
864 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003

High-Speed and Low-Power Split-Radix FFT
Wen-Chang Yeh and Chein-Wei Jen

Abstract—This paper presents a novel split-radix fast Fourier
transform (SRFFT) pipeline architecture design. A mapping
methodology has been developed to obtain regular and modular
pipeline for split-radix algorithm. The pipeline is repartitioned to
balance the latency between complex multiplication and butterfly
operation by using carry-save addition. The number of complex
multiplier is minimized via a bit-inverse and bit-reverse data
scheduling scheme. One can also apply the design methodology
described here to obtain regular and modular pipeline for the
other Cooley–Tukey-based algorithms.

For an (= 2 )-point FFT, the requirements are log
4

1
multipliers, 4 log

4
complex adders, and memory of size 1

complex words for data reordering. The initial latency is + 2

log
2

clock cycles. On the average, it completes an -point FFT
in clock cycles. From post-layout simulations, the maximum
clock rate is 150 MHz (75 MHz) at 3.3 v (2.7 v), 25C (100 C) using
a 0.35- m cell library from Avant!. A 64-point SRFFT pipeline de-
sign has been implemented and consumes 507 mW at 100 MHz, 3.3
v, and 25 C. Compared with a radix-22 FFT implementation, the
power consumption is reduced by an amount of 15%, whereas the
speed is improved by 14.5%.

Index Terms—Low power FFT, split-radix FFT.

I. INTRODUCTION

T HE FAST Fourier transform (FFT) and its inverse (IFFT)
are essential in the field of digital signal processing.

Recently, due to the popularity of the orthogonal frequency
division multiplex (OFDM) system, the demand for high-speed
and low-power FFT emerges from various applications.
According to the European digital video/audio broadcasting
(DVB-T/DAB) standards, an OFDM system may require FFT
length ranging from 256- to 8192-point. Wireless local area net-
work (WLAN) and HIPERLAN/2 systems require high-speed
and low-power FFT/IFFT design [1], [2]. The fourth-generation
cellular phone and the forthcoming new WLAN systems may
also incorporate OFDM system to deliver higher bandwidth
[3]. Hence, it is important to design high-performance and
low-power FFT for these applications.

For a static CMOS circuit, the power consumption is usually
determined by the dynamic power, which can be written as

(1)
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where is the switching probability, is the capacitance
being charged or discharged when switching, is the supply
voltage, and is the clock rate. At architecture level,can
be regarded as theoperation countfor a specific module, and

is proportional to the part of a module that is being active.
For example, for a multiplier, if the operation count is MUL#
within clock cycles, then is proportional to .

As the in (1) is usually determined by algorithm and its
corresponding architecture, it is desirable that the chosen FFT
algorithm has the least computational complexity as well as
the corresponding hardware complexity. Among various FFT
algorithms, the Cooley–Tukey algorithm [4] is very popular
because it can reduce the computational complexity from

to , and the regularity of the algorithm
makes it suitable for VLSI implementation. To further reduce
the computational complexity, radix-4, split-radix [5], radix-2
[6], radix-2/4/8 [7], and higher radix versions have been
proposed. In general, all of these algorithms decompose a
length- ( 2 ) FFT into odd half and even half recursively
and effectively reduce the number of complex multiplications
by utilizing symmetric properties of the FFT kernel. The
split-radix algorithm is the best in terms of the multiplicative
complexity for -point FFT when the multiplications with1,

are skipped. However, split-radix algorithm is inherently
irregular because radix-2 stages are used for even half com-
ponents, and radix-4 stages are used for odd half components,
which results in an “L”-shaped butterfly unit.

Due to the irregularity of the butterfly unit, it is hard to de-
sign a regular and modular hardware pipeline for the split-radix
algorithm. In [8], a two-dimensional (2-D) processor array was
proposed to implement split-radix algorithm. Its hardware com-
plexity grows at , which makes such a design im-
practical for large . In [9], a one-dimensional (1-D) linear
array design was proposed. Although its hardware complexity
has been reduced to only, the hardware requirement
is more than twice as large as those of the other radix-4 FFT
implementations proposed in [6], [10], and [11].

In this paper, we present a SRFFT pipeline architecture that
implements the split-radix algorithm efficiently and is suitable
for VLSI implementation. The number of multipliers has been
minimized to by means of sharing the multiplier
between two adjacent stages. The sharing is achieved by using
the bit-inverse and bit-reverse (BIBR) data scheduling scheme
proposed here. The hardware complexity is equivalent to that of
the radix-2 pipeline architecture [6].

