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Narrow-Band Interference Rejection in DS/CDMA
Systems Using Adaptive (QRD-LSL)-Based

Nonlinear ACM Interpolators
Jenq-Tay Yuan and Jenq-Nan Lee

Abstract—An th order adaptive lattice filter automatically
generates all of the outputs that would be provided by
separate transversal filters. This feature may effectively sup-
press the narrow-band interference (NBI) of either unknown or
time-varying bandwidth (or number of frequency bands) in di-
rect-sequence code-division multiple access systems for which the
order of the interference rejection filter that achieves the optimal
performance is unknown or constantly changing. Moreover, a lat-
tice filter may significantly outperform its transversal counterpart
in complex jamming environments in which the adaptive lattice
filter must suppress multiple jammers, since each stage of a lattice
filter adapts to suppress anorthogonal componentof the NBI.

This paper develops a computationally efficient and numer-
ically stable adaptive QR-decomposition-based least squares
lattice (QRD-LSL)-based nonlinear approximate conditional
mean interpolator to suppress NBI effectively. Simulation results
demonstrate that both the signal-to-noise ratio improvements
and the convergence rate achieved by the proposed interpolators
outperform those of other existing prediction-based techniques.

Index Terms—Approximate conditional mean (ACM) nonlinear
filter, code-division multiple access (CDMA), interpolation fil-
ters, lattice structure, least mean square (LMS)-based filters,
narrow-band interference (NBI) suppression, prediction fil-
ters, predictors, QR-decomposition-based least squares lattice
(QRD-LSL) interpolators.

I. INTRODUCTION

NARROW-BAND interference (NBI) suppression utilizes
the discrepancy in the predictability between the interfer-

ence and the spread-spectrum (SS) signal in that the former can
be accurately predicted (or interpolated), whereas the latter is
wide-band and hence unpredictable. Consequently, alinearpre-
diction or interpolation of the received signal can be used to
estimate the interference [1]. Vijayan and Poor [2] proposed a
nonlinear least mean square (LMS)-based approximate condi-
tional mean (ACM) predictor that could greatly outperform its
linear counterpart. The rationale for the nonlinear ACM filter
is based on the fact that the non-Gaussian measurement noise
in the prediction requires a nonlinear transformation that takes
the form of a soft-decision feedback attempting to estimate the
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NBI. Rusch and Poor [3] extended the nonlinear NBI techniques
to multiple users in CDMA.

A lattice filter is known to be able to provide better dynamic
performance than its transversal counterpart especially in com-
plex jamming environments (e.g., multiple jammers) [4]. One
highly desirable feature of a lattice filter is that it automatically
generates all of the outputs of different orders that would
be provided by separate transversal filters, where is the
order of the corresponding filter. This feature is useful in NBI
suppression since, in practice, the order of the interference re-
jection filter that achieves the best performance is unknown to
the receiver and may constantly change because the jammers’
bandwidth or the number of nonoverlapping interference bands
is either unknown or time-varying. Consequently, optimum re-
moval of NBI may not be achieved using a fixed filter length.
This paper develops an adaptive QR-decomposition-based least
squares lattice (QRD-LSL)-basednonlinearACM interpolator
whose computational complexity is only per iteration to
effectively suppress NBI. The proposed interpolator facilitates
dynamic assignment and rapid automatic determination of the
most effective filter length. Optimum removal of strong NBI of
unknown (or time-varying) bandwidth or NBI of an unknown
number of frequency bands may therefore be achieved.

II. NONLINEAR ACM FILTERS FOR NBI IN

DS-CDMA SYSTEMS

A. System Model

The spread-spectrum and NBI model used herein is the
same as that used in [3]; that is, the received signal is given by

