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ABSTRACT In the coarse-grained fold assign-
ment of major protein classes, such as all-�, all-�, � �
�, �/� proteins, one can easily achieve high predic-
tion accuracy from primary amino acid sequences.
However, the fine-grained assignment of folds, such
as those defined in the Structural Classification of
Proteins (SCOP) database, presents a challenge due
to the larger amount of folds available. Recent study
yielded reasonable prediction accuracy of 56.0% on
an independent set of 27 most populated folds. In
this communication, we apply the support vector
machine (SVM) method, using a combination of
protein descriptors based on the properties derived
from the composition of n-peptide and jury voting,
to the fine-grained fold prediction, and are able to
achieve an overall prediction accuracy of 69.6% on
the same independent set—significantly higher than
the previous results. On 10-fold cross-validation, we
obtained a prediction accuracy of 65.3%. Our results
show that SVM coupled with suitable global se-
quence-coding schemes can significantly improve
the fine-grained fold prediction. Our approach
should be useful in structure prediction and model-
ing. Proteins 2003;50:531–536. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

As a result of the progress in experimental genomics,
tremendous amounts of sequence data have emerged, and
the increase in the number of putative protein sequences
greatly exceeds that of three-dimensional (3D) structures
of proteins. Hence, to extract 3D structures from se-
quences becomes even more important today. Roughly
speaking, there are generally two kinds of approaches to
structure prediction.1 One is the ab initio method that
predicts structures directly from the sequences based on
the general physicochemical principles.2–7 The other is the
empirical method that relies on the empirical knowledge of

proteins structures or sequences to assign the query
sequences to the proper folds by either homology modeling,
threading techniques, or a taxonometric approach.8–13

Homology modeling identifies the possible template struc-
tures of the query sequences by aligning them with the
sequences of known 3D structures, based on the criterion
that proteins with sequence identity higher than 25%
usually have similar structures. Threading techniques
find the possible folds by the sequence–structure align-
ment, without relying on the sequence homology between
the query and target sequences. The taxonometric method,
based on the assumption that the number of folds is
limited, tries to predict protein structures in terms of the
assignment of query sequences to the particular classifica-
tion of protein folds. Proteins are said to have a common
folding structure if their major secondary structures have
similar arrangement and topologic connections. The latter
approach becomes increasingly important as a result of the
fast growth of protein structures. Previous studies11,14–16

have shown that in coarse-grain structural classification
such as all-�, all-�, � � �, �/�, and irregular folds,17 one
can easily achieved 70% or better prediction accuracy from
the amino acid composition. However, in order to obtain a
high-resolution 3D structure, one needs to be able to
assign fine-grained folds for the query structures. The
assignment of fine-grained folds, such as that defined in
the Structural Classification of Proteins (SCOP) database,
presents a challenge for structure prediction due to the
larger number of folds. Recently, Ding and Dubchak13

applied support vector machines (SVMs) to the problem of
fold assignment. They used six coding schemes11,12 to
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extract structural or physicochemical properties from the
primary sequences, compressing 20 amino acids into three
groups for the following attributes: the percentage compo-
sition of amino acids, predicted secondary structure, nor-
malized van der Waals volumes, hydrophobicity, polarity,
and polarizability. They then calculated three descriptors
(i.e., “composition,” “transition,” and “distribution”) for
each attribute in these three groups of amino acids. Their
approach yielded around 56.0% prediction accuracy for an
independent set. Despite seemingly lower prediction accu-
racy than before, the prediction was made in the context of
27 fine-grained SCOP folds, about one order higher than
the number of protein classes used in their earlier work.
They achieved this with a multiclass fold prediction sys-
tem based on the jury votes from several parameter sets of
structural or physicochemical properties of the sequences
described by three groups of amino acids. In our work,
using SVM coupled with more comprehensive protein
descriptors based on n-peptide coding schemes and jury
voting procedures, we can obtain a prediction accuracy
significantly higher than that in the previously mentioned
study.

METHODS

The SVM is a powerful classification method18 that has
become popular in computational biology13,19–21 and other
areas. The original idea of SVM is to use a linear hyper-
plane to separate training data in two classes: Given
training vectors xi, i � 1,…, l and a vector y defined as yi �
1 if xi is in one class, and yi � �1 if xi is in the other class.
The support vector technique tries to find the separating
hyperplane wT xi � b � 0, with the largest distance
between two classes measured along a line perpendicular
to this hyperplane. This requirement is equivalent to the
minimization of 1

2
wT w with respect to w and b under the

constraint that yi(w
T xi � b) � 1. However, in practice,

these data to be classified may not be linearly separable.
To overcome this difficulty, SVM nonlinearly transforms
the original input space into a higher dimensional feature
space by �(x) � [�1(x), �2(x),…] and tries to minimize

1
2 wTw � C�

i � 1

l

�i

with respect to w, b, and �, under the constraint that yi (wT

�(xi) � b) � 1 � �i, where �i � 0. This procedure has the
advantage of allowing training errors. It should be noted
that only some of the xi’s are used to construct w and b, and
these data are called support vectors.