In order to balance the latency between complex multiplica-
tion and butterfly operation, the complex multiplier has been
pipelined into two stages. The first stage is based on Wallace tree
and modified Booth recoding, and the second stage is the final
addition of the multiplication. The second stage is then merged
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into the succeeding two butterfly units to balance the latency.
The repartition transforms the carry-propagation additions at
the end of multiplication into carry-save additions, which can
further reduce power consumption and increase performance
without increasing hardware cost.

The proposed design approach can be generalized to other
2 -point FFT algorithms based on Cooley-Tukey decomposi-
tion to obtain regular pipeline architecture as well. For com-
parison, we have implemented a 64-point SRFFT pipeline and
a 64-point radix-2 FFT pipeline. The post-layout simulation
shows that the SRFFT design can operate at 150 MHz, 3.3 v, and
25 C. We have achieved 15% power reduction and 14.5% per-
formance improvement when compared with the radix-2de-
sign under equal conditions.

The organization of this paper is as follows. In Section II,
we will analyze the relationships between FFT algorithms and
pipeline architecture. The proposed SRFFT architecture and
the multiplier folding scheme will be discussed in Section III.
In Section IV, we will present the design of delay-balanced
pipeline architecture. Post-layout simulation and its analysis
are given in Section V.

II. A NALYSIS OF RADIX -2 FFT ALGORITHMS

A. Basic Formulation and Low Radix Algorithms

Given an input sequence , an -point discrete Fourier
transform is defined as

(2)

where the is the time index, and the is the frequency index.
The coefficient is defined as

(3)

For Cooley–Tukey radix-2 decimation-in-frequency (DIF) de-
composition (2) is decomposed into even and odd frequency
components

(4)

(5)

In (5), the is usually referred to astwiddle factor. The
SRFFT algorithm [5] further decomposes the odd frequency

TABLE I
NONTRIVIAL COMPLEX MULTIPLICATIONS REQUIRED FOR

2 -POINT FFT ALGORITHMS

component into and frequency components,
shown in (6) and (7) at the bottom of the page. By applying
(4), (6), and (7) recursively, the split-radix FFT can be obtained.
On the other hand, the radix-4 algorithm can be obtained by
decomposing (4) and (5) into , , , and
frequency components. Table I shows the multiplicative com-
plexity of the radix-2, radix-4, and split-radix algorithms. For
non-4 length FFT, an additional radix-2 stage is used for the
radix-4 algorithm. The split-radix algorithm shows a clear ad-
vantages over the other algorithms. To understand the relation-
ship among the three algorithms intuitively, we can examine
their signal flow graphs (SFGs) as shown in Fig. 1. From the
figure, we can see the following.

• Both the radix-4 and split-radix are superior to the radix-2
algorithm because “ ” terms are extracted.

The complex multiplications with are accomplished
by exchanging the real and the imaginary parts of the in-
coming data and then inverting the sign of the imaginary
part.

• The split-radix algorithm is superior to the radix-4 algo-
rithm because more “ ” terms are extracted in the SFG.

Note that four twiddle factors are moved from the end of
the second butterfly stage to the end of the third butterfly
stage, and two of them become trivial multiplications.

B. High Radix Algorithms

If multiplicative complexity lower than the split-radix
algorithm is desirable, higher radix FFT algorithms should

(6)

(7)
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Fig. 1. Signal flow graph of 16-point (a) radix-2 FFT, (b) radix-4 FFT, and (c)
split-radix FFT.

be used. However, high-radix FFT algorithms often increase
the circuit complexity and are not easy to implement. To
discuss and to compare the efficiency of high-radix algorithms,
radix-8 and radix-2/8 algorithms are examined here. The
radix-2/8 algorithm can be considered to be an extension to
split-radix(radix-2/4) algorithm by decomposing (6) and (7)
one more radix-2 stage. The SFGs of radix-8 and radix-2/8
algorithms are shown in Fig. 2. Besides1 and terms,
and are also extracted from the SFGs. Due to the symmetric

Fig. 2. Signal flow graph of 16-point (a) radix-8 FFT and (b) radix-2/8 FFT.

properties of cosine and sine functions, the values ofand
can be written as and , re-

spectively. Thus, a complex multiplication with one of the two
coefficients can be computed using a constant multiplier and ad-
ditions. The number of complex multiplications and the number
of constant multiplications are summarized in Table II.

