation well in a homogeneous anisotropic unconfined
aquifer. Neuman [1975] also gave a graphical type curve
solution procedure to determine the hydraulic parameters.
Moench [1995] combined the Boulton and Neuman models
for flow toward a well in an unconfined aquifer.
[3] Yeh [1987] used the nonlinear least squares and finite

difference Newton’s method (NLN) for identifying the
parameters of the confined aquifer. Huang [1996] used
NLN to identify the unconfined hydraulic parameters. This
approach also was applied to the cases of partial penetration
of pumped or/and observed wells, whereas the graphical
method was only suitable for analyzing the hydraulic
parameters under the condition of a fully penetrating well.
Their approach has the advantage of high accuracy and
quick convergence for most initial guesses when estimating
the hydraulic parameters via pumping test data. For other
numerous computation methods, refer to Yeh [1987] for a
literature review.
[4] Works using the Kalman filter for the hydraulic

parameters and water table related estimations may be
divided into two categories. One applies the Kalman filter
in a linear system [e.g., Van Geer and Van Der Kloet, 1985;
Van Geer and te Stroet, 1990; Van Geer et al., 1990; Lee et
al., 2000; Bierkens et al., 2001] and the other deals with
nonlinear problems using the extended Kalman filter (EKF)
[e.g., Chander et al., 1981; Katul et al., 1993; Bierkens,
1998; Cahill et al., 1999]. Chander et al. [1981] employed
the iterated extended Kalman filter to estimate the param-
eters for both nonleaky and leaky aquifers. Regarding the
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nonleaky aquifer, the measurement equation uses a trun-
cated form of Theis’ well function, which might be incorrect
in predicting drawdown when the pumping time is short.
Van Geer and Van Der Kloet [1985] presented two linear,
filter-based schemes for parameter estimation in ground-
water flow problems. An optimal estimate was simultane-
ously computed for the original state, i.e., heads and the
parameter state. Van Geer and te Stroet [1990] incorporated
MODFLOW into a filtering framework and updated the
prior estimates of hydraulic parameter values using an off-
line procedure, when minimizing the difference between the
actual head measurements and those predicted from the
MODFLOW-Kalman filter framework. Van Geer et al.
[1990] also raised the idea of using a filter for state
estimation in the absence of significant dynamic behavior
and they investigated the applicability of the filter to a
relatively swiftly reacting groundwater system. Katul et al.
[1993] used the EKF to test for the determination of the
hydraulic conductivity function from a field drainage
experiment. Bierkens [1998] embedded the stochastic differ-
ential equation (SDE) in the EKF algorithm to calibrate the
parameters and noise statistics of SDE on a time series of
water table depths. Eigbe et al. [1998] reviewed the diffi-
culties associated with using a filter with groundwater flow
models, and identified procedures that would facilitate its
more effective and convenient use in this field. Cahill et al.
[1999] proposed a method for deriving optimal parameters
for an effective large-scale hydraulic conductivity that
considers both the temporal and spatial variations of the
moisture content. Lee et al. [2000] applied a linear Kalman
filter to identify the anisotropic aquifer transmissivity and
storage coefficient of a confined aquifer, using Cooper and
Jacob’s equation and Popadopulos’ approach. Unfortu-

nately, their approach is applicable only when the argument
of the well function is less than 0.01, and the observed data
must be measured in uniform time intervals, which is
impractical in field applications. Bierkens et al. [2001]
modeled the spatiotemperal variation of shallow water table
depth with a regionalized version of an autoregressive
exogenous (ARX) time series model. The regionalized
ARX parameters were estimated by embedding the region-
alized ARX model in a space-time Kalman filter.
[5] The current study presents a new approach that uses

the EKF to determine the parameters of confined and
unconfined aquifer systems. Reasonable guess values for
both confined and unconfined aquifer parameters may be
made based on the field aquifer hydrogeology and the
experiences of a hydrologist. With the initial guesses of
the parameters and the data interpolated from the observed
drawdowns, the EKF algorithm will proceed step by step to
optimally identify the system parameters. In a confined
aquifer, the EKF coupled with the Theis solution is used to
first estimate the drawdown and then determine the values of
transmissivity and storage coefficient at each filtering step k.
On the other hand, the EKF combined with Neuman’s model
for an unconfined aquifer works in the same manner as that
of confined aquifer and determines the values of vertical and
radial hydraulic conductivities, specific storage, and specific
yield at each step. The field-observed drawdown data
usually have nonuniform time intervals. Therefore the cubic
spline method is applied to generate the interpolated data
with uniform time interval. This interpolation approach can
facilitate the application of the EKF.
[6] In contract to previous researches, in this study the

state vector is comprised of the hydraulic parameters and
the model, i.e., the Theis solution or Neuman’s model, is

Figure 1. Pumping test data and interpolation data by cubic spline for the confined aquifer.
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used as the measurement equation. The unknown parame-
ters are thus estimated on-line as the observations come in.
This approach could be implemented on a computer, which
could be linked to a data logger and a pressure transducer
that measures the water level in the observation well during
a pumping test. The desired hydraulic parameters can then
be estimated in the field on-line and once stable estimates
have been obtained, the pumping test may be terminated.

2. Methodology

[7] This section includes two parts: the theoretical frame-
work of extended Kalman filter and cubic spline.

