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Abstract. A graph is hamiltonian if it has a hamiltonian cycle. It is well-known that Tutte proved that any 4-
connected planar graph is hamiltonian. It is also well-known that the problem of determining whether a 3-connected
planar graph is hamiltonian is NP-complete. In particular, Chvátal and Wigderson had independently shown that
the problem of determining whether a maximal planar graph is hamiltonian is NP-complete. A classical theorem
of Whitney says that any maximal planar graph with no separating triangles is hamiltonian, where a separating
triangle is a triangle whose removal separates the graph. Note that if a planar graph has separating triangles, then
it can not be 4-connected and therefore Tutte’s result can not be applied. In this paper, we shall prove that any
maximal planar graph with only one separating triangle is still hamiltonian.
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1. Introduction

Our terminology and notation in graphs are standard; see Chartrand and Lensniak (1981)
and West (1996), except as indicated. Graphs discussed in this paper are assumed simple
and finite. A graph is hamiltonian if it has a hamiltonian cycle. A graph is planar if it
can be drawn in the plane with no two edges crossing. A plane graph is a graph drawn in
the plane with no two edges crossing. Unless otherwise specified, a planar graph means
the plane embedding of the graph. A planar graph divides the plane into regions, which
are called faces. The unbounded region is called the exterior face; the other faces are called
interior faces. An edge is a boundary edge if it is on the exterior face. A graph is maximal
planar if it is planar and no edge can be added without losing planarity. Note that any face of
a maximal planar graph is a triangle. A triangulation is a 2-connected planar graph in which
all faces (except possibly the exterior face) are triangles. A triangle of a planar graph is a
separating triangle if it does not form the boundary of a face. That is, a separating triangle
has vertices both inside it and outside it; therefore its removal separates the graph. For
example, the planar graph in figure 1 has three separating triangles: ACE, BDC, and FBA.

It is well-known that the problem of determining whether a 3-connected planar graph is
hamiltonian is NP-complete (Garey et al., 1976). In particular, Chvátal and Wigderson had
independently shown that the problem of determining whether a maximal planar graph is
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Figure 1. An illustration of separating triangles.

hamiltonian is NP-complete (Chvátal, 1985). On the other hand, Whitney (1931) proved
that any maximal planar graph with no separating triangles is hamiltonian; Asano et al.
(1984) proposed a linear-time algorithm for finding hamiltonian cycles in such planar
graphs. Tutte (1956) proved that any 4-connected planar graph is hamiltonian; Chiba and
Nishizeki (1989) proposed a linear-time algorithm for finding hamiltonian cycles in these
planar graphs. Note that Tutte’s result can be viewed as a generalization of Whitney’s
result since any maximal planar graph with at least five vertices and with no separating
triangles is 4-connected (we prove this in Section 4). Dillencourt (1990) also general-
ized Whitney’s result, but in a different way: he relaxed the requirement that the triangu-
lation must be maximal planar but still insisted that the triangulation has no separating
triangles.

All the results of Whitney (1931), Tutte (1956), and Dillencourt (1990) insist that the
given planar graph has no separating triangles. Note that if a planar graph has separating
triangles, then it can not be 4-connected and therefore Tutte’s result can not be applied. In
this paper, we shall prove that any maximal planar graph with only one separating triangle
is still hamiltonian. Note that there exist non-hamiltonian maximal planar graphs with 7
separating triangles.

2. Preliminaries

Since Whitney’s result (Whitney, 1931) plays a crucial role in (Asano et al., 1984; Chiba
and Nishizeki, 1989; Dillencourt, 1990) and this paper, we state this result first. Let G be a
triangulation, let R be the exterior face of G, and let A and B be two vertices on R. We say that
(G, R, A, B) satisfies Whitney’s condition (Condition (W ) for short) if (G, R, A, B) satisfies
Conditions (W1) and (W2) described below. We say that (G, R, A, B) satisfies Condition
(W1 ) if G has no separating triangles. We say that (G, R, A, B) satisfies Condition (W2)
if either

(W2a) a0, a1, . . . , am is the path from A to B and b0, b1, . . . , bn is the path from B to
A (a0 = bn = A, b0 = am = B), and there is no chord (a chord is an edge joining two
non-consecutive vertices of a cycle) of the form ai a j or bi b j , or
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Figure 2. An illustration of Conditions (W2a) and (W2b). Note that only vertices on the exterior faces are shown.

(W2b) a0, a1, . . . , am is the path from A to B, b0, b1, . . . , bn is the path from B to C ,
c0, c1, . . . , ck is the path from C to A for some vertex C on R (a0 = ck = A, b0 = am = B,
c0 = bn = C), and there is no chord of the form ai a j , bi b j , or ci c j .

For example, in figure 2(a), the chords of the exterior face are a1bn−1 and a2b1; since there
is no chord of the form ai a j or bi b j , (G, R, A, B) satisfies Condition (W2a). In figure 2(b),
the chords of the exterior face are a1c2, a2b1, and b2c1; since there is no chord of the form
ai a j , bi b j , or ci c j , (G, R, A, B) satisfies Condition (W2b).