Obviously, the radix-2/8 algorithm has lower multiplicative
complexity than the radix-8 algorithm because it extracts more

and coefficients in the SFG. According to our hardware
implementation, we found that the area of the constant multi-
plier is one and half times of a real multiplier. Hence, one con-
stant multiplication is approximately equivalent to 0.4 complex
multiplications. To compare the multiplicative complexity be-
tween low radix algorithms and high radix algorithms, one can
multiply the number of constant multiplications by 0.4 and cal-
culate the equivalent number of complex multiplications.

It is interesting to observe that the multiplicative complexity
of the radix-8 algorithm derived in this work is the same as that
of the radix-2/4/8 algorithm reported in [7]. Actually, if we ex-
amine Fig. 2(a) more carefully, we will find that the SFG of
the radix-8 algorithm is equivalent to that of radix-2/4/8 algo-
rithm. The radix-2/4/8 algorithm implements the radix-8 but-
terfly using three radix-2 stages instead of one single butterfly.
Therefore, we may term the radix-2/4/8 algorithm the radix-2
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TABLE II
NONTRIVIAL MULTIPLICATIONS REQUIRED FORRADIX -8 AND

RADIX -2/8 FFT ALGORITHMS

because of the equivalence at algorithm level. The butterfly unit
consists of three radix-2 butterfly stages. The radix-2design
proposed in [6] can be regarded as another radix-2/4/8 design.
Based on this observation, we will not evaluate the performance
of radix-2/4/8 algorithm any further.

The difference equations used here to compute the number of
complex multiplication for an ( 2 )-point FFT are

(8)

for the radix-8 algorithm, and

(9)

for the radix-2/8 algorithm. One can use these equations to
verify the correctness of Table II.

C. Tradeoff Among the Algorithms

Based on the discussion in the previous sections, we can see
that if the multiplications with 1 and are removed and
the multiplications with can be realized using
constant multiplication, the radix-2/8 algorithm will have the
lowest multiplicative complexity among all the discussed algo-
rithms. On the other hand, the fixed-radix algorithms have more
regular SFGs than the mixed-radix algorithms. However, the
radix-4 and radix-8 algorithms can be applied to 4-point and
8 -point FFT’s only, unless a radix-2 stage is also employed in
the pipeline. Such a limitation also exists in other fixed-radix
FFT algorithms but does not in the split-radix or the radix-2/8
algorithm.

The additive complexity has not been analyzed because it is
basically the same for all the algorithms based on Cooley–Tukey
decomposition, as discussed in [5]. Thus, the number of addi-
tions can be further reduced if we can minimize the number of
multiplications and implement each multiplication using as few
additions as possible. To summarize, mixed radix algorithms are
quite attractive if regular and efficient hardware architecture can
be found. We will present the proposed pipeline architecture for

Fig. 3. Conventional radix-r pipeline architecture.

Fig. 4. ”L”-shaped split-radix butterfly network.

the split-radix algorithm in Section III and the delay-balanced
pipeline to remove unnecessary computation in Section IV.

III. PIPELINE ARCHITECTURE FORSRFFT

A. Previous Work

The one-dimensional linear array is very popular because
it possesses regularity, modularity, local connection, and high
throughput with moderate hardware complexity. Fig. 3 shows
the commonly used radix-r 1-D pipeline architecture [11].
The number of butterflies and the number of multipliers are
proportional to . However, the scheme shown in the
figure cannot be applied to mixed-radix algorithms directly.
The problem arises from the irregularity of the butterfly stage
for mixed-radix algorithms. Take the split-radix algorithm as
an example; both (6) and (7) can be rewritten in alternative
form by defining ( ) in (5) as .

(10)

(11)

If (4), (10), and (11) are mapped directly into hardware, the
shape of the butterfly unit would look like the one shown in
Fig. 4. Such an “L”-shaped butterfly unit is difficult to be in-
tegrated into pipeline architecture, and a similar problem also
arises in radix-2/8 algorithm [7]–[9]. In [9], a delay-commu-
tator(DC)-based design was proposed to implement the split-
radix algorithm. Although the design achieves the multiplica-
tive complexity of the split-radix algorithm, the hardware re-
quirement is considerably much higher than the other pipeline
architectures.