2.1. Discrete Extended Kalman Filter

[8] A system for the state vector described by the
dynamic model is presented by Grewal and Andrews
[1993] as

xk ¼ f xk�1; k � 1ð Þ þ wk ð1Þ

where xk� 1 and xk are respectively the state vector at time
steps k-1 and k, f (xk� 1, k�1) is the nonlinear function for
the state vector, and wk is the state noise assumed to be
normally distributed with zero mean white (uncorrelated)
sequence with known covariance structure Qk. Notably, the
state vector denotes the hydraulic parameters, and Qk is
assumed to be a zero vector throughout the filtering steps.
[9] The estimate for the state vector is of similar form as (1)

x̂k �ð Þ ¼ f x̂k�1 þð Þ; k � 1ð Þ ð2Þ

where x̂k(�) denotes the prior (or a priori) estimate at k step
and x̂k�1(+) represents the posterior (or a posteriori)

estimate at k � 1 step. This dynamic system may predict
the state estimate which can be used to obtain the predicted
measurement ẑk.
[10] A system measurement model may be represented as

[Grewal and Andrews, 1993]

zk ¼ h xk ; kð Þ þ uk ð3Þ

where zk is the measurement vector at time step k, and
h(xk, k) is the nonlinear function for the measurement
system. Uncorrelated with wk sequence, uk is the measure-
ment noise assumed to be a white sequence with the known
covariance matrix Rk. The matrix Rk is assumed to be
constant throughout the filtering process. Herein the non-
linear function is represented by the drawdown equation
(e.g., the Theis solution or Neuman’s model), which is
considered as a function of the hydraulic parameters.
[11] To obtain the predicted measurement, an expression

similar to (3) is

ẑk ¼ h x̂k �ð Þ; kð Þ ð4Þ

[12] For this, an initial estimate of the process at some
point in time step k is required. The estimate can be made
based on all available knowledge about the process prior to
time step k. The error covariance matrix associated with
x̂k(�) is also assumed to be known. The prior estimation
error ek(�) is defined as xk � x̂k(�). The a priori error
covariance matrix of xk�x̂k(�), denoted as Pk(�), is

Pk �ð Þ ¼ E ek �ð ÞeTk �ð Þ
� �

¼ E xk � x̂k �ð Þð Þ xk � x̂k �ð Þð ÞT
h i

ð5Þ

Figure 2. Pumping test data and interpolation data by cubic spline for the unconfined aquifer.
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The a posteriori covariance Pk(+), indicating the error
covariance matrix after update, can be defined in a similar
manner.
[13] With the assumption of the a priori estimate x̂k(�),

the measurement zk is used to improve the prior estimate

x̂k þð Þ ¼ x̂k �ð Þ þ �Kk zk � ẑkð Þ ð6Þ

where �Kk is defined as the Kalman gain and x̂k(+) is the
update estimate at step k. The updated state vector x̂k(+) can
be substituted back to (2) to form a new estimate x̂k+1(�) at
step k + 1. The Kalman filter uses minimum mean square
error as the performance criterion to find the particular �Kk

that yields an updated estimate. The Kalman gain is sought
to make x̂k(+) satisfy the orthogonality principle, thus
minimizing the square errors. Detailed derivations of the
minimization process are presented by Grewal and Andrews
[1993].
[14] The particular �Kk that minimizes the mean square

estimation error is

�Kk ¼ Pk �ð ÞHT
k HkPk �ð ÞHT

k þ Rk

� ��1 ð7Þ

where the measurement matrix Hk is approximated by the
derivative of the right-hand side of (4) and may be
expressed as

Hk �
@h x; kð Þ

@x

����
x¼x̂k �ð Þ

ð8Þ

[15] The error covariance matrix associated with the
updated (a posteriori) estimate is

Pk þð Þ ¼ I � �KkHk½ �Pk �ð Þ ð9Þ

where Pk(+) denotes the error covariance updated by the
Kalman gain and I represents an identity matrix. Both the
prior and update error covariance matrice would remain
symmetric and positive definite [Grewal and Andrews,
1993].
[16] Derived from (5), the error covariance matrix may

also be expressed as

Pk �ð Þ ¼ �k�1Pk�1 þð Þ�T
k�1 þ Qk�1 ð10Þ

where the state transition matrix, �k�1, expressed as the
derivative of the state vector estimation equation is

�k�1 �
@f x; k � 1ð Þ

@x

����
x¼x̂k�1 �ð Þ

ð11Þ

[17] The computational procedure for the EKF is exe-
cuted in a recursive manner. First, Pk(�) in (10) is calcu-
lated by using the updated Pk�1(+) at previous steps, �k�1

and Qk�1. Second, Kalman gain �Kk in (7) is computed by
introducing the previously calculated Pk(�), Hk, and Rk.
Then, Pk(+) in (9) is evaluated by inserting �Kk from the
second step and Pk(�) from the first step. Finally, the
successive values of x̂k(+) in (6) are computed by using
the known �Kk, x̂k(�), and the input data zk. The convergence
criterion to terminate the recursive process may be written
as

xkþ1 � xkj j < TOLx ð12Þ

where TOLx represents the specified tolerance. Once the
process is terminated, the convergent values of the param-
eters are obtained.

2.2. Cubic Spline

[18] A set of third-degree polynomials, yi between each
pair of adjacent data points from xi to xi+1, is considered.
An interpolating polynomial that passes through all the
points is continuous in its slope. Due to the condition that
the slopes of the two cubics that join at (xi, yi) are the

Table 1. Results of Parameter Estimation by EKF With Various Initial Guesses for T and S

Case

Initial Guess

NSa Convergence

Estimated Values Errors

T, m2/day S T, m2/day S 
 10�4 ME 
 10�3 SEE 
 10�3

1 700 0.001 568 yes 1158 1.76 �6.47 9.69
2 700 0.0001 500 yes 1144 1.88 �1.76 5.90
3 700 0.00001 - no - - - -
4 1300 0.001 477 yes 1164 1.74 �5.67 9.85
5 1300 0.0001 512 yes 1140 1.90 �1.79 5.78
6 1300 0.00001 - no - - - -
7 2000 0.001 - no - - - -
8 2000 0.0001 535 yes 1136 1.91 �0.96 5.57
9 2000 0.00001 - no - - - -

aNS represents the number of time steps, with each time step equal to 15 s.

