
IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993 1393

define the generation potential of Z2 and I 1 to be the maximum delay
of a carry generated anywhere in these two sections to the center
of the adder. This delay is 6.2 ns. Each block of r2 will be made
to have the maximum length so that the generation potential of 12
and 11 (6.2 ns) plus the delay from the output of the mux at the of
I1 to the new block’s msb is limited by 11 ns. The resulting r2 is
shown in Fig. 6(f).

Just like 11, r l may have to be modified so that a carry that starts
in r l and ends in another right-hand-side section always has a life
shorter than 11 ns. Modifying a right-hand-side section such as r l
involves providing a direct path from the carry output of a section
(which is a mux output) to the input of the mux at the end of the
section.

Continuing in this fashion, the finished adder is shown in Fig. 6(g).
The adder has 60 b, more than enough for adding a pair of 52-b

mantissas and guard bits of a double-precision floating-point number
conforming to IEEE Standard 754.

V. CONCERNING LONG WIRE DELAYS

It is highly unlikely that metal delays will be significant in any
reasonable layout of an adder of our type. According to Annaratone
[l, p. 13.51, if the wire (metal) width is 2-,um, then the RC constant of
aluminum per centimeter (10 000 pm) of length is quite a bit less than
the RC constant of a minimum feature size MOS capacitor. And for
wire (metal) widths well into the submicrometer range, it would take
several hundred micrometers of wire to have the same RC constant
as a MOS transistor. Thus, in 2-pm technology and even for much
smaller technology, wire delays should be quite insignificant. The
capacitive wire delays that the muxes at the end of a section have
to drive is also still small, and can be compensated if desired (as
discussed earlier) by enlarging those few muxes just slightly.

ACKNOWLEDGMENT

The author is grateful to the constructive criticisms offered by the
editor, Prof. M. J. Irwin, and referees A and B and the new referee
who read the first revised version. These comments helped greatly
in transforming the theoretical results of the original version of this
correspondence into truly practical adders.

REFERENCES

M. Annaratone, Digital CMOS Circuit Design. Boston. M A Kluwer,
1986.
C. Babbage, On the Mathematical Powers of the Calculating Engine,
1837. (Reprinted in The Origins of Digital Computers, B. Randell,
Ed. Berlin: Springer-Verlag, 1973.
Pak K. Chan and Martine D. F. Schlag, “Analysis and design of CMOS
manchester adders with variable carry-skip,” IEEE Trans. Comput., Aug.
1990; an earlier version appeared in Proc. 9th IEEE Symp. Comput.
Arithmetic, 1989.
L. Glasser and D. Dobberpuhl, The Design andAnalysis of VLSI Circuits.
Reading MA: Addison-Wesley, 1985.
A. Guyot, B. Hochet, and J.-M. Muller, “A way to build efficient
carry-skip adders,” IEEE Trans. Comput., Oct. 1987.
V. Kantabutra, “Designing optimum one-level carry-skip adders,” IEEE
Trans. Comput., vol. 42, no. 6, pp. 759-764, June 1993.
- , “A recursive carry-lookaheadicarry-select hybrid adder,” IEEE
Trans. Comput., to appear.
T. Lynch and E. Swartzlander, “A spanning tree carry lookahead adder,”
IEEE Trans. Comput., vol. 41, Aug. 1992.
V. G. Oklobdzija and E. R. Barnes, “Some optimal schemes for ALU
implementation in VLSI technology,” in Proc. 7th Symp. Comput.
Arithmetic, 1985.

[lo] S. Turrini, “Optimal group distribution in carry-skip adders,” in Proc.
9th IEEE Symp. Comput. Arithmetic, 1989.

Broadcasting on Incomplete Hypercubes

Jenn-Yang Tien, Ching-Tien Ho, and Wei-Pang Yang

Abstract-Incomplete hypercubes make the hypercubes more flexible
on task allocation in large cubes, cost of manufacturing hardware, and
hypercubes with faulty nodes. In this correspondence, we devise and
analyze a broadcasting algorithm based on edge-disjoint spanning trees
in an incomplete hypercube of 2” + 2 k nodes, where 0 5 k < n. The
broadcasting algorithm is strictly optimal.

Index Terms- Broadcasting, edge-disjoint spanning trees, incomplete
hypercubes, routing.

I. INTRODUCTION

Broadcasting is one of the most important communication primi-
tives used in multiprocessors with distributed memory. It is frequently
used in a variety of linear algebra algorithms, such as matrix
multiplication and Gaussian elimination. The reverse operation of
broadcasting is reduction, in which the data set is reduced by applying
operators such as additionhubtraction and max/min.