, where the ambient white noise
can be modeled as white Gaussian noise with variance, and
interference is modeled as having a bandwidth much less
than the spread bandwidth. The SS signal is the sum of
independent, equiprobable, binary, and antipodal random vari-
ables, where is the number of users in the direct-sequence
code-division multiple access (DS-CDMA) system. Vijayan
and Poor [2] modeled the NBI as a Gaussian autoregressive
(AR) process of order, i.e., ,
where are AR parameters and is a white
Gaussian process. Notably, although this model is designed
mainly to enable the interference suppression filter to suppress
an AR interferer, our simulation results show that the inter-
ference suppression filter still very successfully combats tone
jammers, because a sinusoidal signal can be modeled by an
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AR(2) process [5, pp. 199, 140]. Furthermore, a narrow-band
digital communication signal may be approximated by an AR
process of sufficiently large order, since the power spectral
density (PSD) of a narrow-band digital communication signal
may be approximated by that of an autoregressive-moving
average (ARMA) process. Consequently, by modeling the
NBI as a Gaussian AR process, the resulting interference
suppression filter of a sufficiently large filter order may still be
useful in combating digital NBI that has its relevance in the
field of overlay applications.

B. Nonlinear ACM Filter

By considering a system with CDMA users and assuming
that all users are received with the same (unit) power, the den-
sity of the measurement noise can be shown to be

, which is highly non-

Gaussian. If the received signal is used
directly as the input to the predictors,
severely degrades the performance of interference rejection of

. Therefore, an optimal filtered estimate of the interference
based on the observations ,

, referred to herein asinterference estimate,must be ob-
tained and then used as the input to the predictors instead. By
assuming that the prediction density is Gaussian,
given , with non-Gaussian measurement noise ,

can be obtained by employing a nonlinear trans-
formation. Consider an ( 1)st-order linear predictor whose
input is . The output of the predictor is

, referred to herein asinterference prediction,where
and

repre-
sents the tap-weight vector of the linear predictor at time.
Therefore, the prediction error that represents observation
less the interference prediction can be expressed as

, where
is the prediction error less the soft-decision on the spread-spec-
trum signal. Previous investigation [3] has indicated that the
nonlinear transformation that transforms the prediction error

to produce the optimal is given by

where . The interference estimate can then
be obtained by .

III. A DAPTIVE (QRD-LSL)-BASED NONLINEAR ACM
INTERPOLATORS FORNBI SUPPRESSION

A. Order-Recursive LSL Interpolators of Order ( )

When a ( )th-order linear interpolation is used to achieve
interference rejection, the interference estimate is inter-
polated from past and future neighboring interference es-

timates, that is, ,

, where is the interpola-
tion coefficient at time . The ( )th-order interpolation error
at each time unit can then be defined as ,

. Herein, we refer to any th-order interpo-
lation filter that operates on the present interference estimate as
well as past and future interference estimates to produce the
( )th-order interpolation error at its output as a ()th-order
interpolator,where the order is assumed implicitly.
If the most recent interference estimate used is, then the op-
timum interpolation coefficients in can be determined by
minimizing . Yuan [7] developedorder-re-
cursive LSL interpolatorsthat require only operations
by utilizing a modified version of linear forward and backward
predictions, referred to as theintermediate forward and back-
ward predictions. Because of the order-recursive structure, a
( )th-order LSL interpolator automatically generates all
of the outputs that would be provided by separate transversal
interpolators of all lower orders, so that the filter order may be
adjusted at any time step. As an example, when the sequence
BFBFBF is used, the outputs are provided by the sep-
arate transversal interpolators of order (1,0), (1,1), (2,1), (2,2),

, ( 1 1), ( 1), and ( ). This modular structure
facilitates dynamic assignment and rapid automatic determina-
tion of the most effective filter length. Consequently, optimum
removal of strong NBI of unknown (or time-varying) bandwidth
or NBI of an unknown (or time-varying) number of frequency
bands may be achieved. Moreover, the LSL interpolator may be
especially suitable incomplex jamming environmentsin which it
must suppress multiple jammers (e.g., in a CDMA environment)
since each stage of the LSL interpolator adapts to suppress an
orthogonal componentof NBI. Fig. 1 presents a signal-flow
graph of anadaptive nonlinear ACM filterthat employs the
(2,2)th-order QRD-LSL interpolator using the sequence BFBF.

B. Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators

As mentioned in Section II, an ( 1)st-order pre-
dictor is used to compute the interference estimate

. The optimum tap-weight vector of the
( 1)st-order predictor can be obtained by minimizing
the sum of weighted forward prediction-error squares
for , , where

, , and is the
forgetting factor. Since successive stages of a lattice predictor
are decoupled [6, p. 651], accordingly, by using the mutually
uncorrelated (orthogonal) backward prediction errors produced
by the QRD-LSL (lattice) predictor as tap inputs that are
applied to a corresponding set ofregression coefficients(to be
determined), we may compute the interference prediction
in a highly efficient manner. It is well known that a sequence of
LS uncorrelated backward prediction errors is given by

where 1 is the 1 1 lower triangular
transformation matrix [6, p. 652]. Since both 1
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Fig. 1. Adaptive (QRD-LSL)-based nonlinear ACM interpolator using sequence BFBF.

TABLE I
SUMMARY OF THE (QRD-LSL)-BASED NONLINEAR ACM INTERPOLATION ALGORITHM

and 1 contain exactly the same information, the
predicted value of based on its ( 1) previous inter-
ference estimates in 1 can also be computed by
using the mutually uncorrelated backward prediction errors
produced at the various stages of the QRD-LSL predictor, i.e.,

, where
is the regression coeffi-

cient vector at time . Consequently, the QRD-LSL predictor
for NBI suppression can also be implemented by minimizing

. It can be
shown that the optimum value of the regression coefficients can
be computed by ,

, where , , and
are already computed once the current interference estimate

is computed and is used as the input to the QRD-LSL
interpolator. Meanwhile, the interpolation error
generated from the QRD-LSL interpolator can be used to
compute the interpolated interference estimate with

units of delay, referred to herein asinterference interpolation,
by . Notably,
is a more accurate version of the interference estimate than
its prediction counterpart due to the
fact that interpolation more effectively utilizes the correlation
between the nearest neighboring samples than its prediction
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Fig. 2. Learning curves for six users with an AR interferer. System parameters: input SNR= �20 dB; filter orderM = 10 for both predictors and(p; f) = (5; 5)
for interpolator; forgetting factor� = 0:965 for QRD-based filters. The tap-weight update of the LMS-based nonlinear ACM prediction used in our simulations
is a (k) = a (k � 1) + �(k)�["(k)]̂i (k � 1), where� (k) is given by�(k) = �(0)=[r(0) + r(k)] andr(k) is an estimate of the input power
obtained byr(k) = �r(k � 1) + (1 � �)k̂i (k � 1)k , in which0 < � < 1 is chosen to yield a compromise between the prediction accuracy and the
tracking capability.

Fig. 3. SNR improvements as a function of input SNR for single- and multiuser (ten users) with an AR interferer. System parameters: filter orderM = 10 for
both predictors and(p; f) = (5;5) for interpolator; forgetting factor� = 0:965 for QRD-based filters.

counterpart. Accordingly, a greater signal-to-noise ratio (SNR)
improvement can be achieved by using interpolation as com-
pared to that by prediction.

Once the regression coefficients ,
, are computed, thea priori interference prediction, at time

( 1), from the output of the QRD-LSL predictor can be com-
puted by ,
where represents the interference prediction of

1 , based on theold least squares estimate of the regression co-
efficients. Next, thea priori interference prediction is fed back
and is subtracted from the received signal 1 to produce
the interference estimate 1 at time ( 1) through the non-
linear transformation shown in Fig. 1. The resulting interference
estimate 1 is then used as the input to the QRD-LSL in-
terpolator, subsequently generating thea priori interference pre-
diction . The same procedure continues recursively.
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Fig. 4. Effect of the filter order on SNR improvements achieved by the three filters with a digital NBI ofm = 4. System parameters: input SNR= �20 dB;
filter orderM for predictors andp = f = M=2 for interpolator; forgetting factor� = 0:965 for QRD-based filters.

The prediction error of order can then be computed
as , while the
interpolation error of order ( ) can be computed as

where both and are already computed by the
QRD-LSL predictor and QRD-LSL interpolator, respectively.
Notably, both and represent the estimates
of the SS signal by employing the QRD-LSL predictor and
QRD-LSL interpolator. They can be used to compute the SNR
improvement, which is a performance measure commonly used
to verify the interference rejection filters. Table I summarizes
the (QRD-LSL)-based nonlinear ACM interpolation algorithm.

