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define the generation potential of Z2 and I 1  to be the maximum delay 
of a carry generated anywhere in these two sections to the center 
of the adder. This delay is 6.2 ns. Each block of r2 will be made 
to have the maximum length so that the generation potential of 12 
and 11 (6.2 ns) plus the delay from the output of the mux at the of 
I1 to the new block’s msb is limited by 11 ns. The resulting r2 is 
shown in Fig. 6(f). 

Just like 11, r l  may have to be modified so that a carry that starts 
in r l  and ends in another right-hand-side section always has a life 
shorter than 11 ns. Modifying a right-hand-side section such as r l  
involves providing a direct path from the carry output of a section 
(which is a mux output) to the input of the mux at the end of the 
section. 

Continuing in this fashion, the finished adder is shown in Fig. 6(g). 
The adder has 60 b, more than enough for adding a pair of 52-b 

mantissas and guard bits of a double-precision floating-point number 
conforming to IEEE Standard 754. 

V. CONCERNING LONG WIRE DELAYS 

It is highly unlikely that metal delays will be significant in any 
reasonable layout of an adder of our type. According to Annaratone 
[l, p. 13.51, if the wire (metal) width is 2-,um, then the RC constant of 
aluminum per centimeter (10 000 pm) of length is quite a bit less than 
the RC constant of a minimum feature size MOS capacitor. And for 
wire (metal) widths well into the submicrometer range, it would take 
several hundred micrometers of wire to have the same RC constant 
as a MOS transistor. Thus, in 2-pm technology and even for much 
smaller technology, wire delays should be quite insignificant. The 
capacitive wire delays that the muxes at the end of a section have 
to drive is also still small, and can be compensated if desired (as 
discussed earlier) by enlarging those few muxes just slightly. 
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Broadcasting on Incomplete Hypercubes 

Jenn-Yang Tien, Ching-Tien Ho, and Wei-Pang Yang 

Abstract-Incomplete hypercubes make the hypercubes more flexible 
on task allocation in large cubes, cost of manufacturing hardware, and 
hypercubes with faulty nodes. In this correspondence, we devise and 
analyze a broadcasting algorithm based on edge-disjoint spanning trees 
in an incomplete hypercube of 2” + 2 k  nodes, where 0 5 k < n. The 
broadcasting algorithm is strictly optimal. 

Index Terms- Broadcasting, edge-disjoint spanning trees, incomplete 
hypercubes, routing. 

I. INTRODUCTION 

Broadcasting is one of the most important communication primi- 
tives used in multiprocessors with distributed memory. It is frequently 
used in a variety of linear algebra algorithms, such as matrix 
multiplication and Gaussian elimination. The reverse operation of 
broadcasting is reduction, in which the data set is reduced by applying 
operators such as additionhubtraction and max/min. 

The binary (Boolean) hypercube topology has been an attractive 
architecture [12] in connecting from tens to tens of thousands 
of processors. Among the attractive architectural features are its 
logarithmic diameter, rich bandwidth, regular structure, fault toler- 
ance, and, more importantly, the fact that many regular (algorithm 
or machine) structures can be embedded into it with adjacency 
(or nearly) preserved. Current examples of commercially available 
hypercubes are the Intel iPSC/860, the NCUBE 2, and the Connection 
Machine model CM-2. Despite its attractive features, however, one 
restriction of the hypercube topology is that the size of a system has 
to be an integer power of two. It leaves a large gap between the 
two sizes of systems that can be constructed, or of subcubes that can 
be assigned to an application in a multitasking environment [4]. An 
incomplete hypercube [ 101-a hypercube missing a certain number 
of nodes-improves this restriction. An incomplete hypercube may 
be caused by the hardware construction; by some nodes of a complete 
hypercube becoming faulty; or by allocating a partial number of nodes 
of a complete hypercube to an application in a multiple-host system. 
Extensive study on the incomplete hypercube has been conducted 
recently [2], [16], [17], since it was first introduced by Katseff [lo]. 