The binary (Boolean) hypercube topology has been an attractive
architecture [12] in connecting from tens to tens of thousands
of processors. Among the attractive architectural features are its
logarithmic diameter, rich bandwidth, regular structure, fault toler-
ance, and, more importantly, the fact that many regular (algorithm
or machine) structures can be embedded into it with adjacency
(or nearly) preserved. Current examples of commercially available
hypercubes are the Intel iPSC/860, the NCUBE 2, and the Connection
Machine model CM-2. Despite its attractive features, however, one
restriction of the hypercube topology is that the size of a system has
to be an integer power of two. It leaves a large gap between the
two sizes of systems that can be constructed, or of subcubes that can
be assigned to an application in a multitasking environment [4]. An
incomplete hypercube [101-a hypercube missing a certain number
of nodes-improves this restriction. An incomplete hypercube may
be caused by the hardware construction; by some nodes of a complete
hypercube becoming faulty; or by allocating a partial number of nodes
of a complete hypercube to an application in a multiple-host system.
Extensive study on the incomplete hypercube has been conducted
recently [2], [16], [17], since it was first introduced by Katseff [lo].

The communication model is assumed to be store-and-forward or
packet-switched. Messages may be broken down into packets of the

Manuscript received July 22, 1991; revised July 9, 1992 and January
21, 1993. This work was supported in part by the National Science Council,
Republic of China, under Contract NSC79-0408-E009-01. This paper was
presented at the 3rd IEEE Symposium on Parallel and Distributed Processing,
Dallas, TX, 1991.

J.-Y. Tien is with the Chung Shan Institute of Science and Technology,
Lungtan, Taoyuan, Taiwan, R.O.C.

C.-T. Ho is with IBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95120.

W.-P. Yang is with the Department of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

IEEE Log Number 9212775.

001%9340/93$03.00 0 1993 IEEE

1394 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993

same size. A node receiving a packet must finish receiving it before
any of its content can be utilized. All incident links of a node can
be used simultaneously for transmission or reception. We use M to
denote the number of elements to be broadcast; t , is the transfer
time for an element, and T is the start-up for communication of a
packet of maximum B elements. For clarity, we first assume that
tc = 1 and T = 0 in deriving the communication complexity. It is
straightforward to derive the general complexities from the simplified
ones, and we give the general complexities also.

Broadcasting on a graph can be realized based on one spanning
tree, or a set of spanning trees (termed spanning graphs), with
the root being the source node. Graphs of minimum height have
minimum propagation time which is the overriding concern for
small data volumes or for a high communication overhead. For
large data volumes, it is important to use the bandwidth of the
interconnection network effectively, in particular, if each processor is
able to communicate on all its ports concurrently. Binomial spanning
tree and n edge-disjoint spanning trees proposed by Johnsson and
Ho [8] are used for broadcasting algorithms on hypercubes. In this
correspondence, we generalize the work of Johnsson and Ho in [8]
to the case of incomplete hypercubes. The edge-disjoint spanning
tree (EDST) is composed of k + 1 spanning trees in which any two
spanning trees are edge-disjoint (in the directed-edge sense). The
k + 1 parallel paths in the (IC + 1) edge-disjoint spanning trees offer a
speedup of up to k + 1 over the algorithm based on the hierarchical
binomial spanning tree [15].

The remainder of this correspondence is organized as follows.
Notations, properties of incomplete hypercubes, and spanning trees
in complete hypercubes are given in Section 11. In Section 111,
the edge-disjoint spanning tree (graph) is defined and characterized.
Broadcasting based on edge-disjoint spanning tree and broadcasting
complexity estimation is given in Section IV. Section V concludes
the results.

11. PRELIMINARIES
Let Qn be the n-dimensional Boolean cube, or n-cube. Then,

an incomplete hypercube of N' nodis, where 2" < N' < 2"+l,
is the graph induced by the node set (O . l : . . , N ' - l} in Qn+l.
In this correspondence, we only consider incomplete hypercubes of
sizes 2n + 2 k , where 0 5 k < n. Such an incomplete hypercube,
denoted I:, consists of an n-cube and a k-cube. Throughout the
correspondence, we use N = 2" and K = 2 k , and refer to Qn and
Qk as thefront cube and backcube, respectively. Nodes are numbered
from 0 to N-1 in the front cube, and from Ai to N+K-1 in the back
cube. Node addresses are represented by (n + 1)-bit binary numbers
(s,~,-I . . . SO). Thus, (O*") and (1Onpkd) denote the front cube
and back cube, respectively, where * is a don't-care symbol whose
value can be 0 or 1, and yz stands for i consecutive y's.

A. Subcubes in Incomplete Hypercubes

A set of nodes having the same lower k-bit value in their binary
node addresses constitutes a (complete) subcube in the incomplete
hypercube I;. A respective subcube S , of I: is defined as S, =
(xn . . . ~ k * ~) , such that the value of (xn . . . xk) = i.

