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Process capability indices, providing numerical measures on process potential and process performance, have
received substantial research attention. Most research assumes that the process is normally distributed and the
process data are independent. In real-world applications such as chemical, soft drinks, or tobacco/cigaratte
manufacturing processes, process data are often auto-correlated. In this paper, we consider the capability indices
Cp, Cors Cpms Comi for strictly m-dependent stationary processes. We investigate the statistical properties of their
natural estimators. We derive the asymptotic distributions, and establish confidence intervals so that capability
testing can be performed.

Keywords: Process capability index; Auto-correlated process; Asymptotic distribution; Strictly m-dependent
stationary process

1 INTRODUCTION

Process capability indices, providing numerical measures on whether a production process is
capable of reproducing items meeting the quality requirements preset by the designers, have
received substantial research attention. Those indices have been widely used in supplier
selections, as well as in applications of statistical process control to continuously improve
the quality and productivity. Examples include Sullivan (1984), Kane (1986), Chan et al.
(1988), Chou and Owen (1990), Spiring (1991), Rodriguez (1992), Pearn et al. (1992),
Vannman (1995), and many others. Most research assumes that the process is normally dis-
tributed and the process data are independent.

In real-world applications, however, process data are auto-correlated in many cases, parti-
cularly, for continuous manufacturing process such as chemical, soft drinks, or tobacco/
cigaratte manufacturing processes. Shore (1997), and Chow et al. (1999) investigated various
effects that ignoring auto-correlation may have on estimating the process mean and process
standard deviation. Zhang (1996; 1998) considered the estimator of C, and C,; for processes
with auto-correlated data. Under the assumption that the process is discrete, stationary
Gaussian, Zhang (1998) used the method of statistical differentials to obtain the approximate
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expectation and variance of the two estimators é'p and Cpk in terms of the auto-correlation
function.

In this paper, we consider the four basic indices C,, Cp, Com and C,,y for strictly
m-dependent stationary processes, where each observation is correlated with its preceding
and exceeding m sample data. We investigate the statistical properties of the natural
estimators of the four indices, and derive their asymptotic distributions. Consequently,
approximate interval estimation and capability testing can be performed for strictly m-dependent
stationary processes, particularly, for those with normal and near-normal distributions. We
also study the small sample performances of normal approximation and Edgeworth expan-
sion via simulation.

2 THE STRICTLY m-DEPENDENT STATIONARY PROCESS
For continuous manufacturing processes, such as chemical, soft drinks, or tobacco/
cigaratte manufacturing processes, if the process is under stable condition (under statistical
control) and the sampling interval is not too small, then the sampled data can be regarded
as taken from a stationary process (see Zhang, 1998). In this section, we consider a
strictly m-dependent stationary process {X,} with common mean EX; = u and auto-
covariances £(X; — u)(X; — u), which we denote as i,(i — j). From now on, we will assume
that joint density function f; of X; and X; satisfies fj(a, b) = f;;(b, a). Therefore, we have
W (i —J) = upy(j — i) for all |i —j| < m and u,(]i —j|) = 0 when |i —j| > m. It is clear that
(X7 = (1(0) + 1N — )
and
X — X = (15(0) + 1)
have common expectation,
E[(X7 = (10) + 2)(X; — )] = E[(X; — (X7 = (12(0) + )]
which we denote as u;(i —j) = u3(j — i) with ps(|li —j|) = 0 for |i —j| > m. Similarly,
A7 = (12(0) + )X = (112(0) + 1))
and
X7 = (1(0) + NG — (1(0) + 1))
have common expectation,

E[(X7 = (12(0) + @)X — (112(0) + 1)) = E[(X} — (1(0) + )X — (1(0) + )],

which we denote as (i —j) = uy(j — 1) with py(|li —j|) =0 for |i —j| > m.
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LEMMA 1 Let {X,} be a strictly m-dependent stationary process with common mean U,
auto-covariance [5(j), and higher moments 115(j), pa(j), which are finite for | j| < m. Then

(@) Var(3L, X)) = 3 j1<,,(n = /D2 (),

(b) Var(3L, X2) = 3 ;i< = 1/Dus (),

(© Cov(yL, Xi Y1y XP) = 3 ji<m( — 17D (),
A 1nY X5,

(&) 1/n Y1, X2 5 1y(0) + 42

Proof

(a) Since there are n — |k| possible pairs (i, j) such that i —j = k, then

Var(ZK-) = ZZHz(i —j) = Z (n — |k)uy(k) = Z(n — 17D (j)-
p

i=1 j=1 k=—m [j1<m

(b) and (c) can be derived similarly as that in (a).
(d) By Chebyshev’s inequality, we have

p([2X_ ] 5 ) < Yor(Eli Xo/m) _ Var(L, X) _ Xjen® — 1D o
n & n2g? n?g?
(e) can be proved similarly as that in (d). |