Table 2. Results of Parameters Estimation by EKF With S = 10�4

and T Ranging From 100 to 3000 m2/day

Initial Guess T,
m2/day NSa

Estimated Values Errors

T, m2/day S 
 10�4 ME 
 10�3 SEE 
 10�3

100 481 1157 1.79 �4.11 8.09
500 171 1140 1.92 �0.03 5.47
1000 504 1143 1.89 1.32 5.72
1500 517 1139 1.91 �1.36 5.64
2500 194 1134 1.95 �0.12 5.54
3000 807 1139 1.92 �0.47 5.48

aNS represents the number of time steps, with each time step equal to 15 s.
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same, a general expression for cubic spline is obtained as
[Gerald and Wheatley, 1994; Burden and Faires, 1997]

hi�1Si�1 þ 2 hi�1 þ hið ÞSi þ hiSiþ1 ¼ 6
yiþ1 � yi

hi
� yi � yi�1

hi�1

� �
ð13Þ

where hi = xi+1 � xi is the width of ith interval and Si
represents the second derivative at the point (xi, yi).
Equation (13) can produce a new data set with uniform
time intervals by interpolating the original data with
nonuniform time intervals. Note that the x coordinate and
the y coordinate represent the time since pumping started
and the drawdown, respectively.

3. Application of EKF and Cubic Spline

[19] This section illustrates how a Kalman filter is
coupled with the Theis solution or Neuman’s model to
identify hydraulic parameter. The parameters of transmis-
sivity, T, and storage coefficient, S, of the confined aquifer
are optimally determined when employing the EKF at each
filtering step k to analyze the interpolated drawdown data.
The parameters of radial hydraulic conductivity Kr, vertical
hydraulic conductivity Kz, storage coefficient S, and specific
yield Sy of the unconfined aquifer can also be estimated in a
similar manner.

3.1. Application of Discrete EKF to a Confined Aquifer

3.1.1. Dynamic and Measurement Models for the Theis
Solution
[20] Both T and S denote the state vector to be determined

at each time step. The state vector from (2) may be
expressed as

x̂k �ð Þ ¼
T̂k �ð Þ

Ŝk �ð Þ

2
4

3
5 ð14Þ

[21] After each time step, the renewed state vector in (14)
is substituted into the Theis solution, consequently forming
the estimated drawdown. Based on Theis [1935] the esti-
mated drawdown x̂k from (4) may be written as

ẑk ¼
q

4pT
W uð Þ ð15Þ

and

u ¼ r2S

4Tt
ð16Þ

where q is the pumping rate, W(u) is the well function, r is
the distance between pumping well and observation well,
and t is the time since pumping started. The well function
may be expressed as

W uð Þ ¼ �0:5772157� ln u�
X1
n¼1

�1ð Þk un

n � n!

" #
ð17Þ

The high order terms of u in (17) may be truncated when un/
(n�n!) is less than 10�7.
3.1.2. Linear Approximation Equations for the Theis
Solution
[22] The first-order approximation for the transition

matrix from (11) is given as

�k�1 �

@T

@T

@T

@S

@S

@T

@S

@S

2
664

3
775 ð18Þ

[23] Based on (10), Pk(�) can be estimated with known
transition matrix �k�1. Obviously, �k�1 in (18) is an
identity matrix, thus simplifying the calculation of Pk(�).
With the assumption that Qk�1 equals zero, (10) may reduce
to

Pk �ð Þ ¼ Pk�1 þð Þ ð19Þ

[24] To update the hydraulic parameters in (6), the Kal-
man gain �Kk, estimated by known Hk and the prior cova-
riance matrix Pk(�), is first required. The input zk that
appeared in (6) denotes the interpolated drawdown data
generated by cubic spline. The measurement matrix Hk from
(8) consists of two elements. These are the partial deriva-
tives of the estimated drawdown x̂k with respect to T and S,
respectively, that is

Hk �
@ẑk
@T

@ẑk
@S

� �
ð20Þ

The evaluation of (20) is described in Appendix A.

3.2. Application of Discrete EKF to an Unconfined
Aquifer

3.2.1. Dynamic and Measurement Models for
Neuman’s Solution
[25] The state vector containing the parameters of the

unconfined aquifer in (2) at each time step is

x̂k �ð Þ ¼ K̂rk �ð Þ K̂zk �ð Þ Ŝk �ð Þ Ŝyk �ð Þ
� �T ð21Þ

[26] After each time step, the renewed state vector x̂k(�)
from (21) is substituted into Neuman’s model, consequently
forming the estimated drawdown x̂k. The estimated meas-
urement x̂k of (4) is expressed as [Neuman, 1974]

ẑk ¼
q

4pT

Z 1

0

4yJ0 yb1=2
� �

u0 yð Þ þ
X1
n¼1

un yð Þ
" #

dy ð22Þ

where T = Krb, b is the initial saturated thickness, J0(x) is a
zero order Bessel function of the first kind, b = Kzr

2/Krb
2 is

a dimensionless parameter, y is a dummy variable, and

u0 yð Þ ¼
1� exp �tsb y2 � r20

� �� �� �
cosh r0zDð Þ

y2 þ 1þ sð Þr20 � y2 � r20
� �2

=s
h i

cosh r0ð Þ

� sinh r0 1� dDð Þ½ � � sinh r0 1� lDð Þ½ �
lD � dDð Þ sinh r0ð Þ ð23Þ
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un yð Þ ¼
1� exp �tsb y2 þ r2n