Whitney (1931) proved that

Lemma 1 (Whitney’s Lemma). Let G be a triangulation, let R be the exterior face of G,

and let A and B be two vertices on R. If (G, R, A, B) satisfies Condition (W ), then G has
a hamiltonian path from A to B.

Theorem 2 (Whitney’s Theorem). If G is a maximal planar graph with no separating
triangles, then G is hamiltonian.

The following lemma will be used heavily in this paper.

Lemma 3. Let G be a maximal planar graph with no separating triangles, let R be the
exterior face of G, and let A and B be two vertices on R. Then (G, R, A, B) satisfies
Condition (W ).

Proof: Since G has no separating triangles, (G, R, A, B) satisfies Condition (W1). Since
R is a triangle, it has no chords; therefore (G, R, A, B) satisfies Condition (W2). Thus,
(G, R, A, B) satisfies Condition (W).

3. What we are afraid of?

Let G be a maximal planar graph with only one separating triangle ABC . Let Gin (Gout)
be the subgraph of G derived by deleting all the vertices outside (inside) the separating
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triangle ABC . Then, both Gin and Gout are maximal planar graphs with no separating
triangles.

Consider Gin. A, B, C form the exterior face, say R, of Gin. By Lemma 3, (Gin, R, A, B)
satisfies Condition (W). By Whitney’s Lemma, Gin has a hamiltonian path Pin from A to
B. Then

Pin = A, Pin(A, C), C, Pin(C, B), B,

where Pin(A, C) (Pin(C, B)) is the subpath of Pin between A and C (C and B).
Next consider Gout . A, B, C form an interior face, say R′, of Gout . Note that a plane

graph can always be embedded in the plane so that a given face of the graph becomes the
exterior face; see Nishizeki and Chiba (1988). Therefore, we can embed Gout in the plane so
that R′ becomes the exterior face of Gout. By Lemma 3, (Gout, R′, B, C) satisfies Condition
(W). By Whitney’s Lemma, Gout has a hamiltonian path Pout from B to C . Then

Pout = B, Pout(B, A), A, Pout(A, C), C,

where Pout(B, A) (Pout(A, C)) is the subpath of Pout between B and A (A and C).
If Pout(A, C) = ∅, then

A, Pin(A, C), C, Pin(C, B), B, Pout(B, A), A

is a hamiltonian cycle of G. Similarly, if Pin(A, C) = ∅, then

A, Pout(A, C), C, Pin(C, B), B, Pout(B, A), A

is a hamiltonian cycle of G. What we are afraid of is that

Pin(A, C) �= ∅ and Pout(A, C) �= ∅.

Then it is impossible to use Pin and Pout to derive a hamiltonian cycle of G.

4. The main result

We first prove a lemma mentioned in the introduction. A vertex cut of a connected graph
G = (V, E) is a subset V ′ of V such that its removal disconnects G. A minimal vertex cut
is a vertex cut such that no proper subset of it is also a vertex cut.

Lemma 4. Any maximal planar graph with at least five vertices and with no separating
triangles is 4-connected.

Proof: Whitney (1932) proved that a maximal planar graph G with at least four vertices
is 3-connected. Hakimi and Schmeichel (1978) proved that if V ′ is a minimal vertex cut
of a maximal planar graph G, then the subgraph of G induced by V ′ is a cycle without
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chords. (Recall that a chord is an edge joining two non-consecutive vertices of a cycle.)
Let V ′ be a minimal vertex cut of G. Since G is 3-connected, |V ′| ≥ 3. Suppose |V ′| = 3.
Then by Hakimi and Schmeichel (1978), the subgraph of G induced by V ′ is a triangle; this
contradicts the assumption that G has no separating triangles. Therefore, |V ′| ≥ 4. This
proves that G is 4-connected.

We now prove a variation of Whitney’s Lemma.

Lemma 5. Let G be a maximal planar graph with no separating triangles, let R be the
exterior face of G, and let A, B, C be the three vertices on R. Then G has a hamiltonian
path from A to B passing through the edge AC.

Proof: If G has only three vertices, then this lemma is clearly true. In the following,
assume that G has at least four vertices. Let P0, P1, . . . , Pr (P0 = B, Pr = C) be the
sequence of vertices adjacent to A such that each APi is the immediate counter-clockwise
edge of APi−1 around A; see figure 3. Note that Pi Pi+1 is an edge of G for all i , 0 ≤ i ≤ r−1.