Data Sets and Input Coding Schemes

We used the same data set as that of Ding and Dub-
chak,13 which consists of 386 proteins of the most popu-
lated 27 SCOP folds in which the protein pairs have
sequence identity below 35% for the aligned subsequences
longer than 80 residues. These 27 proteins folds cover most
major structural classes such as �, �, �/�, and � � �, 22 and
have at least 7 or more proteins in their classes. To apply
the machine learning techniques successfully to the bio-

logic problems, one needs to extract relevant input vectors
from the biologic data (i.e., the primary sequences). In this
work, our global sequence-coding schemes cover the distri-
bution of n-peptides for protein attributes. When n is 1,
it encodes the composition of amino acids, which has
been useful in discriminating the coarse-grained fold
classes.14 –16,23 When n is 2, the input vector encodes the
dipeptide composition, which has been successfully ap-
plied to predict in vivo stability of proteins.24 We can
extend n to 3 or more, but it becomes impractical even in
the case of n � 3 (the size of the input vectors becomes
8000). This can be overcome if we reduce the size of the
input vectors by regrouping the amino acids into a
smaller number of classes according to their physico-
chemical properties. In this work, we denote the coding
schemes by X if all 20 amino acids are used, X� when the
amino acids are classified as four groups— charged,
polar, aromatic, and nonpolar—and X	, if predicted
secondary structures are used. We assign the symbol X
the values of D, T, Q, and P, denoting the distributions of
dipeptides, 3-peptides, and 4-peptides, respectively. Simi-
lar ideas that make use of n-gram models have been
successfully applied to protein family identification.25

Because these parameters are built independently, one
can apply machine learning techniques based on a single
set of input vectors or a combination of several sets. All
the SVM calculations are performed with LIBSVM,26 a
general library for support vector classification and
regression. We used PREDATOR27 to predict the second-
ary structure of the protein sequences.

Training and Testing Procedures

To have SVM classifiers perform a multiclass prediction,
we followed two commonly used approaches.13 In the first,
the “one-against-all” method, F SVM classifiers are con-
structed and the ith SVM is trained with proteins in the
ith fold as positive, and all other proteins as negative.
Each protein in the test set is tested by all classifiers, and
if positive, it will get a vote for the class. However, if it tests
negative, this protein will not get any vote for the class.
The “one-against-all” method gives rise to the possibility of
giving some proteins too few or even no votes for any fold.
However, we can complement this with the second method,
“one-against-one,” which is described as follows: Given F
classes of proteins, we can construct F(F � 1)/2 SVM
classifiers and train with proteins from two different folds
[in this work, we constructed for 27 folds a total of 27(27 �
1)/2 � 351 classifiers]. In this way, each protein in the test
set will always get a vote for either one of the two folds, and
the final assignment of folds to each protein in the test set
is determined by the jury voting. Figure 1 shows the
architecture of our SVM classifier. We use the standard Qi

percentage accuracy13,28,29 for assessing the accuracy of
protein fold identification Qi � ci/ni 
 100, where ni is the
number of test data in the ith class and ci is the number
correctly predicted. The overall Q is given by

Q � �
i

F

wiQi,
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where w � ni/N, and N is the total number of proteins.
We used two evaluation methods for the performance of

the prediction system. First, we tested the system against
the independent set, which comprised 385 proteins of 27
folds from the PDB-40D set30 that have sequence identity
below 40% within the testing set, and below 35% compared
with those of the training set. Second, we evaluated the
classifiers by cross-validation, which measured their pre-
diction accuracy systematically by first excluding a few
proteins during the training process and then testing the
classifiers against these excluded proteins. In the 10-fold
cross-validation evaluation, each testing set comprised
around 10% of the proteins. In addition to our parameter
sets, we also used the following parameter sets of Dubchak
et al.11,12—the attributes of amino acids (C), predicted
secondary structure (S), and hydrophobicity (H).