� �� �� �
cos rnzDð Þ

y2 � 1þ sð Þr2n � y2 þ r2n
� �2

=s
h i

cos rnð Þ

� sin rn 1� dDð Þ½ � � sin rn 1� lDð Þ½ �
lD � dDð Þ sin rnð Þ ð24Þ

where ts = Tt/Sr2 represents the dimensionless time since
pumping started, zD is the dimensionless elevation of obser-
vation point, s = S/Sy is a dimensionless parameter, dD
denotes the dimensionless vertical distance between the
top of perforation in the pumping well and the initial position
of water table, and lD is the dimensionless vertical distance
between the bottom of perforation in the pumping well and
the initial position of water table. The terms of r0 and rn are
respectively the roots of the following two equations

sr0 sinh r0ð Þ � y2 � r20
� �

cosh r0ð Þ ¼ 0; r20 < y2 ð25Þ

and

srn sin rnð Þ þ y2 þ r2n
� �

cos rnð Þ ¼ 0; 2n� 1ð Þ p=2ð Þ < rn < np

ð26Þ

3.2.2. Linear Approximation Equations for Neuman’s
Model
[27] The first-order approximation for the transition

matrix in (11) is given as

�k�1 �

@Kr

@Kr

@Kr

@Kz

@Kr

@S

@Kr

@Sy
@Kz

@Kr

@Kz

@Kz

@Kz

@S

@Kz

@Sy
@S

@Kr

@S

@Kz

@S

@S

@S

@Sy
@Sy
@Kr

@Sy
@Kz

@Sy
@S

@Sy
@Sy

2
666666666664

3
777777777775

ð27Þ

which is in fact an identity matrix facilitating the calculation
of Pk(�). The relation between Pk(�) and Pk�1(+) is also
described by (19). The measurement matrix Hk and the prior
covariance matrix Pk(�) are used to determine the Kalman
gain. Both Hk and Pk(�) should be calculated in advance by
(8) and (10), respectively. The input zk is the measurement
data produced by cubic spline. The measurement matrix Hk

is composed of @x̂k/@Kr, @x̂k/@Kz, @x̂k/@S, and @x̂k/@Sy,

Figure 3. Parameter identification process of the confined aquifer for (a) T and (b) S.

SBH 9 - 6 LENG AND YEH: NUMERICAL DETERMINATION FOR AQUIFER PARAMETERS



which can be approximated by forward difference. Detailed
descriptions on the approximation are also provided in
Appendix A.

3.3. Application of Cubic Spline to Drawdown Data

[28] The drawdown data obtained from field aquifer tests
are normally nonuniform in time intervals, which leads to
difficulties for implementation of Kalman filters. Therefore
a cubic spline is applied to the observation data to generate
interpolated data with uniform time intervals.
[29] A pumping test performed in a confined aquifer with

a fully penetrating well was taken from Todd [1980, p. 127].
This well was pumped at a uniform rate of 2500 m3/day and
the drawdown was measured in an observation well 60 m
away from the pumping well. The uniform time interval for
drawdowns in the confined aquifer obtained by using a
cubic spline is 15 s for each step. The pumping test with 26
data points lasted 240 min (4 hours), which means that there
are 960 interpolated drawdown data points generated by the
cubic spline. Therefore a total of 960 time steps are
available for EKF identification process. Figure 1 illustrates
both the interpolated data produced by cubic spline and the
original observed drawdown data, showing a bump between
time steps 200 and 320, i.e., 50 and 80 min since pumping
started. The rest of the data points seem to follow Theis
behavior.
[30] The pumping test for an unconfined aquifer was done

in 1965 by the Bureau of Geologic Research and Minerals of
France [Batu, 1998, p. 535]. This unconfined aquifer con-
sisted of medium-grained sand with gravel in the deeper part
and a clayey matrix at shallow depths. The initial saturated

thickness of the aquifer was 8.24 m. The discharge rate
averaged about 53 m3/h and the drawdowns were monitored
at a distance of 10 m from the pumping well. The observed
drawdown data interpolated by cubic spline had the time
interval of one second for each step, for a total of 176,360
data points. Figure 2 demonstrates the data set generated by
cubic spline, along with the original 42 data points. The data
points form a seemingly S-shaped curve, though its lack of
smoothness may be due to the field heterogeneity or meas-
urement errors.

4. Data Analyses and Discussion

4.1. Assessment of Estimation Errors

[31] Two error criteria, mean error and standard error of
estimate, are used to assess the errors between the observed
and predicted drawdowns.

Figure 4. Comparison of the pumping test data from Todd [1980, p. 127] and the drawdowns estimated
by using the identified confined aquifer parameters.

Table 3. Comparison of Results From Using NLN and EKF

Initial Guess Convergence

T m2/day S NLN EKF

700 0.001 no yes
700 0.0001 yes yes
700 0.00001 yes no
1300 0.001 no yes
1300 0.0001 yes yes
1300 0.00001 yes no
2000 0.001 no no
2000 0.0001 no yes
2000 0.00001 yes no
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[32] The mean error (ME) is defined as

ME ¼ 1

n
�
Xn
i¼1

ei ð28Þ

[33] The principle of least squares assumes that the errors
are normally distributed with zero mean and constant
variance [McCuen, 1985]. When the ME value is equal to
or very close to zero, the assumption that errors have zero
mean will be satisfied.
[34] The standard error of estimate (SEE) is defined as

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

e2i

s
ð29Þ

where v is the degree of freedom, which equals the number
of observed data points minus the number of unknowns.