The communication model is assumed to be store-and-forward or 
packet-switched. Messages may be broken down into packets of the 
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same size. A node receiving a packet must finish receiving it before 
any of its content can be utilized. All incident links of a node can 
be used simultaneously for transmission or reception. We use M to 
denote the number of elements to be broadcast; t ,  is the transfer 
time for an element, and T is the start-up for communication of a 
packet of maximum B elements. For clarity, we first assume that 
tc = 1 and T = 0 in deriving the communication complexity. It is 
straightforward to derive the general complexities from the simplified 
ones, and we give the general complexities also. 

Broadcasting on a graph can be realized based on one spanning 
tree, or a set of spanning trees (termed spanning graphs), with 
the root being the source node. Graphs of minimum height have 
minimum propagation time which is the overriding concern for 
small data volumes or for a high communication overhead. For 
large data volumes, it is important to use the bandwidth of the 
interconnection network effectively, in particular, if each processor is 
able to communicate on all its ports concurrently. Binomial spanning 
tree and n edge-disjoint spanning trees proposed by Johnsson and 
Ho [8] are used for broadcasting algorithms on hypercubes. In this 
correspondence, we generalize the work of Johnsson and Ho in [8] 
to the case of incomplete hypercubes. The edge-disjoint spanning 
tree (EDST) is composed of k + 1 spanning trees in which any two 
spanning trees are edge-disjoint (in the directed-edge sense). The 
k + 1 parallel paths in the (IC + 1) edge-disjoint spanning trees offer a 
speedup of up to k + 1 over the algorithm based on the hierarchical 
binomial spanning tree [15]. 

The remainder of this correspondence is organized as follows. 
Notations, properties of incomplete hypercubes, and spanning trees 
in complete hypercubes are given in Section 11. In Section 111, 
the edge-disjoint spanning tree (graph) is defined and characterized. 
Broadcasting based on edge-disjoint spanning tree and broadcasting 
complexity estimation is given in Section IV. Section V concludes 
the results. 

11. PRELIMINARIES 
Let Qn be the n-dimensional Boolean cube, or n-cube. Then, 

an incomplete hypercube of N' nodis, where 2" < N' < 2"+l, 
is the graph induced by the node set ( O . l : . . , N '  - l} in Qn+l. 
In this correspondence, we only consider incomplete hypercubes of 
sizes 2n + 2 k ,  where 0 5 k < n. Such an incomplete hypercube, 
denoted I:, consists of an n-cube and a k-cube. Throughout the 
correspondence, we use N = 2" and K = 2 k ,  and refer to Qn and 
Qk as thefront cube and backcube, respectively. Nodes are numbered 
from 0 to N-1 in the front cube, and from Ai to N+K-1 in the back 
cube. Node addresses are represented by (n + 1)-bit binary numbers 
(s,~,-I  . . .  SO). Thus, (O*") and (1Onpkd)  denote the front cube 
and back cube, respectively, where * is a don't-care symbol whose 
value can be 0 or 1, and yz stands for i consecutive y's. 

A. Subcubes in Incomplete Hypercubes 

A set of nodes having the same lower k-bit value in their binary 
node addresses constitutes a (complete) subcube in the incomplete 
hypercube I;. A respective subcube S ,  of I: is defined as S, = 
(xn . . . ~ k * ~ ) ,  such that the value of (xn . . . xk) = i. 

With distinct higher (n - IC + 1)-bit values, there are 2"-'" + 1 
respective subcubes. For convenience, we will also refer to the back 
cube as sb exchangeably with s2n-k . A set of nodes is corresponding 
if all nodes in the set have the same value in their lower k bits of 
binary node addresses. A set of corresponding nodes in the front 
cube, which form a (complete) subcube in the original incomplete 
hypercube, is called a corresponding subcube. Corresponding subcube 

(a) (b) (c) 

Fig. 1. Incomplete hypercube 1;. 

Fig. 2. Binomial spanning tree and binomial broadcasting in a 3-cube. 

C,, where 0 5 i < 2'", is defined as C, = (O*rLpk xk--1 . . . SO), such 
that the value of (xk- -1  ....zo) = i .  

Corresponding subcubes are (n - k)-cubes, and links in each 
corresponding subcube have dimensions in the range of k to n - 1. 
There are 2'" corresponding subcubes in the front cube, each of which 
is associated with an node in the back cube. 