Table III compares the hardware requirement and the
multiplicative complexity for several classical and new imple-
mentations [6], [9]–[13]. The taxonomy is adopted from [6].
Split- radix single-path delay-feedback is denoted SRSDF, and
SRMDC denotes split-radix multiple-path delay-commutator.
Because there are two different radix-2SDF designs, we
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TABLE III
HARDWARE REQUIREMENT COMPARISON FORN -POINT FFT ALGORITHM,N = 2

denote the first one proposed in [6] as R2SDFI and the second
one proposed in this work as R2SDFII. We will derive the
SRSDF and R2SDFII architectures in the following sections.

B. Memory System Design

In order to compute DFT via FFT, the input data and the
intermediate results have to be reordered using memory. The
required memory size is directly proportional to, and the
number of memory access is proportional to . There-
fore, it is important to reduce both the memory size and the
number of memory access.

Take radix-2 FFT algorithm as an example. The computation
of (4) cannot start until both and are available.
For word-sequential I/O, the two samples will be separated by

clock cycles if one sample is available per clock cycle.
Consequently, the first samples have to be stored in a local
memory until the other data sample arrives. Similar
constraints also exist in the other FFT algorithms.

Two different buffering strategies have been developed for
pipeline FFT architecture. One is delay-commutator (DC) ar-
chitecture, and the other one is delay-feedback (DF) architec-
ture [6], as shown in Fig. 5. The DC approach is shown in
Fig. 5(a). At the first cycles, the first samples are
stored in ” FIFO_I”. At the next cycles, the butterfly
receives from the input and from ” FIFO_I”
and generates outputs according to (4) and (5). Meanwhile, one
of the results generated by the first butterfly is stored into ”
FIFO_II,” and the other one is fed to the multiplier directly.
During the cycles, data are stored into the ” FIFO_I”
FIFO in the first cycles and then are read from the FIFO in
the second cycles. As a result, the utilization rate of each
FIFO is only 50%.

For DF style as shown in Fig. 5(b), the incoming samples are
stored in the “ FIFO” during the first cycles. When

arrives, the inputs of the radix-2 butterfly unit will
receive from the input and from the feedback FIFO

Fig. 5. Buffering strategy. (a) Radix-2 multiple-path DC style. (b) Radix-2
single-path DF style.

for computation. One of the outputs of the butterfly unit is fed
back to the ” FIFO” again, which explains the name ”delay-
feedback.” Data is both read from and written to each memory
cell of the FIFO every clock cycle. The utilization rate of each
FIFO is increased to 100%.

Table III also compares the memory requirement. The
delay-feedback buffering strategy can implement radix-2,
radix-4, radix-2, and split-radix algorithms with only ( )
memory words. On the other hand, DC buffering strategy
requires 1.5 words or more. Note that each word actually
comprises of real-part and imaginary-part for complex FFT.
Apparently, DF strategy is preferred as the memory size is
proportional to , whereas the number of multiplier, pipeline
register, or butterfly unit is of order only.

Except for the size of the memory, it is also important to
minimize the access to the memory in order to reduce the
power consumption. In general, the number of memory access
is related to the radix of FFT algorithm because radix-r
stages are used for an-point FFT pipeline, as shown in Fig. 3.
Global memory access occurs only when data enter or leave
each stage, and therefore, it is proportional to the number of
stages in a pipeline. Taking the radix-2pipeline as an example,
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we can see that it has the same number of global memory
access as radix-2 pipeline, although it performs radix-4 FFT
algorithm. The number of local memory access inside a radix-r
stage also depends on the design of BF. For example, a radix-4
BF operation can be implemented using one radix-4 stage or
two radix-2 stages with local memory buffer. Compared with
a single radix-4 stage, the latter one has lower cost but more
local memory access. Table III also shows the number of global
memory access for the pipeline based architectures.

C. Proposed Delay-Feedback Pipeline Architecture

Based on the discussions in the previous sections, we can
conclude that a good pipeline architecture for the FFT should
possess the following features.

• At algorithm level, it should achieve the multiplicative
complexity as low as possible.

• It should be suitable for any power of two length FFT.
• At the architecture level, use the delay-feedback buffering

strategy to minimize the memory size.
• It should have modular and regular modules, local routing,

and low control complexity.