With distinct higher (n - IC + 1)-bit values, there are 2"-'" + 1
respective subcubes. For convenience, we will also refer to the back
cube as sb exchangeably with s2n-k . A set of nodes is corresponding
if all nodes in the set have the same value in their lower k bits of
binary node addresses. A set of corresponding nodes in the front
cube, which form a (complete) subcube in the original incomplete
hypercube, is called a corresponding subcube. Corresponding subcube

(a) (b) (c)

Fig. 1. Incomplete hypercube 1;.

Fig. 2. Binomial spanning tree and binomial broadcasting in a 3-cube.

C,, where 0 5 i < 2'", is defined as C, = (O*rLpk xk--1 . . . SO), such
that the value of (xk- -1 zo) = i .

Corresponding subcubes are (n - k)-cubes, and links in each
corresponding subcube have dimensions in the range of k to n - 1.
There are 2'" corresponding subcubes in the front cube, each of which
is associated with an node in the back cube.

Example: Fig. l(a) shows an 1; with 4 cross edges (of dimension
3) being omitted. The binary addresses for nodes in SO, SI, and S2

have a form (OO*'), (01*'), and (lo*'), respectively. Corresponding
subcubes CO, C1, Cz, and C3, which are shown in Fig. l(c), have
binary node addresses (0 * 00), (0 * 01), (0 * lo), and (0 * l l) , respec-
tively.

B. Binomial Spanning Tree (BST)

A 0-level binomial tree has one node. An n-level binomial tree is
constructed out of two (n - 1)-level binomial trees by adding one
edge between the roots of the two trees, and making either root be the
new root. The well-known spanning tree on a hypercube generated
by the e-cube routing algorithm [14] is indeed a binomial tree. We
refer to it as the binomial spanning tree (BST) in the following.
Broadcasting based on the BST is to double, per step, the number
of processors holding the source data, referred to as the binomial
broadcasting in the following. Fig. 2 shows the binomial spanning
tree and the binomial broadcasting in a 3-cube. The spanning tree
on the right of the figure is a binomial tree for which the number of
nodes at level i is (F j .

Applying pipelining, the propagation time to the node farthest away
from the source is at least n. When this node receives all elements,
the broadcasting is terminated. The total time for broadcast is then
M + n - 1.

C. Edge-Disjoint Spanning Trees (EDST's)

In [8] , Johnsson and Ho defined n directed spanning trees in an
n-cube and showed that they are all edge-disjoint (in the directed-
edge sense). For the construction of the Jth spanning tree, where
J E (0.1.. . . , n - l}, the root first extends an edge across dimension
j to node z = (On-3-110J). Then, construct a spanning tree rooted
at node .Z in subtree (*n-J-'l*') according to the sequence of
dimensions (J + 1) mod n, (j + 2) mod n, . . . , (J - 1) mod n. By
connecting each node (but node x) in subcube (*"-3p11*3) to its
corresponding node in subcube (*"-3p10*3) by a new edge, the j th
spanning tree is formed. Fig. 3(a) shows an example of 3 EDST's
in a 3-cube where labels on directed links are their associated link
dimensions. The subtree rooted at the immediate successor of the root
spans all (but the root) nodes in the hypercube.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993 1395

. uo

duplicate subtree

Fig. 5. Duplicating a subtree along link n appended to node U b .

Fig. 3 . EDST and broadcasting based on EDST in 3-cube.

Fig. 4. Rooted nEDST and pivoted nEDST in 3-cube.

An example of one-port broadcasting of 3 elements based on the n /(-; & EDST on a 3-cube is shown in Fig. 3(b). Labels on links are time steps

are filled with units of message. The number of communication steps
of broadcasting for algorithms based on the nEDST is shown to be

Note that it is possible to combine the nEDST algorithm and the

of communication. After n steps, all but the links entering the root
append subtree

[iV!/nl + n, which is a factor of n faster than the BST broadcasting. Fig. 7. the subtree rooted at uO to node U 1 link

BST algorithm [13] to save one communication step-[6], and yield a
truly optimal broadcasting algorithm (with respect to the number of
elements transferred in sequence). Thus, broadcasting based on the
nEDST attains a time of [M/nl + n - 1 in an n -cube.

111. EDGE-DISJOINT SPANNING TREES IN INCOMPLETE HYPERCUBES

In this section, we describe edge-disjoint spanning trees in I t ,
which will be used as the basis for our broadcasting algorithm
introduced in the next section. -0 types of edge-disjoint spanning
trees in a (complete) hypercube are defined first to facilitate the
description. Then, we construct k + 1 EDST's, (k + l)EDST, on
{So . S1. Sb }, which is the incomplete hypercube I:+', before a
general construction on I; is described.