IV. SIMULATION RESULTS

Computer simulations are performed to evaluate the perfor-
mance of the proposed interpolator when the NBI is modeled as
an AR process, narrow-band digital communication signals, and
tonal signals for unknown interference statistics (with the noise
power being held constant at ). The AR interferer was
obtained by passing white noise through a second-order infinite
impulse response filter with both poles at . The rate
of convergence and SNR improvement are compared using the
LMS-based nonlinear ACM predictor [3], (QRD-LSL)-based
nonlinear ACM predictor, and (QRD-LSL)-based nonlinear
ACM interpolator. The learning curves in Fig. 2 are generated
by ensemble averaging (for predictors) and

(for interpolators). Fig. 3 reveals
that the SNR improvement of the three filters is independent of
the number of users and the (QRD-LSL)-based nonlinear ACM
interpolator consistently provides more than around a 4.5 dB

SNR improvement over the LMS-based ACM predictor. An
NBI can also be modeled as a digital communications signal
with a data rate much lower than the SS chip rate [8]. A system
of one SS user and one digital NBI can be viewed as a virtual
CDMA system in which the digital NBI can be regarded as

1 virtual users [9]. A Gold code of length 31 is used as the
spreading code. Fig. 4 shows the effect of the filter orderon
SNR improvements achieved by the three filters. In this figure,
increasing filter order results in higher SNR improvements for
both (QRD-LSL)-based ACM predictor and interpolator until

when the SNR improvements for both filters appear
to become steady. In contrast, the SNR improvement for the
LMS-based ACM predictor remains roughly the same as the
filter order is increased. The difference in SNR improvement
between the (QRD-LSL)-based filters and the LMS-based
predictor as the filter order is increased is perhaps because, as
mentioned in Section III, LSL filters may be especially suited
for suppressing orthogonal components of the NBI (notably,
the signature waveforms of the 1 virtual users are mutually
orthogonal) in complex jamming environments, owing to the
exact decoupling property of the LSL interpolator (predictor).
Besides, the potential increase in the SNR improvement of the
LMS-based ACM predictor as its filter order is increased may
have been offset by a large excess mean square error (EMSE)
of the LMS algorithm. The EMSE of the LMS-based algorithm
is known to be proportional to the filter order.

Fig. 4 also indicates that the use of the (QRD-LSL)-based
ACM interpolator can increase the SNR improvement of the
LMS-based ACM predictor by more than 12 dB for a large filter
order. This large gain is highly significant in practice for re-
ducing the probability of error of the (QRD-LSL)-based ACM
interpolator used in suppressing the digital NBI. Similar results
can be seen in Fig. 5, in which the NBI is modeled as a mul-
tiple tone that consists of the sum of 20 pure sinusoidal sig-
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Fig. 5. Effect of the filter order on SNR improvements achieved by the three filters with a multiple tone interferer. System parameters: input SNR= �20 dB;
filter orderM for predictors andp = f = M=2 for interpolator; forgetting factor� = 0:965 for QRD-based filters.

nals and is expressed as ,
where the amplitudes are selected to be identical and the
phases are uniformly distributed on the interval (0, 2). The 20
tones used for the NBI are equally distributed in four nonover-
lapping frequency bands and cover 32% of the frequency band
occupied by the SS signal. is chosen such that the input
SNR dB.

V. CONCLUSIONS

This paper develops a (QRD-LSL)-based nonlinear ACM
interpolator for NBI suppression in DS-CDMA systems. The
complexity per update of the proposed interpolator is O(M),
where M is the filter order. The (QRD-LSL)-based nonlinear
ACM interpolator outperforms the LMS-based nonlinear ACM
predictor in terms of the rate of convergence and SNR improve-
ment when the NBI is modeled as an AR process, tonal signals,
and narrowband digital communication signals. Owing to the
order-recursive structure of the QRD-LSL interpolator, the
proposed (QRD-LSL)-based nonlinear ACM interpolator may
effectively suppress the NBI of fast time-varying bandwidth
and an unknown number of frequency bands that requires
different filter orders to achieve optimum results. The proposed
(QRD-LSL)-based nonlinear ACM interpolator appears to be

suitable in suppressing NBI in CDMA systems since each
stage of the LSL interpolator adapts to suppress an orthogonal
component of the NBI.
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