Since G has no separating triangles, the following three properties hold:

1. G has no edge of the form Pi Pj (0 ≤ i < i + 2 ≤ j ≤ r ), since otherwise Pi Pj A is a
separating triangle.

2. G has no edge of the form BPi (2 ≤ i ≤ r − 1), since otherwise BPi A is a separating
triangle.

3. G has no edge of the form CPi (1 ≤ i ≤ r − 2), since otherwise Pi CA is a separating
triangle.

See figure 3. Let G ′ be the subgraph of G derived by deleting A. Then G ′ is a triangulation.
Let R′ be the exterior face of G ′. Then R′ = B, P1, . . . , Pr−1, C . Since G has no separating
triangles, G ′ also has no separating triangles; thus (G ′, R′, C, B) satisfies Condition (W1).
By (1)–(3), R′ has no chords and therefore (G ′, R′, C, B) satisfies Condition (W2). Thus,
(G ′, R′, C, B) satisfies Condition (W). By Lemma 1, G ′ has a hamiltonian path P from C
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Figure 3. An illustration of the proof of Lemma 5.
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to B. The path P together with the edges AC form a hamiltonian path of G from A to B
passing through the edge AC .

We classify maximal planar graphs here. Let G be a maximal planar graph. Note that
unless G is a triangle, then it is impossible for G to have a hamiltonian cycle passing
through all of its three boundary edges. We say that G is hamiltonian (non-hamiltonian)
for any two boundary edges if for any two boundary edges, G has (does not have) a
hamiltonian cycle passing through them. We say that G is hamiltonian (non-hamiltonian)
for any boundary edge if for any boundary edge, G has (does not have) a hamiltonian
cycle passing through it. A K4 (the complete graph with four vertices) is hamiltonian
for any two boundary edges. Note that not every hamiltonian maximal planar graph is
hamiltonian for any two boundary edges. For example, the graph in figure 1 has a hamil-
tonian cycle passing through both DF and EF, but it does not have a hamiltonian cycle
passing through both DE and DF (or DE and EF). The two graphs in figure 4 are even
worse: although they are hamiltonian, they are non-hamiltonian for any two boundary
edges.

What makes a maximal planar graph with separating triangles non-hamiltonian? We in-
troduce the definitions of “hamiltonian for any two boundary edges”, “non-hamiltonian
for any two boundary edges”, “hamiltonian for any boundary edge”, and “non-hamiltonian
for any boundary edge” because we suspect they affect the hamiltonicity of maximal planar
graphs with separating triangles. Suppose ABC is a separating triangle of a maximal planar
graph G. Then, the graph Gin derived by deleting all the vertices outside the separating
triangle ABC is still a maximal planar graph. If Gin is “non-hamiltonian for any bound-
ary edge,” then G is certainly non-hamiltonian. “Non-hamiltonian for any two boundary
edges” maximal planar graphs had been used as building blocks for constructing non-
hamiltonian maximal planar graphs. For example, in Dillencourt (1996), Dillencourt used
the two graphs in figure 4 as building blocks to construct non-hamiltonian maximal planar
graphs. (This approach was also used in Nishizeki (1980).) In Dillencourt (1996), A′, B ′,
C ′ in figure 4(a) (or figure 4(b)) were identified with A, B, C in figure 1 (that is, the interior
face ABC of figure 1 was replaced with figure 4(a) (or figure 4(b))); the resultant graph
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Figure 4. Two “non-hamiltonian for any two boundary edges” maximal planar graphs.
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is a non-hamiltonian maximal planar graph. It is not difficult to verify that the above two
non-hamiltonian maximal planar graphs each has 7 separating triangles.

We now prove a stronger version of Whitney’s Theorem.

Theorem 6. If G is a maximal planar graph with no separating triangles, then G is
hamiltonian for any two boundary edges.

Proof: Let R be the exterior face of G and let A, B, C be the three vertices on R. By
Lemma 5, G has a hamiltonian path P from A to B with AC being an edge of it. The path
P together with the edge BA form a hamiltonian cycle of G passing through both AB and
AC. By similar arguments, G has a hamiltonian cycle passing through both BA and CB and
a hamiltonian cycle passing through both CB and BA. Thus, G is hamiltonian for any two
boundary edges.

We now prove the main result.

Theorem 7. If G is a maximal planar graph with only one separating triangle, then G is
hamiltonian.

Proof: Let A, B, C be the vertices form this unique separating triangle. Let Gin (Gout)
be the subgraph of G derived by deleting all the vertices outside (inside) the separating
triangle ABC. Then, both Gin and Gout are maximal planar graphs with no separating
triangles. Consider Gin. A, B, C form the exterior face of Gin. By Theorem 6, Gin has a
hamiltonian cycle Cin passing through both BA and AC. Then

Cin = B, A, C, Pin(C, B), B,

where Pin(C, B) is the subpath of Cin between C and B. Consider Gout. A, B, C form an
interior face, say R′, of Gout. Embed Gout in the plane so that R′ becomes the exterior face
of Gout. By Theorem 6, Gout has a hamiltonian cycle Cout passing through both AC and CB.
Then

Cout = A, C, B, Pout(B, A), A,

where Pout(B, A) is the subpath of Cout between B and A. Then

A, C, Pin(C, B), B, Pout(B, A), A

a hamiltonian cycle of G.
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