A. Rooted and Pivoted nEDST

The nEDST in Qn (described in Section 11-C), in which the set
of edge-disjoint spanning trees have a common root (the root of
nEDST), is referred to as the rooted nEDST. Another type of n edge-
disjoint spanning trees, in which the direction of edges between the
root and its immediate successors in the rooted nEDST is reversed,
is referred to as the pivoted n EDST. The rooted nEDST and pivoted
nEDST in a 3-cube are shown in Fig. 4. Since the n incoming edges
of the root of nEDST are unused edges, the n spanning trees in
the pivoted nEDST are still edge-disjoint. Both the n immediate
successors of the common root of n spanning trees in rooted nEDST,
and the distinct n roots of n spanning trees in the pivoted nEDST,
are referred to as the pivot nodes.

B. k -t- 1 EDST'S in { s o , si, sb}

In the following, we will show the construction of k + 1 edge-
disjoint spanning trees in I:+' = { S O , S I , Sb}. The construction is
separated into three cases according to the position of the root. The
construction has two steps. In the first step, a (k + 1)EDST in Q ~ C + ~
is constructed. In the second step, nodes (and links) of the other Qk

are added.
1) Root in SO: We first construct k + l EDST's in {SO, SI}, which

is Q k + l , with the root being in SO. Then, for each spanning tree j,

where 0 5 j 5 I C , we attach nodes in s b and preserve them edge-
disjoint. Fig. 5 gives a global view of attaching nodes in sb to existing
spanning trees. For each node uo in SO in the original spanning tree
j , if it has a child, say, u 1 , connected through a dimension4 edge,
then we duplicate the subtree rooted at U I and attach it to node uo
via a dimension-n edge. The duplicated subtree is rooted at node Ub.

(By duplicating a subtree, we mean that the structure of the subtree
and the dimensions of the edges are preserved. The node addresses
are derived accordingly once the root is assigned with address U b .)

Note that all nodes in the duplicating subtree are in SI, and those in
the duplicated subtree are in s b . (The only exception is that uo is the
root, in which case, all leaf nodes in the subtree are in SO.) Then, all
the leaf nodes along dimension IC in the duplicated subtree are deleted.
(This guarantees that all nodes in duplicated subtrees are in Sb.)

2) Root in S1 : We first construct k + 1 EDST's in {SO, SI} with
the root being in SI. Then, for each spanning tree j , where 0 5 j 5 k,
we append nodes in sb. Fig. 6 gives a global view of appending a
subtree. As before, leaf nodes along link k in the appended subtrees
are delete to generate a spanning tree in I,"".

3) Root in sb: Since s b is similar (isomorphic) to SI from the
viewpoint of So, this case is similar to case 2. We first construct
k + 1 EDST's in {SO, Sb} with the root being in sb. Fig. 7 shows
the global view.

Thus, we have the next two lemmas.
Lemma 1: We have constructed k + 1 EDST's rooted at any node

in an I,"+'.
Proof: We give the proof of case 1 (root in SO). The other

two cases can be proved in a similar way. When k + 1 EDST's
in {So, Sl} are constructed, nodes in SI are connected to the root
through exactly one link in dimension k. The duplication of a subtree
makes corresponding nodes (in sb) of those node (in SI) in the
subtree connected to the root. Since edges in subtrees being duplicated
are disjoint, the resulting k + 1 spanning trees are edge-disjoint. 0

Lemma 2: For any given node i in {SO, SI}, we can construct
IC + 1 pivoted EDST's such that they are all rooted at different nodes
in {SO, SI} and their common neighbor is node i.

Proof: We construct the IC + 1 pivoted EDST's by taking the
k + 1 EDST's rooted at node i and reversing the edge from the root

1396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993

d

(a) @) (c)

Fig. 8. Edge-disjoint spanning trees in 1; (source is in back cube).

(i.e., node i) to each pivot node. It is easily seen that only one “new”
directed edge, which was not used by the k + 1 EDST’s rooted at
node i, is added to each of the k + 1 pivoted EDST’s. Furthermore,
these k + 1 new added edges are all different, which implies that the
k + 1 pivoted EDST’s remain edge-disjoint.

C. k + 1 EDST’s in 1;
To simplify the description, we first assume that the root is in

{So, S1, sb}. Then, the case that the root is in the other subcube is
considered.

When k + 1 EDST’s in {SO, SI.&} are constructed, the (k +
1)EDST in IF (rooted at node in {SO, SI, S b }) can be constructed
as follows. Partition the front cube into subcubes of dimension
k + 1 with respect to dimensions 0,1, . . . , k. For convenience, let
Y,, where 1 5 i < ZnpkP1, be the (k + 1)-dimensional subcube
{SzZr Szl+l}. Let the root node be T O in {SO, SI, sb}. Also, denote
the corresponding root (Le., having the same k + 1 lower order bits)
of T O in Y, as T ~ . We call the k + 1 neighbors of T * in Y, the pivot
nodes. The IC + 1 corresponding nodes in {SO. SI} of the distinct
pivot nodes (in Yz) are also called pivot nodes. We are now ready to
describe the construction rules of k + 1 EDST’s in 1;.