4.2. Parameter Identification for a Confined Aquifer

[35] For the initial error covariance matrix Pk�1(+), the
diagonal elements could be first assigned as, for instance,
25000 and 10�8, for T and S, respectively; and the off-
diagonal elements of Pk�1(+) are set to zero. However, since
Pk�1(+) equals the expected value of squared estimation
error E[(x̂k�1(+) � xk�1)(x̂k�1(+) � xk�1)

T], a reasonable
range for the initial guess for Pk�1(+) can be easily
obtained. Different cases are assigned different values for
Pk�1(+). With the computation of the EKF, the values of
Pk�1(+) are minimized. This means that the estimation
errors are gradually reduced step by step, accompanied by
the converging state vector x̂k�1(+), i.e., hydraulic parame-

ters. The measurement covariance Rk may be set to 10�4 or
less, remaining constant throughout the filtering process.
Given the initial guess values for T and S, along with initial
error covariance matrix, the EKF coupled with Theis
solution can proceed stepwise to identify the hydraulic
parameters. The algorithm is terminated when the specified
convergence criteria, according to (12), are all satisfied. The
tolerance criterion for T and S are respectively chosen as
TOLT = 10�2 (m2/day) and TOLS = 10�6. When those
prescribed tolerances are met, the recursive process is
terminated and the parameters are then determined.
[36] The two parameters, transmissivity and storage coef-

ficient, are successfully determined in some cases and
achieve relatively high accuracy, compared with those
estimated by graphical methods, such as the Theis and
Cooper-Jacob methods. Nine sets of initial guesses, taken
from Yeh [1987], are given for the parameter identification
process in order to show the comparison between EKF and
NLN. The results by EKF using the nine sets of T and S as
initial guesses along with their error estimation are given in
Table 1. Note that each time step here is equal to 15 s.
[37] The parameters for some cases are quickly deter-

mined and the time steps used for the identification process
do not exceed 600 steps, i.e., 2.5 hours of pumping time. An
aquifer test with long pumping time is usually conducted to
obtain the parameters for confined aquifers by conventional
methods. The total pumping time for the recorded data
given by Todd [1980] is four hours. Since the EKF only
takes about 2.5 hours to obtain the two parameters satisfy-
ing the prescribed accuracy, thus the long period of the
pumping time may not be required.
[38] In cases 3, 6, and 9, the parameters fail to be

determined as indicated in Table 1. In these three cases,
the storage coefficient is set as 10�5, which may be too
small to be a guess value. The usual value of S ranges from
10�3 to 10�5 [Walton, 1970]. Thus a guess value of storage
coefficient, say S = 10�4, is set along with various guess
values of transmissivity T are also given. With S = 10�4, the
range of initial guess for T is much wider, from 100 m2/day
to 3000 m2/day, and the EKF always gives good results.
Therefore sensible guesses, especially the guess value of
storage coefficient, should be made based on the knowledge
of the local hydrogeology to facilitate the implementation of
the EKF and obtain accurate parameters. This leads to one

Table 4. Confined Aquifer Parameters Estimated by Graphical

Methods and Their Prediction Errorsa

Methods

Estimated Values Errors

T m2/day S 
 10�4 ME 
 10�3 SEE 
 10�3

Theis 1110 2.06 �1.72 8.85
Cooper-Jacob 1090 1.84 �30.96 35.22
Chow 1160 1.93 20.52 22.82

aSee Yeh [1987].

Table 5. Unconfined Aquifer Parameters Estimated by EKF With Various Initial Guesses

Case

Initial Guess

NS,a s/hr

Estimated Parameters

Kr m/s Kz m/s S Sy Kr 
 10�3 m/s Kz 
 10�5 m/s S Sy 
 10�2

1 6.E-3b 1.E-5 5.E-4 0.1 8689/2.41 2.24 1.63 9.67E-4 3.72
2 9.E-4 1.E-5 5.E-4 0.1 1275/0.35 2.19 1.74 1.01E-3 3.97
3 1.E-3 1.E-4 5.E-4 0.1 1329/0.37 2.25 1.56 9.69E-4 4.10
4 1.E-3 9.E-6 5.E-4 0.1 10966/3.05 2.21 1.68 1.02E-3 3.98
5 1.E-3 1.E-5 4.5E-4 0.1 24568/6.82 2.23 1.64 9.37E-4 3.81
6 1.E-3 1.E-5 5.5E-4 0.1 2121/0.59 2.18 1.76 1.02E-3 4.11
7 1.E-3 1.E-5 5.E-4 0.01 899/0.25 2.18 1.73 9.90E-4 4.38
8 1.E-3 1.E-5 5.E-4 0.05 2422/0.67 2.22 1.69 1.00E-3 3.87
9 1.E-3 1.E-5 5.E-4 0.1 8920/2.48 2.25 1.62 9.66E-4 3.69
10 1.E-3 1.E-5 5.E-4 0.3 8977/2.49 2.24 1.62 9.64E-4 3.70

aNS represents the number of time steps.
bRead 6.E-3 as 6 
 10�3.
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inference that assigning a reasonable initial guess S is
crucial in applying the EKF. With an initial guess T ranging
from 100 m2/day to 3000 m2/day and fixed guess value S =
10�4, the estimated parameters and their prediction errors
are listed in Table 2. With a reasonable initial guess of S, the
EKF allows a wider range of initial guess of T as compared
with NLN. The determined T ranges from 1134 to 1157 m2/
day averaging 1142 m2/day and the determined S ranges
from 1.79 
 10�4 to 1.95 
 10�4, averaging 1.90 
 10�4.

Among those six cases, the one with initial guess T = 500
m2/day has the least SEE value.
[39] Figure 3 shows the estimated T and S for case 8 at

each time step. The parameter values change significantly
in the early time steps and tend to approach a certain value
as the time steps increase. Figure 1 shows a jump in the
pumping test data between steps 200 and 320, i.e., between
50 and 80 min after start of pumping. The observed datum
measured at 60 min causes the interpolation data between

Figure 5. The unconfined aquifer parameter identification process for (a) Kr, (b) Kz, (c) S, and (d) Sy .
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step 200 and 320 to form a bump, leading to a fluctuation
both in T and S identification process, as displayed in
Figure 3. The bump datum does not conform to the Theis
behavior, suggesting that the errors embedded in the obser-
vation data might temporarily disturb the parameter identi-
fication process. Figure 4 shows the observed drawdowns
and the computed drawdowns using the estimated param-
eters obtained from case 8. Figure 4 indicates that the
computed drawdowns match the pumping test data quite
well.