Example: Fig. l(a) shows an 1; with 4 cross edges (of dimension 
3) being omitted. The binary addresses for nodes in SO, SI, and S2 

have a form (OO*'), (01*'), and (lo*'), respectively. Corresponding 
subcubes CO, C1, Cz, and C3, which are shown in Fig. l(c), have 
binary node addresses (0 * 00), (0 * 01), (0 * lo), and (0 * l l ) ,  respec- 
tively. 

B. Binomial Spanning Tree (BST) 

A 0-level binomial tree has one node. An n-level binomial tree is 
constructed out of two (n - 1)-level binomial trees by adding one 
edge between the roots of the two trees, and making either root be the 
new root. The well-known spanning tree on a hypercube generated 
by the e-cube routing algorithm [14] is indeed a binomial tree. We 
refer to it as the binomial spanning tree (BST) in the following. 
Broadcasting based on the BST is to double, per step, the number 
of processors holding the source data, referred to as the binomial 
broadcasting in the following. Fig. 2 shows the binomial spanning 
tree and the binomial broadcasting in a 3-cube. The spanning tree 
on the right of the figure is a binomial tree for which the number of 
nodes at level i is ( F j .  

Applying pipelining, the propagation time to the node farthest away 
from the source is at least n. When this node receives all elements, 
the broadcasting is terminated. The total time for broadcast is then 
M + n - 1. 

C. Edge-Disjoint Spanning Trees (EDST's) 

In [8] ,  Johnsson and Ho defined n directed spanning trees in an 
n-cube and showed that they are all edge-disjoint (in the directed- 
edge sense). For the construction of the Jth spanning tree, where 
J E (0.1.. . . , n - l}, the root first extends an edge across dimension 
j to node z = (On-3-110J). Then, construct a spanning tree rooted 
at node .Z in subtree (*n-J-'l*') according to the sequence of 
dimensions (J + 1) mod n, ( j  + 2) mod n, . . . , (J  - 1) mod n. By 
connecting each node (but node x) in subcube (*"-3p11*3) to its 
corresponding node in subcube ( *"-3p10*3) by a new edge, the j th  
spanning tree is formed. Fig. 3(a) shows an example of 3 EDST's 
in a 3-cube where labels on directed links are their associated link 
dimensions. The subtree rooted at the immediate successor of the root 
spans all (but the root) nodes in the hypercube. 
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. uo 

duplicate subtree 

Fig. 5. Duplicating a subtree along link n appended to node U b .  

Fig. 3 .  EDST and broadcasting based on EDST in 3-cube. 

Fig. 4. Rooted nEDST and pivoted nEDST in 3-cube. 

An example of one-port broadcasting of 3 elements based on the n /(-; & EDST on a 3-cube is shown in Fig. 3(b). Labels on links are time steps 

are filled with units of message. The number of communication steps 
of broadcasting for algorithms based on the nEDST is shown to be 

Note that it is possible to combine the nEDST algorithm and the 

of communication. After n steps, all but the links entering the root 
append subtree 

[iV!/nl  + n, which is a factor of n faster than the BST broadcasting. Fig. 7. the subtree rooted at uO to node U 1  link 

BST algorithm [13] to save one communication step-[6], and yield a 
truly optimal broadcasting algorithm (with respect to the number of 
elements transferred in sequence). Thus, broadcasting based on the 
nEDST attains a time of [M/nl + n - 1 in an n -cube. 

111. EDGE-DISJOINT SPANNING TREES IN INCOMPLETE HYPERCUBES 

In this section, we describe edge-disjoint spanning trees in I t ,  
which will be used as the basis for our broadcasting algorithm 
introduced in the next section. -0 types of edge-disjoint spanning 
trees in a (complete) hypercube are defined first to facilitate the 
description. Then, we construct k + 1 EDST's, (k + l)EDST, on 
{So .  S1. Sb }, which is the incomplete hypercube I:+', before a 
general construction on I;  is described. 

A. Rooted and Pivoted nEDST 

The nEDST in Qn (described in Section 11-C), in which the set 
of edge-disjoint spanning trees have a common root (the root of 
nEDST), is referred to as the rooted nEDST. Another type of n edge- 
disjoint spanning trees, in which the direction of edges between the 
root and its immediate successors in the rooted nEDST is reversed, 
is referred to as the pivoted n EDST. The rooted nEDST and pivoted 
nEDST in a 3-cube are shown in Fig. 4. Since the n incoming edges 
of the root of nEDST are unused edges, the n spanning trees in 
the pivoted nEDST are still edge-disjoint. Both the n immediate 
successors of the common root of n spanning trees in rooted nEDST, 
and the distinct n roots of n spanning trees in the pivoted nEDST, 
are referred to as the pivot nodes. 