We achieve these features byprojection mapping, which is a
technique from systolic array [14]. At first, we observe that
conventional fixed-radix pipeline architecture can be obtained
through folding the SFG at the vertical direction. Fig. 6(a)
uses radix-4 SFG as an example. The BF_I unit implements
common butterfly operation. The BF_II unit operates in two
modes. For the first mode, it works just as the BF_I unit. For
the second mode, the input data will be multiplied by “”
before normal butterfly operation. Due to the spatial regularity
of the SFG of radix-4 algorithm as shown in Fig. 1(b), the
coefficient “ ” exists at the beginning of odd stages only.
Therefore, BF_I is used at even stages, and BF_II is used at odd
stages. The obtained radix-4 FFT pipeline can use either the
DC or DF buffering strategy to store intermediate data. When
single-path delay-feedback (SDF) buffering strategy is chosen,
the R2 SDFII FFT pipeline listed in Table III is obtained.
Clearly, it uses the same number of butterfly units, multipliers,
and the same memory size as the R2SDFI FFT pipeline.
Although the R2SDFI architecture was obtained through a
different manner, we believe that the two R2SDF designs are
equivalent at both the algorithm and at the architecture levels.

Based on the above procedure, we do the projection map-
ping for split-radix in the same way, and the result is shown
in Fig. 6(b). The BF_II unit is used at every stage except for
the first stage, and two multipliers are used. Compared with the
R2 SDFII pipeline, the obtained pipeline architecture for the
split-radix algorithm uses more BF_II units and one more multi-
plier. The overall structure is still regular and suitable for VLSI
implementation, and the control of the BF_II units and multi-
pliers is similar to the R2SDFII pipeline. Note that buffering
style in the figure is not specified as it can be determined by the
designer. We will use DF style throughout this paper.

The problem of the obtained pipeline architecture for
the split-radix algorithm is that the number of multipliers
is the same as radix-2 pipeline architecture, which equals

, as shown in Table III. The utilization rate

of the second multiplier drops to 25% only, which is very
inefficient. To reduce the number of multipliers, a multiplier
sharing scheme is developed here. At first, we try to use only
one multiplier for two successive stages, as shown in Fig. 7.
A resource conflict problem arises if we use a conventional
data scheduling scheme where the sum of a butterfly is sent to
the next stage and the difference of a butterfly is fed into the
buffer. The definitions ofsum of a butterflyanddifference of
a butterflyare in accordance with a common radix-2 butterfly.
The data coming from the two butterfly units will both require
multiplication simultaneously in certain cases when a conven-
tional data scheduling scheme is used.

To solve this problem, we propose abit-inverse and bit-re-
verse(BIBR) data scheduling scheme. The BIBR scheme ex-
changes the order of output sequences from butterfly stages.
Thus, for each butterfly unit, it stores the sum into the buffer
and propagates the difference to the next stage first. The final
output data sequence becomes BIBR order, instead of bit-re-
verse for the conventional scheme. Table IV compares the two
data scheduling schemes. It is clear from the table that when the
input data sequence is in normal order for both schemes, the
output sequence will be in bit-reverse order for the conven-
tional scheme and in BIBR order for the proposed scheme.

Finally, the SRSDF pipeline architecture described in
Table III is obtained. A similar design procedure can be
applied to obtain SDF pipeline for any algorithm based on
Cooley–Tukey decomposition. However, the BIBR scheduling
scheme does not eliminate the multiplier resource conflict for
the R28SDF pipeline for the radix-2/8 algorithm when we try
to use only multipliers. The R28SDF FFT pipeline
still requires ( ) complex multipliers and constant
multipliers. Further study is required on the issue of reducing
the hardware requirement for the R28SDF pipeline.

IV. DESIGN OFDELAY-BALANCED PIPELINE

A. Two-Stage Pipelined Complex Multiplier Design

The design of a complex multiplier is essential for any com-
plex FFT implementation because it consists of four real multi-
plications and two real additions. In addition to the large area,
the latency of the FFT pipeline is often limited by the latency of
the complex multiplication as well. Hence, many efforts have
been devoted to reducing the latency of complex multiplication
and minimizing the power consumption.

The equation for complex multiplication can be written as

(12)
where the refers to the incoming data from the previous stage,

is the twiddle factor, and is the result of multiplication.
Real part and imaginary part data are denoted using subscripts

and , respectively. To obtain either or , two real multi-
plications and one real addition are required. Rather than design
a new complex multiplier, we decided to repartition the pipeline
to balance the latency because the basic problem for all of the
previous designs is that the latency of a complex multiplication
is in general twice as long as that of a butterfly operation. Al-
though three-multiplication scheme can be used to reduce the
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Fig. 6. Projection mapping of (a) Radix-4 SFG. (b) Split-radix SFG.