[40] Table 3 lists the initial guesses for T and S and the
estimated results, indicating that both NLN and EKF do not
converge in four out of nine cases. The values of parameters
obtained by NLN for the four cases are all the same, i.e., T =
1139 m2/day and S = 1.93 
 10�4. The errors estimated are
ME = 4 
 10�4 and SEE = 5.47 
 10�3. Parameter
identification employing NLN yields a slightly smaller
value of SEE though in the same order of magnitude as
that of the EKF, if convergence is achieved. Slightly higher
prediction errors for the EKF may be due to the use of

Figure 5. (continued)
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interpolation data produced by cubic spline, which inevi-
tably introduce additional errors and give slightly less
accurate results.
[41] Using conventional graphical methods such as the

Theis, Cooper-Jacob, and Chow methods, the analyzed
results along with their prediction errors are listed in Table
4 [Yeh, 1987]. The prediction errors of graphical methods
are generally larger than those of EKF, as suggested in
Tables 2 and 4. Clearly, EKF has the advantage that it
avoids erroneous estimation caused by human subjectivity
during the curve fitting procedure.

4.3. Parameter Identification for an Unconfined
Aquifer

[42] With the off-diagonal elements set to zero, the
diagonal elements of initial error covariance matrix
Pk�1(+) could be assigned the values, for example, say
10�6, 10�10, 10�8 and 10�3, for Kr, Kz, S, and Sy, respec-
tively. The measurement covariance Rk might be set to 10�6,
remaining constant throughout the identification process.
Given the initial values for error covariance matrix and
initial guesses for hydraulic parameters, the EKF combined

with the Neuman’s model can also identify the hydraulic
parameters stepwise. The process of parameter identifica-
tion usually starts with parameters varying drastically and
then the parameters tend to approach constant values
asymptotically. The tolerance criteria for Kr , Kz, S, and Sy
are respectively chosen as TOLKr

= 10�6 (m/s), TOLKz =
10�8 (m/s), TOLS = 10�6 and TOLSy = 10�5 when analyzing
the pumping test data in an unconfined aquifer.
[43] Ten sets of the initial guesses are chosen when using

the EKF to analyze the drawdown data obtained from a
pumping test in the unconfined aquifer discussed above. The
estimated results for the ten sets of initial guesses are shown
in Table 5. The values determined for Kr range from 2.18 

10�3 to 2.25 
 10�3 m/s averaging 2.22 
 10�3 m/s. The
values determined for Kz range from 1.56 
 10�5 to 1.76 

10�5 m/s averaging 1.66 
 10�5 m/s. The values deter-
mined for S range from 9.37 
 10�4 to 1.02 
 10�3

averaging 9.83 
 10�4. The values determined for Sy range
from 3.69
 10�2 to 4.38
 10�2, with an average of 3.95

10�2. Of the ten cases, case 3 has the least SEE value.
[44] Figure 5 exhibits the values of the parameters for case

8 at each time step to demonstrate the identification process.

Figure 6. Estimation error covariance of the parameters (a) Kr and Kz and (b) S and Sy .
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The parameters, except Sy, vary drastically at the beginning
and then asymptotically approach constant values during the
identification process. Figure 6 shows the covariances of the
state estimation errors for case 8. The error covariance plots
for Kr and S demonstrate rapid decrease during the first five
steps and then mild decrease thereafter. Both plots exhibit
roughly similar shape and indicate that the estimated param-
eters tend to converge after about 560 steps. The error
covariance of Kz and Sy seems to initially remain constant
and then decreases rapidly after some steps. Figure 7 displays
the plots of the observed and predicted drawdowns using the
estimated parameters of case 8, indicating that the predicted
drawdowns closely match the pumping test data. The EKF
approach successfully determines the four hydraulic param-
eters in all cases and has the advantage of good accuracy,
judging from the values of ME and SEE listed in Table 6.
[45] The parameter values for all cases are determined

when the tolerance criteria are met. The total time steps used
in the recursive process for those ten cases do not exceed
25000 steps, i.e. 25000 s (6.94 hours). In engineering
practice, it is commonly recognized that a pumping test
for an unconfined aquifer should be conducted for more
than one day so that the recorded data can include the effect
of gravity yield. The chosen pumping test for analyses in
this paper lasted about 49 hours [Batu, 1998, p. 535]. The
analyzed results imply that a 7 hour period may be sufficient
for the unconfined pumping test when using the EKF for
data analyses. Therefore excess time spent in pumping test
may be saved if the EKF approach is employed.
[46] Table 7 lists the values of initial guesses and the

analyzed results of using the NLN and EKF. Four out of
ten cases for NLN do not converge, while all cases for the

EKF converges. The results obtained by NLN for the four
cases are: Kr = 2.22 
 10�3 m/s, Kz = 1.68 
 10�5 m/s, S =
1.31 
 10�3, and Sy = 3.85 
 10�2 and the prediction
errors are ME = 2.76 
 10�4 and SEE = 8.06 
 10�3.
Although NLN converges more quickly than EKF and the
estimated parameters have slightly less estimation errors,
the EKF, on the other hand, has wider range of initial
guesses and the prediction error of SEE is in the same
order of magnitude as that of NLN. Table 8 lists the
analyzed results and the prediction errors from the graph-
ical approaches such as the Neuman type-curve method
and Neuman’s semilogarithmic method [Batu, 1998]. The
prediction errors from using the EKF are generally much
smaller than those by these two graphical methods, indicat-
ing a better fit for the drawdown data.
[47] When the drawdown data are plotted against time in

logarithmic scale, the curve of these data has an S-shape

Figure 7. The pumping test data from Batu [1998] and the drawdown curve predicted by the estimated
parameters.