B. k -t- 1 EDST'S in { s o ,  si, sb} 

In the following, we will show the construction of k + 1 edge- 
disjoint spanning trees in I:+' = { S O ,  S I ,  Sb}. The construction is 
separated into three cases according to the position of the root. The 
construction has two steps. In the first step, a ( k + 1)EDST in Q ~ C + ~  
is constructed. In the second step, nodes (and links) of the other Qk 

are added. 
1) Root in SO: We first construct k + l  EDST's in {SO, SI}, which 

is Q k + l ,  with the root being in SO. Then, for each spanning tree j, 

where 0 5 j 5 I C ,  we attach nodes in s b  and preserve them edge- 
disjoint. Fig. 5 gives a global view of attaching nodes in sb to existing 
spanning trees. For each node uo in SO in the original spanning tree 
j ,  if it has a child, say, u 1 ,  connected through a dimension4 edge, 
then we duplicate the subtree rooted at U I  and attach it to node uo 
via a dimension-n edge. The duplicated subtree is rooted at node Ub. 

(By duplicating a subtree, we mean that the structure of the subtree 
and the dimensions of the edges are preserved. The node addresses 
are derived accordingly once the root is assigned with address U b . )  

Note that all nodes in the duplicating subtree are in SI, and those in 
the duplicated subtree are in s b .  (The only exception is that uo is the 
root, in which case, all leaf nodes in the subtree are in SO.) Then, all 
the leaf nodes along dimension IC in the duplicated subtree are deleted. 
(This guarantees that all nodes in duplicated subtrees are in Sb.) 

2) Root in S1 : We first construct k + 1 EDST's in {SO,  SI} with 
the root being in SI. Then, for each spanning tree j ,  where 0 5 j 5 k, 
we append nodes in sb. Fig. 6 gives a global view of appending a 
subtree. As before, leaf nodes along link k in the appended subtrees 
are delete to generate a spanning tree in I,"". 

3) Root in sb: Since s b  is similar (isomorphic) to SI from the 
viewpoint of So, this case is similar to case 2. We first construct 
k + 1 EDST's in {SO,  Sb} with the root being in sb. Fig. 7 shows 
the global view. 

Thus, we have the next two lemmas. 
Lemma 1: We have constructed k + 1 EDST's rooted at any node 

in an I,"+'. 
Proof: We give the proof of case 1 (root in SO). The other 

two cases can be proved in a similar way. When k + 1 EDST's 
in {So,  Sl} are constructed, nodes in SI are connected to the root 
through exactly one link in dimension k. The duplication of a subtree 
makes corresponding nodes (in sb) of those node (in SI) in the 
subtree connected to the root. Since edges in subtrees being duplicated 
are disjoint, the resulting k + 1 spanning trees are edge-disjoint. 0 

Lemma 2: For any given node i in {SO, SI}, we can construct 
IC + 1 pivoted EDST's such that they are all rooted at different nodes 
in {SO, SI} and their common neighbor is node i. 

Proof: We construct the IC + 1 pivoted EDST's by taking the 
k + 1 EDST's rooted at node i and reversing the edge from the root 
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(a) @) (c) 

Fig. 8. Edge-disjoint spanning trees in 1; (source is in back cube). 

(i.e., node i )  to each pivot node. It is easily seen that only one “new” 
directed edge, which was not used by the k + 1 EDST’s rooted at 
node i, is added to each of the k + 1 pivoted EDST’s. Furthermore, 
these k + 1 new added edges are all different, which implies that the 
k + 1 pivoted EDST’s remain edge-disjoint. 

C. k + 1 EDST’s in 1; 
To simplify the description, we first assume that the root is in 

{So, S1, sb}. Then, the case that the root is in the other subcube is 
considered. 