Fig. 7. Multiplier sharing scheme for the two successive stages of SRFFT
pipeline.

area, it will further increase the latency of complex multiplica-
tion due to the encoding/recoding process [15]. Therefore, the
repartition focuses on the balance of multiplication and butterfly
operation, and it can be applied to either the common complex
multiplication or the three-multiplication scheme.

At first, the partial products of the two multiplications are
generated using modified-Booth encoding [16], [17] and then
fed into a Wallace tree [18], [19]. The remaining two rows of
partial products from the Wallace tree are converted to a two’s-
complement format using a final adder. Fig. 8(a) shows the
structure of the generated multiplier before repartition. CPA de-
notes carry-propagation addition as the final addition has to be
accomplished via a CPA adder.

The latency of each block in Fig. 8(a) is estimated as fol-
lows. Based on the multiplier optimization algorithms proposed
in [20] and [21], the latency of several multipliers with different
wordlengths are listed in Table V. Note that is the wordlength
of ( ), is the wordlength of ( ), and the latency
is normalized with respect to the delay of two inputsXOR gate.
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Fig. 8. Multiplier sharing scheme for successive two stages. (a) Multiplier before partition. (b) Add one pipeline stage. (c) Merge the final addition with butterfly.

TABLE IV
COMPARISON OFOUTPUT DATA SEQUENCEA FOR CONVENTIONAL SCHEME

AND THE PROPOSEDSCHEME

As the latency of a Wallace tree is related to the height of the
array formed by the partial products rather than the width,
and are encoded using modified Booth encoding to generate
partial products. The height is for the merged Wallace
tree with modified Booth encoding. However, if is smaller
than , then should be encoded to reduce the height. Because
the wordlength of the twiddle factors is fixed at 12-bit ( )
in our design, the latency of the Wallace tree is fixed at 8.5XOR

gates. The latency of the final adder ranges from 5.0 to 5.5XOR

gates. If a butterfly unit uses fast CPAs for butterfly operation,
its latency will be approximately XOR gates [22].
Therefore, the latency of the butterfly is around five or sixXOR

gates. The latency of each stage before partition is also shown in
Fig. 8(a) based on the above estimation. If we partition the com-
plex multiplier into two stages to balance the delay and do not
modify the butterfly unit as shown in Fig. 8(b), the repartition
will cause the area to increase due to the insertion of additional
pipeline registers and will increase the total latency of the FFT.
To avoid these problems, the final addition of the multiplier is
merged into the butterfly units, as shown in Fig. 8(c). The but-
terfly operation has been modified to take the final addition into
consideration.

As discussed in Section III-B, the butterfly operates in two
phases. During the first phase, the incoming data from the pre-

TABLE V
LATENCY OF WALLACE TREE AND FINAL ADDER FOR(x �W � x �W )

OR (x �W + x �W ) OPERATION

vious stage are stored in a buffer. During the second phase, the
data are computed according to (4) and (5), or (10) and (11), to
complete the butterfly operation for split-radix algorithm. The
modification here is done as follows. During the first phase, the
carry-save format data from the previous stage are converted to
two’s-complement format using the adders and subtractors of
the original butterfly unit. The data is then stored into the buffer
as usual. During the second phase, the incoming data
( ) in carry-save format and the stored data( ) in
two’s-complement format are sent to carry-save adders, i.e., one
row of full-adders, to replace the original CPA with a carry-save
addition (CSA). The CSA is modified such that it can be used to
compute either ( ) or ( ). The su-
perscript “ ” denotes that the data is in carry-save format. The
outputs of the CSA are then fed to the original butterfly unit
to complete the computation. Note that the latency of a CSA
is fixed at twoXOR-gate delays, regardless of the wordlength.
Therefore, the latency becomes 8.5XOR gates for the multiplier
stage and 8 ( ) XOR gates for the butterfly unit.

B. Benefits of the Delay Balanced Pipeline Design

The benefits of the proposed design are manifold. At first, the
delay of the multiplier and the butterfly unit is now balanced.
Second, the total number of the clock cycle will remain the same
as that of the original design. Third, since the CPA of each mul-
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Fig. 9. Example of a delay-balanced SRSDF forN = 16 with minimized number of multiplier. The word-lengthL is increased by one bit at each stage. The
bp_pre_in and bp_nxt_in are used to bypass pre_in and nxt_in, respectively, when either of them does not require a multiplication.