1) Construct the k + 1 EDST’s in {SO, SI. sb} rooted at node T O .

2) Within each Y,, construct the k + 1 pivoted EDST’s rooted at
the k + 1 pivot nodes within Y,.

3) Construct k + 1 BST’s, where the j t h BST is rooted at the j t h
pivot node in {SO.SI} spanning all the j th pivot nodes in X ’ s for
all i .

From the individual point of view, each of the k + 1 spanning
trees in I: consists of three types of spanning trees: a spanning
tree of {SO, SI, sb} rooted at the source node (step 1); a BST on
corresponding pivot nodes (step 3); and a spanning tree of Y,, for all
i, rooted at the pivot node spanned by the BST (step 2).

Example: A part of edge-disjoint spanning trees rooted at a node in
S b is illustrated in Fig. 8. Subtrees along dimension n are duplicated
from those in dimension k. There are k+l supernodes (darked nodes)
in Fig. 8(a) corresponding to k + 1 pivot nodes in {SO, SI, s b } . Each
supemode stands for a BST [Fig. 8(b)] among corresponding pivot
nodes (one in each x). Adjacent edges of the supernode in Fig. 8(a)
are adjacent to the root of BST in Fig. 8(b). Each node in Fig. 8(b)
represents one of the k + 1 pivoted EDST’s on the respective subcube
shown in Fig. 8(c). The largest subtree of BST in Fig. 8(c) is on the
dimension (j + 1) mod k [Fig. 8(b)], provided that dimension j is the
dimension of link to which the root of BST [Fig. 8(b)] is adjacent.

Now, we describe the condition that the root is not in {SO, SI, sb}.
Let the root node be in Y,, 1 5 a < 2”-k-1. The (k + 1)EDST in
1; is constructed as follows. The k + 1 EDST’s in {SO, SI, sb} are
constructed in pivoted form (Lemma 2). k + 1 EDST’s in E;, i # a ,
are also in pivoted form; and k + 1 EDST’s in Y, are rooted. k + 1
BST’s which connect k + 1 sets of corresponding pivot nodes are
rooted at pivot nodes in Y,.

Theorem I : The data structure constructed above is composed of
k + 1 edge-disjoint spanning trees.

Proof: In the construction, k + 1 edge-disjoint spanning trees

in each respective subcube are constructed. The IC + 1 immediated
successors of the root in the rooted (k + 1)EDST and k + 1 roots
in each pivoted (k + 1)EDST act as “pivots” among k + 1 sets of
spanning trees. Each set of spanning trees, composed of a spanning
tree in each respective subcube and a BST in pivot nodes of those
spanning trees, is a spanning tree in the incomplete hypercube. Since
the k + 1 BST’s are in distinct 2”-k-1 sets, they are node-disjoint;
and spanning trees in respective subcubes are edge-disjoint. The k + 1

0
Lemma 3: The height of k + 1 EDST’s is n + 2 if the root is in

respective subcube S 2 n - k - l or s b , and the height is n S 1 otherwise.
Proof: When the root is in s z n - k - l (respectively, Sb), pivot

nodes in YO (respectively, Y Z n - k - - l - l are in the lowest level of the
BST’s of pivot nodes. The height of EDST’s is 1 + (n - li - 1) + 1
+ (k + 1) [respectively, 2 t (n - k - 1) + (k + l)] = n + 2. When
the root is in any other respective subcube, the furthest pivot nodes

The diameter of the incomplete hypercube 1; is n + 1. When the
root is in a subcube other than sb or SzR-kp1, the furthest node
away from the root is n, i.e., the diameter of n-cube. The height of
the EDST’s is at most one higher than optimal. It is optimal if the
height of k + 1 EDST’s in an n-cube is at least n + 1. The optimal
height of n EDST’s in the n-cube is known to be n + 1 [SI. In the
following, we prove that the height n + 2 of k + 1 EDST’s rooted
at node in S b or S z n - k P l is optimal.

Theorem 2: The maximum height of k+ 1 EDST’s in I: is optimal
when the root is in Szn-~-l or Sb, and IC > 0.

Proof: If the root is in St,, k out of k + 1 neighbors of the root
are in sb. The furthest nodes away from nodes in s b have distance
n + 1. Since the root has only one child node in each spanning tree,
the maximum height of k + 1 EDST’s is at least n + 2.