RESULTS

We compared the prediction accuracy of n-peptide cod-
ing schemes for the independent test set. Figure 2 gives
the general trend of one-against-all prediction accuracies
of isolated parameters sets: X, X�, and X	. The parameter
set M, the composition of 20 amino acids M, gives the
highest average prediction accuracy of 59% for the 27
folds, as shown in Figure 2. The parameter D, the composi-
tion of dipeptides, gives much lower prediction accuracy.
For the X� set, the composition of four classes of amino
acids, the prediction accuracy displays the same monoto-
nous decay when the length of the peptide fragments
grows longer. It is interesting to note that M� gives much
lower prediction accuracy than M, indicating that the
composition of 20 amino acids contains more useful infor-
mation in discriminating protein folds than the com-
pressed classes of amino acids. For the X	 set, the composi-

tion of predicted secondary structure, the prediction
accuracy peaks at D� and then slowly flattens out. To
obtain the best overall prediction accuracy, we need a
combination of parameters in both one-against-one and
one-against-all classifiers. After some preliminary compu-
tations, we settled on the following parameter sets: M, D,
T�, Q�, P�, and T	 (using one-against-all classifiers), and
C�S�H�D (using one-against-one classifier), from which
the highest combined votes will determine the predicted
folds. Here C, S, and H are the percentage composition of
amino acids, predicted secondary structure, and hydropho-
bicity, respectively. Table I lists our results for the indepen-
dent set. In the one-against-one method, all the parameter
sets (M, D, T�, Q�, P� and T	) give average prediction
accuracy greater than 40%. In the one-against-one method,
the parameter set M, the composition of 20 amino acids,
gives the best prediction accuracy of 59% in the context of
one parameter set (Fig. 2). Our results are consistent with
previous findings14–16,23 that M is a very good discrimina-
tor in the classification of the coarse-grained folds. How-
ever, we also find that M, as an isolated parameter set, is
also very helpful in identifying the 27 fine-grained classes
of fold. The parameter sets T�, Q�, and P� encode the
distribution of tripeptide, 4-peptide, and 5-peptide se-
quences defined by amino acids that are classified into four
groups. The parameter set T� performs best, whereas Q�
and P� give lower prediction accuracy. Among various
combinations of parameter sets for the one-against-one
method, we found that the C�S�H�D set gave the best
prediction accuracy at 63.1%, which is higher than the
one-against-all method using M set by around 4%. The
jury column in Table I gives the final prediction accuracy of
69.6% for each fold by the votes from the parameter sets, a
6.5% improvement on the one-against-one method, show-
ing the effectiveness of the jury voting procedures.13 In the
breakdown analysis, our approach gives excellent predic-
tion accuracy (�80%) for the folds: �1 (globin-like �-pro-
teins), �2 (cytochrome c folds), �5 (4-helical cytokines), �1

(the immunoglobulin-like �-sandwich fold), �7 (the trefoil
fold), (�/�)1 (the triosephosphate isomerase (TIM)-barrel),
and (� � �)3 (small proteins such as inhibitors, toxins, and
lectins). On the other end of the prediction spectrum, our
method gives poor results (accuracy � 50%) for folds such
as �2 (cupredoxins), �6 (oligonucleotide binding (OB)-fold),
(�/�)3 (flavodoxin-like), (�/�)9 (periplasmic binding protein–
like) and (� � �)3(� � �)1 (�-grasp or ubiquitin-like). These
poor results reflect the consistent failure to recognize the
correct folds by almost all the parameter sets. Figure 3
compares the prediction accuracy for each fold (in white) of
our approach with that of Ding and Dubchak13 (in black).
Our final prediction accuracy of 69.6% is a significant
improvement on their result of 56.0% by 13.6%. Our
method gives better prediction for 24 folds, most noticeably
�3, �3, �4, �7, �8, and (� � �)1, where improvements are
more than 50%. Both approaches give poor results for �2

and (�/�)9. Figure 4 shows the 10-fold cross-validation of
the PDB-40D set, which was the result of randomly
picking 10% of the protein as the test set during the
training process and then testing the classifiers

Fig. 1. The architecture of our SVM classifiers to predict the folds. The
symbols X, Y, Z,… designate the parameter sets used in the “one-against-
all” classifiers, and the symbols x, y, z,… the parameter sets used in the
“one-against-one” classifiers. Each classifier casts one jury vote, and the
fold that gets the most votes is the predicted fold for the query sequence.
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against the test sets. The results of cross-validation are
consistent with those of the independent set. The final
overall average prediction accuracy for the cross-valida-
tion is 65.3%, which is also a significant improvement over
the previous result of 45.4%.

DISCUSSION

The previous work showed that in the coarse-grained
fold assignment of major protein classes, such as all-�,
all-�, � � �, �/� proteins, one could easily achieve high

Fig. 2. Comparison of the “one-against-all” prediction accuracies of X,X�, and X	 parameter sets. The symbols M, D, T, Q, and F represent n-peptide
fragments with n � 1–5, respectively.