TABLE VI
HARDWARE COMPARISON BETWEEN THE ORIGINAL DESIGN AND THE

DELAY-BALANCED DESIGN

tiplication has been converted to CSA, the power consumption
can be reduced by an amount of

ReducedCPA CPA CSA CMul (13)

where CPA denotes the power consumed by a CPA oper-
ation, CSA denotes the power consumed by a CSA, and
CMul denotes the number of complex multiplication for an
FFT. Note that there are two CPAs for each complex multiplica-
tion. In addition to the power saving due to the conversion from
CPA to CSA, the reduced latency can also be employed to re-
duce the power consumption via voltage scaling techniques.

Moreover, the repartition will not increase the total hardware
cost. Table VI compares the cost of the original unbalanced de-
sign and the proposed balanced one. Assume that the cost of
one bit full adder (FA) is equivalent to one bit register. For the
original design, the CPA costs FAs, and there are 2
pipeline registers in our SRSDF architecture because each mul-
tiplier is connected to two butterfly units. When the CPA is
merged into the butterfly units, we need two sets of CSA for
the two butterfly units, and the number of pipeline register is
doubled to 4 due to the carry-save format. The hardware cost
is about the same for the two designs when .

C. Control Signals for Delay-Balanced SRSDF

A delay-balanced SRSDF pipeline for is shown in
Fig. 9. We use both local control signals and global control sig-
nals to synchronize the whole pipeline. The operation for a but-
terfly unit is determined by the receivedbf_mode andbf_by-
passsignals and is described as follows.

The bf_mode signal is a 2-bit local control signal that
propagates with data. The three different states indicated by the
bf_mode signal are defined in Table VII. When a butterfly unit
receives st_normal from previous stage, it will generate sum
according to (4) and generate difference according to (5). It will
also generate a new bf_mode signal for the next stage according
to Table VII. Similarly, if it receives st_mulj, it will multiply
the input data with ” ” and then generate the sum and the
difference. If a st_csa signal is received, the butterfly will send
the incoming data into a carry-save adder and then generate
correct outputs, as explained in Section IV-A. Therefore, three
different butterfly units, BF_I, BF_II, and BF_III are used in
this design. BF_I can accept st_normal, and BF_II can accept
st_normal and st_mulj. BF_III can accept any one of the three
states defined in the Table. The bf_bypass signal in the Table is
generated by a -bit counter labeled with ”bf_counter”
in Fig. 9. The MSB is connected to the first butterfly stage so
that the first stage will change its state every clock cycles.
Similarly, the ( )th bit of the counter will be
connected to the th butterfly stage, as shown in the figure.
When bf_bypass is “1,” the data will be bypassed and stored
into buffer. When it is “0,” the butterfly will carry out one of
the three possible BF operations specified by bf_mode.

The operation of the multiplier is determined by the bf_mode
signals from the previous and the next butterfly units and the
mul_mode signal from the twiddle factor table, which is labeled
as “ ” in Fig. 9. The bf_mode from the previous butterfly will
be connected to pre_mode port, and the other one from the next
butterfly will be connected to nxt_mode port, as shown in the
figure. When none of the bf_mode signals is in st_csa state, the
data from both butterfly units are simply bypassed. When one
of the bf_mode is in st_csa state, the multiplier will multiply
this incoming data with a twiddle factor, and the other one will
be bypassed. Note that the pre_mode and nxt_mode signals will
not be both in st_csa state simultaneously because the proposed
BIBR data scheduling scheme is used. The twiddle factor table
follows similar rules to deliver correct twiddle factor for mul-
tiplication. The mul_mode signal from the table is set to one
whenever current multiplication is trivial and can be skipped.
Only if the trivial multiplications are eliminated can the mul-
tiplicative complexity of the SRSDF be as low as indicated in
Table I.
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TABLE VII
STATES INDICATED BY BF_MODE AND THE STATE TRANSITION TABLE

TABLE VIII
AREA PERCENTAGES OF THEMODULES OF THE64-POINT SRFFT

For an SRSDF design without delay balancing, thebf_mode
local control signal is the additional control overhead compared
with a R2 SDF or R4SDF design. Note that the folding of mul-
tiplier is achieved by using BIBR scheduling and therefore does
not increase any control complexity except for the multiplexers
required at the input and output of a multiplication stage. The
st_csastate is needed only when delay-balanced architecture
is employed. The other control signals, such asbf_counteror
mul_mode, are commonly employed in pipeline-based design.
Thus, the overall control complexity is increased slightly due to
the local control signal. The area percentages of control, data-
path, and feedback memory for the 64-point SRSDF FFT are
summarized in Table VIII. The size of control logic is very small
compared with the other components. If the hardware for data
multiplexing in multipliers and BF units is considered as con-
trol logic, the percentage of control logic will be increased to
approximately seven. Most of the increase comes from the mul-
tiplexers for data routing in multipliers.