If the root T is in SZn--k-l, P is in sb; where F is the node with
complementing address bits of T . Clearly, node F is n + 1 hops away
from node T . Since each node in sb has k + 1 parent nodes (w.r.t.
k + 1 EDST’s), all incoming links of a node in sb are used in the
EDST’s. For neighbors of P to them implies that the paths from T to

0

spanning trees of 1; are edge-disjoint.

are n - k - 1 hops away from pivot nodes in Y,.

those passing through F have hops at least n + 2.

Iv. BROADCASTING ON INCOMPLETE HYPERCUBES
There are two important factors which affect the communication

complexity of broadcasting. One is the average number of packets
which are sent per step from the root-bandwidth utilization, denoted
by a. The higher a an algorithm attains, the better the algorithm per-
forms. The other factor is the propagation delay for a packet--latency,
denoted by p; that is, the number of steps for a packet to reach all
nodes from the step it was sent out from the root. The communication
complexity of a broadcasting algorithm, for which both bandwidth
utilization and latency are stable (Le., does not depend on the time
step), is rM/a l + p - 1.

Lemma 4: The lower bound on latency is n + 1.
Proof: The longest distance between two nodes in the incom-

0
Lemma 5: The maximal bandwidth utilization is k + 1.

Proof: There are k + 1 outgoing (incoming) edges, or parallel
paths, for nodes in the back cube. It is useless even if the root can
send out more than k + 1 elements in a step (when the root is in the
front cube), since the links which are adjacent to nodes in the back

Theorem 3: The lower bound of broadcasting is [M / (k + l)] +n.
0

plete hypercube is n + 1.

cube are fully loaded.

Proof: It is easily obtained from Lemmas 4 and 5.

A. Edge-Disjoint Hamiltonian Paths
In this subsection, we prove that there exist at least k EDHP’s in

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993 1397

I; if k is an even number; and there exist k + 1 EDHP's in I: if
k is an odd number. For ease of describing, we assume, at first, that
the graph is undirected. Under the undirected graph, we prove that
there exist k / 2 (respectively, [k + 1]/2) edge-disjoint Hamiltonian
cycles (EDHC's). Each undirected EDHC represents two directed
EDHC's-one for each direction. Removing the incoming edge into
the root, each directed EDHC is exactly a directed EDHP.

Lemma 6 [3]: If graphs C1 and CZ are Hamiltonian, then C1 x Cz
contains two edge-disjoint Hamiltonian cycles (EDHC's).

Lemma 7 [I]: If the graph G contains two EDHC's and the graph
C is Hamiltonian, then the graph G x C contains three EDHC's.

Lemma 8: If the graph C is Hamiltonian and L2 is an edge, then
the graph C x LZ is Hamiltonian.

Proof: The product graph C x L2 can be considered as two
planes, each containing a copy of C, and completing each edge
perpendicular to both planes. There exists a cycle traversing all
vertices in the same plane. Select adjacent vertices, u and v , in the
cycle remove edge (u. v), duplicate the path on the other plane, and
add perpendicular edges of both u and e, and a Hamiltonian cycle in

0
Lemma 9: The product graph C" = C x C x . . . x C contains

C x Lz is formed. -
"

n EDHC's, where C is a cycle with arbitrary number of vertices.
Proof: We prove the lemma by induction on the number of

C's. By Lemma 6, C x C contains 2 EDHC's. By Lemmas 6 and 7,
C x C x C contains 3 EDHC's. Assume that c" contains i EDHC's
for all i < n. We wish to show that C" contains n EDHC's.

If n is even, then C" = Cn/2 x Cn/2. By the induction
hypothesis, the product graph C"/' contains n / 2 EDHC's.
Consider the n / 2 product graphs which are formed as the
product of the ith HC in the two product graphs C"/2's for
1 5 i 5 n / 2 . Each product graph contains two EDHC's,
by Lemma 6. Furthermore, all these product graphs are edge-
disjoint. Therefore, there exist n EDHC's.
If n is odd, then C" = C(n-1)/2 x C("t')/2. Pair each but one
HC of the C("-l)/' with an HC in the C("+l)/'. This leaves one
HC of the C("-1)/2 and two HC's of the C("+')/' unpaired. By
Lemmas 6 and 7, there are n EDHC's in the product graph C".

0
Theorem 4: I: contains k + 1 directed EDHC's when k + 1 is

even, and contains k directed EDHC's when k + 1 is odd.
Proof: Since L Z n - k is a subgraph of Q Z n - - k with the same set

of vertices, H = Q k x L2n--lc+l is a subgraph of I: with the same
set of vertices. Note that Q k = LZ x Lz x . . . x L2. We are going

to prove that there are directed 1 + 1 (respectively, k) EDHC's in H,
when k + 1 is even (respectively, odd).