Table 6. Prediction Errors for the Determined Parameters in an

Unconfined Aquifer

Case ME 
 10�3 SEE 
 10�3

1 �2.65 9.73
2 �3.87 9.77
3 1.68 8.36
4 �2.42 9.43
5 3.10 10.16
6 �3.47 9.67
7 �2.19 10.06
8 �1.96 9.38
9 �2.05 9.67
10 �2.97 9.81
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consisting of a steep segment at early times, a relatively flat
segment at middle times (indicating small drawdowns), and
a steeper segment again at late times, as shown in Figure 7.
At early times, the water comes from the elastic behavior of
the water and aquifer formation and this early steep portion
of the curve is attributed to the storage coefficient equiv-
alent of a confined aquifer. The physical phenomenon that
causes the flat segment at moderate times is the gravity
drainage replenishment. At late times, the steep portion of
the curve can be described by specific yield Sy, also
following the Theis curve with S = Sy. The change of Sy
value during the identification process exhibits a phenom-
enon that can be related to the aquifer physical behavior.
Figure 8 illustrates the values of Sy during the identification
process for cases 7–10 listed in Table 4. Specific yields, Sy,
are often in the range of 0.01 to 0.3 [Batu, 1998]. Thus the
values of Sy chosen as initial guesses for the four cases are
0.01, 0.05, 0.1, and 0.3, and the rest of the guess parameters
are Kr = 1.0 
 10�3 m/s, Kz = 1.0 
 10�5 m/s, and S = 5.0

 10�4 for all cases. The value of specific yield Sy during
the recursive process does not change much initially (say,
within 100 s) as indicated in Figure 8, because the elastic
behavior of the aquifer dominates and nothing to do with
the gravity drainage. In the flat segment of the pumping
data, the guess value for Sy starts to vary after 100 steps,
(i.e., 100 s) implying that the gravity drainage plays an
important role during this period of time. All of the cases
show the same phenomenon, which concludes the flat
segment is the crucial transition stage for this particular
parameter. At late times the Sy value for all cases converges
to a certain value, demonstrating that the identification
process of the EKF for Sy can reflect the physical nature
of the unconfined aquifer.

4.4. Analyses for Drawdown Data With Uncorrelated
and Temporally Correlated Noises

[48] The MATLAB function randn(m, n) with m = 500
and n = 1 is first chosen to generate a realization of white

noises [The MathWorks, 1995]. The elements in this real-
ization are normally distributed random numbers with zero
mean and unit variance. Each element is then multiplier by
8.29 
 10�3, which is calculated based on the data variance
(0.942) and the SEE value of case 3 (8.36 
 10�3). Finally,
420 data point is taken form this realization and divided into
ten data sets. Therefore each data set contains 42 elements
(i.e., 42 data points). Neuman’s model along with the
parameters estimated form case 3 by the EKF was employed
to generate 42 predicted drawdown data points. Thus a set
of pumping drawdown data was synthesized by simply
adding the adjusted noise data to the predicted drawdown
data one by one. Accordingly ten sets of synthetic draw-
down data with uncorrelated noises were obtained.
[49] The original realization of white noises is employed

to generate temporally correlated noises. The MATLAB
function hamming (n) with n = 5 is used to produce five
coefficients of a Hamming window [The MathWorks, 1995].
The MATLAB function conv(a, b) is applied to convolves
vectors a and b [The MathWorks, 1995], where vector a
represents the original realization and vector b represents
the coefficients of the Hamming window. Algebraically,
convolution can be thought of as multiplying the polyno-
mials whose coefficients are the elements of a and b. Each
element of the product of the convolution is adjusted by a
factor of 6.57 
 10�3, which is calculated based on the data
variance (1.500) and the SEE value of case 3. The result
after the adjustment represents a new realization with
temporally correlated noises. Thus ten sets of synthetic
drawdown data with temporally correlated noises can be
formed in a similar manner to the procedure of generating
the drawdown data with uncorrelated noises. The initial
guesses for the hydraulic parameters are: Kr = 1 
 10�3 m/s,
Kz = 1 
 10�5 m/s, S = 1 
 10�3, and Sy = 1 
 10�2. The
analyzed results by EFK are listed in Table 9, indicating that
the EKF may also be applicable for data with white noises
and temporally correlated noises, although the prediction
errors of SEE are slightly higher than those when analyzing
the real drawdown data.

5. Conclusions

[50] An approach using the EKF and cubic spline is
proposed to identify the hydraulic parameters in both
confined and unconfined aquifer systems. The EKF com-
bined with the Theis solution can optimally determine the
parameters for confined aquifers in the identification
process. The drawdown data with nonuniform time inter-
vals from the pumping test are interpolated by cubic
spline to have uniform time interval. This interpolation
approach facilitates the implementation of EKF. In an
unconfined system, Neuman’s model is employed in the
same manner as the Theis solution to determine the
hydraulic parameters.

Table 7. Comparison of NLN and EKF With the Same Initial

Guess Values

Case

Initial Guess Convergence

Kr ,m/s Kz, m/s S Sy NLN EKF

1 6.E-3 1.E-5 5.E-4 0.1 no yes
2 9.E-4 1.E-5 5.E-4 0.1 yes yes
3 1.E-3 1.E-4 5.E-4 0.1 no yes
4 1.E-3 9.E-6 5.E-4 0.1 no yes
5 1.E-3 1.E-5 4.5E-4 0.1 yes yes
6 1.E-3 1.E-5 5.5E-4 0.1 yes yes
7 1.E-3 1.E-5 5.E-4 0.01 no yes
8 1.E-3 1.E-5 5.E-4 0.05 yes yes
9 1.E-3 1.E-5 5.E-4 0.1 no yes
10 1.E-3 1.E-5 5.E-4 0.3 no yes

Table 8. Unconfined Aquifer Parameters Estimated by Graphical Methods and Their Prediction Errors