V. SIMULATION AND ANALYSIS

A. R2 SDFII and SRSDF FFT Pipelines

For comparison, we have implemented a 64-point ( )
R2 SDFII pipeline and a 64-point delay-balanced SRSDF FFT
pipeline because they have similar hardware cost and perfor-
mance, as shown in Table III. Note that although R2SDFII is
obtained through the procedure described in this work, its per-
formance should be similar to the R2SDF described in [6].
The input uses 12-bit ( ) for the real part and 12-bit
for the imaginary part. To avoid overflow, the wordlength is ad-
justed by one bit at each stage, as shown in Fig. 9. The output
is 20-bit for both real and imaginary parts for a 64-point FFT
pipeline. The wordlength of the twiddle factors is fixed at 12-bit
( ) for real part and imaginary part. The result of mul-
tiplication exceeding the required wordlength is truncated di-
rectly. These parameters, including the, , and , are config-
urable. The design is described using C/C++ language at first to
verify the functionality and the effects of fixed point arithmetic.
The C/C++ program is then converted to Verilog and then syn-

TABLE IX
PERFORMANCECOMPARISON OF64-POINT FFT PIPELINE

Fig. 10. Layout view of the 64-point SRFFT.

thesized using the design analyzer from Synopsys. Automatic
placement and route is done by Apollo from Avant!.

B. Area, Power, and Timing Performance

Table IX summaries the performance of the two designs. The
SRSDF design can still function properly at 150 MHz at 3.3 V or
75 MHz at 2.7 V, whereas R2SDFII cannot. The layout view of
the 64-point SRSDF FFT chip is shown in Fig. 10. It is pad lim-
ited with a core area of 1902m ( ) 1820 m ( ). The gate
count and the critical path are reported by the synopsys design
analyzer, and the power consumption is reported by PowerMill.
The functionality of both SRSDF and R2SDFII are verified by
the post-layout simulation done by TimeMill. The SRSDF FFT
pipeline can achieve a higher clock rate because of the well bal-
ance of the multiplication and the butterfly operation. The novel
SRSDF FFT architecture achieves about 15% power saving and
14.5% speed improvement compared with the R2SDFII FFT
pipeline. The power consumption for SRSDF or R2SDFII does
agree with the model predicted by (1). For example, the power
consumed by the SRSDF is 259 mW when supply voltage is
reduced to 2.7 V. If we take the area into consideration, then
the power reduction contributed by the delay-balanced pipeline
and the split-radix algorithm is about 10%. However, when
is 64, the number of multiplication for the two designs differs
by four only. It means that most of the 10% power reduction
should come from the delay-balanced design. The strength of
the split-radix algorithm will not be significant when is small.
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VI. CONCLUSION AND FUTURE WORK

This paper presents a novel delay-balanced SRSDF pipeline
architecture, which is regular and extensible for any 2-point
FFT. Most of the conventional radix-r FFT pipeline has the re-
striction that the length of FFT has to be power of r. We remove
such restriction by using split-radix algorithm. Compared with
the R2 SDFII design, it saves 15% power consumption and 6%
hardware cost and reduces the critical path by 14.5%, according
to the post-layout simulation based on the 0.35m Avant! cell
library [23]. Thus, it does not only achieve the minimum hard-
ware requirement but also saves the power and increases the
maximum clock rate at the same time.

The 1-D linear array for the other FFT algorithms can be ob-
tained via similar mapping procedure, and the delay-balanced
pipeline architecture can also be used when higher clock rate
and lower power consumption are desirable. The comparison of
the fixed-radix and mixed-radix algorithms also provides useful
information for a designer.

For the radix-2/8 algorithm, we also propose a R28SDF
pipeline architecture in this work. It has low computational
complexity but a high hardware cost as well. We will develop a
cost-effective solution for R28SDF architecture in the future.

As mentioned in Section III-B, the number of global memory
access for low radix algorithms can be reduced by using high
radix pipeline structure. This is also considered as our future
research direction because it may save significant power for
OFDM systems with long length FFT.
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