Case 1: k + 1 is even. Since L, x L, is Hamiltonian, H contains
a subgraph of the form C(k+ l) /Z , with the same set of vertices. By
Lemma 9, there exist (k + 1)/2 EDHC's in H . Thus, there are k + 1
directed EDHC's in I:.

C a s e 2 : k + 1 is odd. H = L,k x LZn--lc+' = LZ x L2k-l x
L Z n - k + l . By Lemma 8, H contains a subgraph of the form Ck/ ' ,
with the same set of vertices. By Lemma 9, there exist k / 2 EDHC's

0

P
k

in H . Thus, there are k directed EDHC's in 1;.

B. Broadcasting Based on EDST's

We first examine the heights of the (k + 1)EDST. When the root
is in the back cube, there is a pivot node (the one in SI) which is
two hops away from the source node, and the height of the (k + 1
)EDST is 2 + (n - k - 1) + (k + 1) = R + 2. When the source node
is in S2n--k-1, the height of the (k + 1)EDST is 1 + (n - k - 1) +

TABLE I

ALGORITHMS ASSUMING r = 0 AND t, = 1

1 Gmphs I HP I EDST I LowerBound 1
n C o m p [e z i t y I r ~ -] + N + K - 2 1 r&]+n+ll 1

COMMUNICATTON COMPLEXITIES OF BROADCASTING

(k + 1) + 1 = n + 2 (the nodes in sb have one hop deeper than their
corresponding nodes in So). Precisely, the height is z + 1, where z is
the longest distance from the source to other nodes in I:. The number
of communication steps of broadcasting based on the (k + 1)EDST
is r M / (k + 1)1 + n + 1, which has an optimal bandwidth utilization
and one more step than the optimal latency.

C. Comparisons

Table I compares the communication complexities of the proposed
broadcasting algorithm and the broadcasting algorithm based on a
Hamiltonian path. Recall that this is a simplified model in which
'T = 0 and t , = 1. The general complexities (T), optimal packet
size (Elopt), and the complexity with optimal packet size (7'~")
are derived in Table 11.

The number of edge-disjoint spanning trees embedded in the broad-
casting graph dominates the bandwidth utilization of broadcasting.
The longest path from the root to all other nodes in the graph
dominates the latency of broadcasting. The EDST-based broadcasting
algorithm always has good bandwidth utilization, as the number of
edge-disjoint spanning trees increases. The broadcasting algorithm
based on the edge-disjoint Hamiltonian paths has good bandwidth
utilization. The latency, however, is extremely large. Broadcasting
algorithms based on the proposed k + 1 EDST's have an optimal
bandwidth utilization and near optimal latency for any values of (n, k)
regardless of the position of the root.

V. CONCLUSION
The hypercube topology has the restriction that its size must be

a power of two, leaving a gap between hypercubes of two adjacent
sizes. The family of incomplete hypercubes alleviates such restriction.
Incomplete hypercubes can also be derived from faulty hypercubes
or from allocations of subsets of hypercube nodes, which do not
necessarily form subcubes.

We have presented edge-disjoint spanning trees in incomplete
hypercubes of size 2" + 2 k , and given the broadcasting algorithm
based on the edge-disjoint spanning trees. We also derive the number
of edge-disjoint Hamiltonian path, which is the extreme case of a
spanning tree with height 2" + 2k - 1. The bandwidth utilization
of edge-disjoint Hamiltonian path is optimal (when k is even), or
one less than optimal (when IC is odd). However, the communication
latency is extremely high. The number of communication steps of
broadcasting based on the edge-disjoint spanning trees is [M / (k +
1)1 + n + 1, which has an optimal bandwidth utilization and one
more step than the optimal latency.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for their
helpful comments and suggestions.

1398

REFERENCES

IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993

[l] J. Aubert and B. Schneider, “Decomposition de la somme cartesi-
enne d’un cycle et de l’union de deux cycles hamiltoniens en cycles
hamiltoniens,” Discrete Math., vol. 38, pp. 7-16, 1982.

[2] H. L. Chen and N.-F. Tzeng, “Enhanced incomplete hypercube,” in
Proc. 1989 Int. Con$ Parallel Process., vol. 1, pp. 270-277, 1989.

[3] M. Foregger, “Hamiltonian decompositions of products of cycles,”
Descrete Math., vol. 24, pp. 251-260, 1978.

[4] W. D. Hillis, The Connection Machine. Cambridge, MA: M.I.T. Press,
1985.

[5] C.-T. Ho, “Optimal communication primitives and graph embeddings
on hypercubes,” Ph.D. dissertation, Yale Univ., May 1990.

[6] -, “Optimal broadcasting on SIMD hypercubes without indirect
addressing capability,” J. Parallel Distrib. Cornput., 1991.

(71 C.-T. Ho and S . L. Johnsson, “Distributed routing algorithms for
broadcasting and personalized communication in hypercubes,” in Proc.
1986 Int. Conf: Parallel Process., 1986, pp. 640448.