When k + 1 EDST’s in {SO, SI.&} are constructed, the (k + 
1)EDST in IF (rooted at node in {SO, SI, S b } )  can be constructed 
as follows. Partition the front cube into subcubes of dimension 
k + 1 with respect to dimensions 0,1, .  . . , k. For convenience, let 
Y,,  where 1 5 i < ZnpkP1, be the (k + 1)-dimensional subcube 
{SzZr Szl+l}. Let the root node be T O  in {SO, SI, sb}. Also, denote 
the corresponding root (Le., having the same k + 1 lower order bits) 
of T O  in Y, as T ~ .  We call the k + 1 neighbors of T *  in Y,  the pivot 
nodes. The IC + 1 corresponding nodes in {SO. SI} of the distinct 
pivot nodes (in Yz) are also called pivot nodes. We are now ready to 
describe the construction rules of k + 1 EDST’s in 1;. 

1) Construct the k + 1 EDST’s in {SO, SI. sb} rooted at node T O .  

2) Within each Y,, construct the k + 1 pivoted EDST’s rooted at 
the k + 1 pivot nodes within Y,. 

3)  Construct k + 1 BST’s, where the j t h  BST is rooted at the j t h  
pivot node in {SO.SI} spanning all the j th  pivot nodes in X ’ s  for 
all i .  

From the individual point of view, each of the k + 1 spanning 
trees in I: consists of three types of spanning trees: a spanning 
tree of {SO, SI, sb} rooted at the source node (step 1); a BST on 
corresponding pivot nodes (step 3); and a spanning tree of Y,, for all 
i, rooted at the pivot node spanned by the BST (step 2). 

Example: A part of edge-disjoint spanning trees rooted at a node in 
S b  is illustrated in Fig. 8. Subtrees along dimension n are duplicated 
from those in dimension k. There are k+l supernodes (darked nodes) 
in Fig. 8(a) corresponding to k + 1 pivot nodes in {SO,  SI, s b } .  Each 
supemode stands for a BST [Fig. 8(b)] among corresponding pivot 
nodes (one in each x). Adjacent edges of the supernode in Fig. 8(a) 
are adjacent to the root of BST in Fig. 8(b). Each node in Fig. 8(b) 
represents one of the k + 1 pivoted EDST’s on the respective subcube 
shown in Fig. 8(c). The largest subtree of BST in Fig. 8(c) is on the 
dimension (j + 1) mod k [Fig. 8(b)], provided that dimension j is the 
dimension of link to which the root of BST [Fig. 8(b)] is adjacent. 

Now, we describe the condition that the root is not in {SO, SI, sb}. 
Let the root node be in Y,, 1 5 a < 2”-k-1. The (k + 1)EDST in 
1; is constructed as follows. The k + 1 EDST’s in {SO, SI, sb} are 
constructed in pivoted form (Lemma 2). k + 1 EDST’s in E;, i # a ,  
are also in pivoted form; and k + 1 EDST’s in Y, are rooted. k + 1 
BST’s which connect k + 1 sets of corresponding pivot nodes are 
rooted at pivot nodes in Y,. 

Theorem I :  The data structure constructed above is composed of 
k + 1 edge-disjoint spanning trees. 

Proof: In the construction, k + 1 edge-disjoint spanning trees 

in each respective subcube are constructed. The IC + 1 immediated 
successors of the root in the rooted (k + 1)EDST and k + 1 roots 
in each pivoted (k + 1)EDST act as “pivots” among k + 1 sets of 
spanning trees. Each set of spanning trees, composed of a spanning 
tree in each respective subcube and a BST in pivot nodes of those 
spanning trees, is a spanning tree in the incomplete hypercube. Since 
the k + 1 BST’s are in distinct 2”-k-1 sets, they are node-disjoint; 
and spanning trees in respective subcubes are edge-disjoint. The k + 1 

0 
Lemma 3: The height of k + 1 EDST’s is n + 2 if the root is in 

respective subcube S 2 n - k - l  or s b ,  and the height is n S  1 otherwise. 
Proof: When the root is in s z n - k - l  (respectively, Sb), pivot 

nodes in YO (respectively, Y Z n - k - - l - l  are in the lowest level of the 
BST’s of pivot nodes. The height of EDST’s is 1 + (n  - li - 1) + 1 
+ (k + 1) [respectively, 2 t (n  - k - 1) + (k + l ) ]  = n + 2. When 
the root is in any other respective subcube, the furthest pivot nodes 

The diameter of the incomplete hypercube 1; is n + 1. When the 
root is in a subcube other than sb or SzR-kp1, the furthest node 
away from the root is n, i.e., the diameter of n-cube. The height of 
the EDST’s is at most one higher than optimal. It is optimal if the 
height of k + 1 EDST’s in an n-cube is at least n + 1. The optimal 
height of n EDST’s in the n-cube is known to be n + 1 [SI. In the 
following, we prove that the height n + 2 of k + 1 EDST’s rooted 
at node in S b  or S z n - k P l  is optimal. 