Methods

Estimated Values Errors

Kr 
 10�3, m/s Kz 
 10�3, m/s S 
 10�3 Sy 
 10�2 ME 
 10�3 SEE 
 10�3

Neuman type curve 2.4 1.62 1.46 5.73 32.90 34.59
Neuman semilogarithmic 2.4 1.62 1.87 2.13 14.23 14.96
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[51] Using only a few observed drawdown data, the
proposed approach can quickly identify the parameters. In
the confined aquifer, the estimated parameters can be
obtained within 150 min (2.5 hours) for some cases and
have small prediction errors. For most cases in unconfined
systems, the EKF can determine the hydraulic parameters
and achieve good accuracy within seven hours. In contrast,
pumping tests lasting more than one day are commonly
considered necessary to include the effect of gravity yield.
However, the analyzed results by the EKF imply that a few
hours may be enough for an unconfined pumping test. At
present, pumping tests are usually performed in the field
with a system having pressure transducers installed in the
observation wells to measure the water level and a data
logger to store the measured data transmitted from the
pressure transducers. Such a system may be linked to a
computer in which the EKF coupled with the aquifer model
is implemented and executed simultaneously. Accordingly,
the hydraulic parameters can be determined on-line in the
field. Once stable estimates of the hydraulic parameters
have been reached, the pumping test may be terminated.
[52] Results of using NLN and EKF for analyzing the

pumping test data with various initial guess values are
analyzed and compared. In confined cases, the EKF allows
a wide range for the initial guess T, when an initial guess
value of S is given closer to the actual S. The EKF is shown
to have a wider range of initial guess values than NLN in
unconfined cases, though the accuracy by employing NLN
is slightly higher. In terms of graphical methods, in both
confined and unconfined cases, graphical methods have
lager prediction errors than the EKF. Clearly, the EKF can
avoid the inaccuracy caused by human subjectivity during
the curve fitting procedure.

[53] The MATLAB function randn(m, n) and the Neu-
man’s model along with the parameters estimated form case
3 by the EKF are employed to generate ten sets of synthetic
drawdown data with uncorrelated noises. Also the MAT-

Figure 8. Change of Sy in the identification process for different initial guesses.

Table 9. Results From Analyzing the Drawdown Data With

White Noise and With Temporally Correlated Noise

Case
Kr 
 10�3,

m/s
Kz 
 10�5,

m/s S 
 10�4 Sy 
 10�2 SEE 
 10�2 NSa

Drawdown Data With White Noise
1 NAb NA NA NA NA NA
2 2.29 2.00 9.89 0.52 7.89 291
3 2.32 1.81 9.48 2.20 1.61 1282
4 2.82 0.81 7.46 1.37 1.40 6376
5 2.17 2.29 9.85 1.44 5.10 432
6 2.44 1.80 9.65 0.61 5.32 407
7 2.28 1.14 10.00 1.06 5.34 20
8 NA NA NA NA NA NA
9 3.16 0.74 9.98 0.04 5.34 805
10 NA NA NA NA NA NA

Drawdown Data With Temporally Correlated Noise
1 2.66 1.04 7.74 1.37 0.79 11854
2 2.44 1.83 9.77 0.62 5.35 293
3 2.54 1.27 8.83 2.15 0.69 2786
4 NA NA NA NA NA NA
5 NA NA NA NA NA NA
6 NA NA NA NA NA NA
7 2.27 2.13 9.77 1.24 4.54 231
8 2.14 2.12 9.69 2.80 2.57 1629
9 2.46 1.62 9.71 1.14 2.82 937
10 NA NA NA NA NA NA

aNS represents the number of the time steps.
bNA represents that the result is not available under the specified

tolerance criteria.
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LAB functions hamming (n) and conv(a, b) with the same
Neuman’s model are used to generate ten sets of synthetic
drawdown data with temporally correlated noises. The
analyzed results indicate that EKF can successfully analyze
data with white noises or temporally correlated noises,
although the prediction errors are slightly higher than those
when analyzing the real drawdown data.

Appendix A: Evaluation of Hk

A.1. Theis Equation

[54] Based on (15) and (16), and Leibnitz rule [Wylie and
Barrett, 1995], the two derivatives @x̂k/@T and @x̂k/@S in
(20) can be directly derived as

@ẑk
@T

¼ q

4pT 2
e�u �W uð Þð Þ ðA1Þ

and

@ẑk
@S

¼ � q

4pTS
e�u ðA2Þ

A.2. Neuman’s Model

[55] In Neuman’s four-parameter model, the values of
drawdown depend on the decisive variables, Kr, Kz, S, and
Sy, which may be written as

s ¼ q

4pT
� G Kr;Kz; S; Sy

� �
ðA3Þ

where G(Kr, Kz, S, Sy) represents the integral in (22).
[56] The four derivatives @x̂k/@Kr, @x̂k/@Kz, @x̂k/@S, and

@x̂k/@Sy are

@ẑk
@Kr

¼ � q

4pK2
r b

Gþ q

4pT
@G

@Kr

ðA4Þ

@ẑk
@Kz

¼ q

4pKrb

@G

@Kz

ðA5Þ

@ẑk
@S

¼ q

4pKrb

@G

@S
ðA6Þ

@ẑk
@Sy

¼ q

4pKrb

@G

@Sy
ðA7Þ

where @G/@Kr is approximated by forward differencing as

@G

@Kr

¼
G Kr þ�Kr;Kz; S; Sy
� �

� G Kr;Kz; S; Sy
� �

�Kr

ðA8Þ

and the other partial derivatives @G/@Kz, @G/@S, and @G/@Sy
are also expressed in a similar manner. The increment
shown in the denominator may be approximated by the
parameter value times a factor of 10�3 or less, e.g., �Kr =
10�3Kr.
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