[8] S. L. Johnsson and C.-T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,” IEEE Trans. Comput., vol. 38, pp.
1249-1268, Sept. 1989.

[9] -, “Embedding meshes into small Boolean cubes,” in Proc. 1990
Distrib. Memory Comput. Conf:, 1990, pp. 1366-1374.

[lo] H. P. Katseff, “Incomplete hypercubes,” IEEE Trans. Compuf., vol. 37,
pp. 604-608, May 1988.

[l l] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE Trans. Compuf., vol. 37, pp. 867-872, July 1988.

[12] C. L. Seitz, “The cosmic cube,” Commun. ACM, vol. 28, pp. 22-33,
Jan. 1985.

[13] Q. F. Stout and B. Wagar, “Intensive hypercube communication pre-
arranged communication in link-bound machines,” J. ParaZZeZ Distrib.
Comput., vol. 10, pp. 167-181, 1990.

[14] H. Sullivan and T. R. Bashkow, “A large scale, homogeneous, fully
distributed parallel machine, I,” in Proc. 4th Symp. Compuf. Arch., 1977,

[15] J.-Y. Tien and W.-P. Yang, “Hierarchical spanning trees and distributing
on incomplete hypercubes,” Parallel Compuf., vol. 17, pp. 1343-1360,
1991.

[16] N.-F. Tzeng, “Structural properties of incomplete hypercubes,” in Proc.
loth Inf. Con$ Distrib. Comput. Syst., May 1990, pp. 262-269.

[17] N.-F. Tzeng, H.-L. Chen, and P.-J. Chuang, “Embeddings in incomplete
hypercubes,” in Proc. 1990 Int. Conf Parallel Process., 1990, pp.
335-339.

pp. 105-117.

A Routing and Broadcasting Scheme
on Faulty Star Graphs

Nader Bagherzadeh, Nayla Nassif, and Shahram Latifi

Abstract-In this correspondence, we present a routing algorithm that
uses the depth first search approach combined with a backtracking
technique to route messages on the star graph in the presence of faulty
links. The algorithm is distributed and requires no global knowledge of
faults. The only knowledge required at a node is the state of its incident
links. The routed message carries information about the followed path
and the visited nodes. The algorithm routes messages along the optimal,
i.e., the shortest path if no faults are encountered or if the faults are such
that an optimal path still exists.

In the absence of an optimal path, the algorithm always finds a path
between two nodes within a bounded number of hops if the two nodes
are connected. Otherwise, it returns the message to the originating node.
We provide a performance analysis for the case where an optimal path
does not exist. We prove that for a maximum of n - 2 faults on a graph
with N=n! nodes, at most 2a + 2 steps are added to the path, where
is O(fi).

algorithm on the star graph in the presence of faults.

tributed algorithm.

Finally, we use the routing algorithm to present an efficient broadcast

Index Terms-Fault tolerance, star graph, routing, broadcasting, dis-

I. INTRODUCTION
A new interconnection network topology called the star graph

has been recently introduced in [I] and [2]. An extension to this
network has also been introduced in [7]. The star graph is vertex
symmetric. It provides an interconnection network for a large number
of processors using a low number of communication channels while
providing a high level of redundancy that makes it highly fault-
tolerant []]-[3]. An optimal algorithm for routing messages between
any two nodes of the star graph, assuming that no faulty links or nodes
exist in the graph, was presented in [I]. Fault-tolerance routing has
been discussed for different interconnection networks [6], [8]. Fault
tolerance of the star graph was discussed in [3] and [9]. Reference [2]
compared properties of the hypercube and the star graphs. A depth
first search approach to provide fault-tolerant routing in the hypercube
was presented in [5]. Reference [9] presented a routing scheme using
a depth first search approach on faulty star graphs. The scheme had
shortcomings: by keeping the information about the traversed path in
a stack that is popped every time a message backtracks, the algorithm
does not guarantee liveness and deadlock-free transmission. In fact,
an example can be found where the message gets stuck by being
continuously sent to the same node. Due to faulty conditions, the
node cannot forward the message. Once it returns the message, it
receives it later because its node reference has already been popped
off the stack.

In this correspondence, we use symmetry and fault-tolerance
properties of the star graph to introduce a distributed algorithm
for efficiently routing messages between any two nodes of the star
graph in the presence of faulty links. The algorithm is based on the

Manuscript received June 8, 1992.
N. Baherzadeh and N. Nassif are with the Department of Electrical and

S. Latifi is with the Department of Electrical and Computer Engineering,

IEEE Log Number 9209050.

Computer Engineering, University of California, Irvine, Irvine, CA 92717.

University of Nevada, Las Vegas, NV 89154.

0018-9340/93$03.00 0 1993 IEEE