Theorem 2: The maximum height of k+ 1 EDST’s in I: is optimal 
when the root is in Szn-~-l or Sb, and IC > 0. 

Proof: If the root is in St,, k out of k + 1 neighbors of the root 
are in sb. The furthest nodes away from nodes in s b  have distance 
n + 1. Since the root has only one child node in each spanning tree, 
the maximum height of k + 1 EDST’s is at least n + 2. 

If the root T is in SZn--k-l, P is in sb; where F is the node with 
complementing address bits of T .  Clearly, node F is n + 1 hops away 
from node T .  Since each node in sb has k + 1 parent nodes (w.r.t. 
k + 1 EDST’s), all incoming links of a node in sb are used in the 
EDST’s. For neighbors of P to them implies that the paths from T to 

0 

spanning trees of 1; are edge-disjoint. 

are n - k - 1 hops away from pivot nodes in Y,. 

those passing through F have hops at least n + 2. 

Iv. BROADCASTING ON INCOMPLETE HYPERCUBES 
There are two important factors which affect the communication 

complexity of broadcasting. One is the average number of packets 
which are sent per step from the root-bandwidth utilization, denoted 
by a. The higher a an algorithm attains, the better the algorithm per- 
forms. The other factor is the propagation delay for a packet--latency, 
denoted by p; that is, the number of steps for a packet to reach all 
nodes from the step it was sent out from the root. The communication 
complexity of a broadcasting algorithm, for which both bandwidth 
utilization and latency are stable (Le., does not depend on the time 
step), is rM/a l  + p - 1. 

Lemma 4: The lower bound on latency is n + 1. 
Proof: The longest distance between two nodes in the incom- 

0 
Lemma 5: The maximal bandwidth utilization is k + 1. 

Proof: There are k + 1 outgoing (incoming) edges, or parallel 
paths, for nodes in the back cube. It is useless even if the root can 
send out more than k + 1 elements in a step (when the root is in the 
front cube), since the links which are adjacent to nodes in the back 

Theorem 3: The lower bound of broadcasting is [ M / ( k  + l)] +n. 
0 

plete hypercube is n + 1. 

cube are fully loaded. 

Proof: It is easily obtained from Lemmas 4 and 5. 

A. Edge-Disjoint Hamiltonian Paths 
In this subsection, we prove that there exist at least k EDHP’s in 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 11, NOVEMBER 1993 1397 

I;  if k is an even number; and there exist k + 1 EDHP's in I: if 
k is an odd number. For ease of describing, we assume, at first, that 
the graph is undirected. Under the undirected graph, we prove that 
there exist k / 2  (respectively, [k + 1]/2) edge-disjoint Hamiltonian 
cycles (EDHC's). Each undirected EDHC represents two directed 
EDHC's-one for each direction. Removing the incoming edge into 
the root, each directed EDHC is exactly a directed EDHP. 

Lemma 6 [3]: If graphs C1 and CZ are Hamiltonian, then C1 x Cz 
contains two edge-disjoint Hamiltonian cycles (EDHC's). 

Lemma 7 [I]: If the graph G contains two EDHC's and the graph 
C is Hamiltonian, then the graph G x C contains three EDHC's. 

Lemma 8: If the graph C is Hamiltonian and L2 is an edge, then 
the graph C x LZ is Hamiltonian. 