TABLE I. Prediction Accuracy Qi (%) for Protein Fold for the Independent Test
Set

Foldsa

One-against-all One-against-one Jury

M D T� Q� T	 C�S�H�D Final

�1 83.3 83.3 66.7 100.0 66.7 83.3 83.3
�2 88.8 22.2 55.5 22.2 44.4 100.0 100.0
�3 55.0 30.0 55.0 40.0 40.0 40.0 70.0
�4 62.5 37.5 37.5 37.5 62.5 62.5 75.0
�5 100.0 66.7 55.5 44.4 66.7 100.0 100.0
�6 55.6 44.4 33.3 33.3 11.1 44.4 55.6
�1 63.6 43.2 50.0 47.7 75.0 84.1 90.9
�2 50.0 16.7 16.7 25.0 16.7 16.7 16.7
�3 61.5 46.2 61.5 61.5 53.8 61.5 76.9
�4 33.3 33.3 66.7 66.7 50.0 50.0 66.7
�5 75.0 25.0 37.5 37.5 37.5 50.0 50.0
�6 31.6 26.3 31.6 21.1 47.4 31.6 47.7
�7 75.0 50.0 50.0 50.0 75.0 75.0 100.0
�8 50.0 50.0 50.0 50.0 25.0 25.0 50.0
�9 71.4 28.6 71.4 42.9 28.6 57.1 57.1
(�/�)1 83.3 66.7 60.4 62.5 45.8 87.5 93.8
(�/�)2 50.0 33.3 25.0 33.3 33.3 50.0 66.7
(�/�)3 30.8 7.7 15.4 30.8 15.4 53.8 38.5
(�/�)4 40.7 37.0 33.3 37.0 25.9 55.5 55.6
(�/�)5 50.0 33.3 41.7 33.3 33.3 50.0 50.0
(�/�)6 37.5 37.5 50.0 37.5 50.0 37.5 50.0
(�/�)7 42.9 42.9 42.9 42.9 42.9 57.1 57.1
(�/�)8 71.4 71.4 57.1 71.4 28.6 71.4 71.4
(�/�)9 25.0 25.0 50.0 50.0 25.0 25.0 25.0
(� � �)1 37.5 25.0 25.0 25.0 37.5 37.5 37.5
(� � �)2 22.2 22.2 25.9 18.5 25.9 48.1 51.9
(� � �)3 100.0 88.9 85.2 81.5 74.1 96.3 100.0
Avg 59.0 43.1 47.0 44.9 44.9 63.1 69.6
aFold notations: �1–6, all-� proteins, including globin-like, cytochrome C, DNA-binding
3-helical bundle, 4-helical up-and-down bundle, and 4-helical cytokines, EF-hand, respectively;
�1–9, all-� proteins, including immunoglobulin-like � -sandwich, cupredoxins, viral coat and
capsid proteins, ConA-like lectins/glucanases, SH3-like, barrel, OB-fold, �-trefoil, trypsin-like
serine proteases, and lipocalins, respectively; (�/�)1–9, �/� proteins, including TIM-barrel,
FAD/NAD-binding motif, flavodoxin-like NAD(P)-binding Rossmann-fold, P-loop-containing
nucleotide, thioredoxin-like ribonuclease H–like motif, hydrolases, and periplasmic binding
protein–like, respectively; (� � �)1–3, � � � proteins, including �-Grasp, ferredoxin-like and
small inhibitors, toxins, or lectins, respectively.
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prediction accuracy (70–80%) from amino acid composi-
tion. Ding and Dubchak13 showed that, in the fine-grained
fold prediction, SVM combined with jury voting from
multiple parameter sets yielded prediction accuracy signifi-
cantly higher than that of any single parameter set: They
obtained 56% prediction accuracy on an independent test
set and 45.4% on cross- validation. We have demonstrated
in this study that the amino acid composition M alone yield
59% prediction accuracy, which, though better than the
current result, is still not yet practical in realistic applica-
tions. Using protein descriptors based on the properties
derived from the composition of n-peptide and jury voting
from a combination of parameter sets, we are able to
achieve a 69.6% prediction accuracy on an independent
set, an order of magnitude higher than the current results,
and 65.3% on 10-fold cross-validation. The prediction
accuracy is approaching that for the coarse-grained fold
classes. Our results show that SVM, novel, global sequence-
coding schemes and proper combinations of input parame-
ter sets should become an increasingly practical tool in
structure modeling.
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