Proof: The product graph C x L2 can be considered as two 
planes, each containing a copy of C,  and completing each edge 
perpendicular to both planes. There exists a cycle traversing all 
vertices in the same plane. Select adjacent vertices, u and v ,  in the 
cycle remove edge (u. v), duplicate the path on the other plane, and 
add perpendicular edges of both u and e, and a Hamiltonian cycle in 

0 
Lemma 9: The product graph C" = C x C x . . . x C contains 

C x Lz is formed. - 
" 

n EDHC's, where C is a cycle with arbitrary number of vertices. 
Proof: We prove the lemma by induction on the number of 

C's. By Lemma 6, C x C contains 2 EDHC's. By Lemmas 6 and 7, 
C x C x C contains 3 EDHC's. Assume that c" contains i EDHC's 
for all i < n. We wish to show that C" contains n EDHC's. 

If n is even, then C" = Cn/2 x Cn/2. By the induction 
hypothesis, the product graph C"/' contains n / 2  EDHC's. 
Consider the n / 2  product graphs which are formed as the 
product of the ith HC in the two product graphs C"/2's for 
1 5 i 5 n / 2 .  Each product graph contains two EDHC's, 
by Lemma 6. Furthermore, all these product graphs are edge- 
disjoint. Therefore, there exist n EDHC's. 
If n is odd, then C" = C(n-1)/2 x C("t')/2. Pair each but one 
HC of the C("-l)/' with an HC in the C("+l)/'. This leaves one 
HC of the C("-1)/2 and two HC's of the C("+')/' unpaired. By 
Lemmas 6 and 7, there are n EDHC's in the product graph C". 

0 
Theorem 4: I: contains k + 1 directed EDHC's when k + 1 is 

even, and contains k directed EDHC's when k + 1 is odd. 
Proof: Since L Z n - k  is a subgraph of Q Z n - - k  with the same set 

of vertices, H = Q k  x L2n--lc+l is a subgraph of I: with the same 
set of vertices. Note that Q k  = LZ x Lz x . . . x L2. We are going 

to prove that there are directed 1 + 1 (respectively, k) EDHC's in H, 
when k + 1 is even (respectively, odd). 

Case 1: k + 1 is even. Since L,  x L, is Hamiltonian, H contains 
a subgraph of the form C(k+ l ) /Z ,  with the same set of vertices. By 
Lemma 9, there exist ( k  + 1)/2 EDHC's in H .  Thus, there are k + 1 
directed EDHC's in I:. 

C a s e 2 :  k + 1 is odd. H = L,k x LZn--lc+' = LZ x L2k-l x 
L Z n - k + l .  By Lemma 8, H contains a subgraph of the form Ck/ ' ,  
with the same set of vertices. By Lemma 9, there exist k / 2  EDHC's 

0 

P 
k 

in H .  Thus, there are k directed EDHC's in 1;. 

B. Broadcasting Based on EDST's 

We first examine the heights of the (k + 1)EDST. When the root 
is in the back cube, there is a pivot node (the one in SI) which is 
two hops away from the source node, and the height of the (k + 1 
)EDST is 2 + (n - k - 1) + ( k  + 1) = R + 2.  When the source node 
is in S2n--k-1, the height of the ( k  + 1)EDST is 1 + (n - k - 1) + 

TABLE I 

ALGORITHMS ASSUMING r = 0 AND t, = 1 

1 Gmphs I HP I EDST I LowerBound 1 
n C o m p [ e z i t y I r ~ - ] + N + K - 2 1  r&]+n+ll 1 

COMMUNICATTON COMPLEXITIES OF BROADCASTING 

(k + 1) + 1 = n + 2 (the nodes in sb have one hop deeper than their 
corresponding nodes in So). Precisely, the height is z + 1, where z is 
the longest distance from the source to other nodes in I:. The number 
of communication steps of broadcasting based on the (k + 1)EDST 
is r M / ( k  + 1)1 + n + 1, which has an optimal bandwidth utilization 
and one more step than the optimal latency. 

C.  Comparisons 

Table I compares the communication complexities of the proposed 
broadcasting algorithm and the broadcasting algorithm based on a 
Hamiltonian path. Recall that this is a simplified model in which 
'T = 0 and t ,  = 1. The general complexities (T), optimal packet 
size ( Elopt), and the complexity with optimal packet size ( 7'~") 
are derived in Table 11. 

The number of edge-disjoint spanning trees embedded in the broad- 
casting graph dominates the bandwidth utilization of broadcasting. 
The longest path from the root to all other nodes in the graph 
dominates the latency of broadcasting. The EDST-based broadcasting 
algorithm always has good bandwidth utilization, as the number of 
edge-disjoint spanning trees increases. The broadcasting algorithm 
based on the edge-disjoint Hamiltonian paths has good bandwidth 
utilization. The latency, however, is extremely large. Broadcasting 
algorithms based on the proposed k + 1 EDST's have an optimal 
bandwidth utilization and near optimal latency for any values of (n, k )  
regardless of the position of the root. 

V. CONCLUSION 
The hypercube topology has the restriction that its size must be 

a power of two, leaving a gap between hypercubes of two adjacent 
sizes. The family of incomplete hypercubes alleviates such restriction. 
Incomplete hypercubes can also be derived from faulty hypercubes 
or from allocations of subsets of hypercube nodes, which do not 
necessarily form subcubes. 

We have presented edge-disjoint spanning trees in incomplete 
hypercubes of size 2" + 2 k ,  and given the broadcasting algorithm 
based on the edge-disjoint spanning trees. We also derive the number 
of edge-disjoint Hamiltonian path, which is the extreme case of a 
spanning tree with height 2" + 2k - 1. The bandwidth utilization 
of edge-disjoint Hamiltonian path is optimal (when k is even), or 
one less than optimal (when IC is odd). However, the communication 
latency is extremely high. The number of communication steps of 
broadcasting based on the edge-disjoint spanning trees is [ M / ( k  + 
1)1 + n + 1, which has an optimal bandwidth utilization and one 
more step than the optimal latency. 
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A Routing and Broadcasting Scheme 
on Faulty Star Graphs 

Nader Bagherzadeh, Nayla Nassif, and Shahram Latifi 

Abstract-In this correspondence, we present a routing algorithm that 
uses the depth first search approach combined with a backtracking 
technique to route messages on the star graph in the presence of faulty 
links. The algorithm is distributed and requires no global knowledge of 
faults. The only knowledge required at a node is the state of its incident 
links. The routed message carries information about the followed path 
and the visited nodes. The algorithm routes messages along the optimal, 
i.e., the shortest path if no faults are encountered or if the faults are such 
that an optimal path still exists. 

In the absence of an optimal path, the algorithm always finds a path 
between two nodes within a bounded number of hops if the two nodes 
are connected. Otherwise, it returns the message to the originating node. 
We provide a performance analysis for the case where an optimal path 
does not exist. We prove that for a maximum of n - 2 faults on a graph 
with N=n! nodes, at most 2a + 2 steps are added to the path, where 
is O(fi). 

algorithm on the star graph in the presence of faults. 

tributed algorithm. 

Finally, we use the routing algorithm to present an efficient broadcast 

Index Terms-Fault tolerance, star graph, routing, broadcasting, dis- 

I. INTRODUCTION 
A new interconnection network topology called the star graph 

has been recently introduced in [I] and [2]. An extension to this 
network has also been introduced in [7]. The star graph is vertex 
symmetric. It provides an interconnection network for a large number 
of processors using a low number of communication channels while 
providing a high level of redundancy that makes it highly fault- 
tolerant []]-[3]. An optimal algorithm for routing messages between 
any two nodes of the star graph, assuming that no faulty links or nodes 
exist in the graph, was presented in [I]. Fault-tolerance routing has 
been discussed for different interconnection networks [6], [8]. Fault 
tolerance of the star graph was discussed in [3] and [9]. Reference [2]  
compared properties of the hypercube and the star graphs. A depth 
first search approach to provide fault-tolerant routing in the hypercube 
was presented in [5]. Reference [9] presented a routing scheme using 
a depth first search approach on faulty star graphs. The scheme had 
shortcomings: by keeping the information about the traversed path in 
a stack that is popped every time a message backtracks, the algorithm 
does not guarantee liveness and deadlock-free transmission. In fact, 
an example can be found where the message gets stuck by being 
continuously sent to the same node. Due to faulty conditions, the 
node cannot forward the message. Once it returns the message, it 
receives it later because its node reference has already been popped 
off the stack. 

In this correspondence, we use symmetry and fault-tolerance 
properties of the star graph to introduce a distributed algorithm 
for efficiently routing messages between any two nodes of the star 
graph in the presence of faulty links. The algorithm is based on the 
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