LEMMA 2 Let {X,} be a strictly m-dependent stationary process with common mean U,
auto-covariance [,(j), and higher moments 15(f), pa(j), which are finite for |j| < m with

WY iem 12D + 25 X e Ha () 4 22072 3 < 113(j) # O, where Jy and Jy are two con-
stants not equaling to zero simultaneously. Then

ﬁ[(;;m,;;)(f) 0+ m} N, 3), )

where

s _ (Zjlim () 2 ji<m ﬂ3(j))
T\ X e (D X iem e (D) )

Proof Denote Y, = 1(X, — 1) + A2[X? — (112(0) + 1*)]. Then, {,,} is a strictly m-dependent
stationary process. By Lemma 1(a) and Lemma 1(c),

Var(Xn: Y,-) = Var()tl XH:X,- + i)(f)
i=1 i=1 i=1
= ,ﬁVar( y X,) + igVar(Xn:Xl?) + ul,zchv:Zn:Xi, 2":)(3}
=1 i=1 i=

i i=1 =1

=Y = 1Dm() + 43 > (= 1iDpa(i) + 2200 > (0 — 1D ().

Ljl=m lil=m ljl<m
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Therefore,

nVarBZ y,} ~2 Y (1= + 2 2 (1 -2

i=1 [/1=m [/1=m
+ 2/1112{ Z <1 - |}j1|)#3(j)}
[jl<m
— 23 DD+ 5 ) m() + 2404 Y ms0).
[jlsm ll<m |jl<m

Applying the central limit theorem (Brockwell and Davis, 1987, p. 206) on the strictly
m-dependent stationary process, Zl'.':l Y;/n, then,

n

A lr &
ﬁ[;‘z(x,» — 10+ 27— () + uz)]}

i=1 i=1

is asymptotically normal with mean 0 and variance

h Z 1 (j) + 23 Z wa(j) + 24142 Z u3(J)-

|jl<m jl=m [jl<m

The result now follows directly by the Cramer and Wold (1936) argument. |

3 ESTIMATING PROCESS CAPABILITY

Let {X,} denote a sequence of strictly m-dependent stationary process with common mean g,
and common variance 6> = 1,(0).

Let LSL, USL be the lower and the upper specification limits, respectively. Let
d = (USL — LSL)/2 be half length of the specification interval, M = (USL 4 LSL)/2 be
the midpoint of the specification tolerance, and T be the target value. Consider the following
process capability indices investigated by Kane (1986), Chan et al. (1988), and Pearn et al.
(1992):

_USL-LSL d

i 60 " 3¢’

. |USL—u p—LSL| d—|u—M]|

Cpk—mm{ c 3o }_ 30 ’

_ USL—LSL d

T (T - 3+ (T —

USL — —LSL d—|u—M
Cymt = min I . H - |u Iz'
3V + (T — p)? 362+ (T —p) 302 + (T — p)
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Given unknown process mean p and the process variance o2, the following natural estima-
tors of the four basic indices are often applied,

f_d o _d-lh-M d s d—|p—M

~ 9 m:—’ ka_—’
36 se @ —pr " 3e (T - p)?

where i = Y, Xi/n and 6% = 8% = Y1, X?/n — (3__, X;/n)* are conventional estima-
tors of u and ¢ respectively.

>

4 ASYMPTOTIC DISTRIBUTIONS OF THE ESTIMATORS

The exact distributions of the four estimators, and formula of their expected values and var-
iances are analytically intractable. But, for large sample sizes, we may obtain their limiting
distributions.

THEOREM 1 Let {X,} denote a strictly m-dependent stationary process which satisfying the
assumptions in Lemma 2. Then

(€, — C,) 2> N(0, DyD),

where Dy = (ud/3(115(0))*/%, —d/6(11,(0))*/?).

Proof  We first define

d

—_— if LSL, USL),
@b =372 if ae( )
0

otherwise,

D — 0g1(a, b) Ogi(a,b)
'Y\ e 0

(a,b)=(tt, 12 (0)+12).

Then, D) = (ud/3(u,(0))*%, —d/6(11,(0))**). By Lemma 2 and Proposition 6.4.3 in
Brockwell and Davis (1987), we have

(G, - C,) = [ (Z Z%) — &1(, 15(0) +u2)}

—> N(0, D, 2D)). |
If we denote ¥ as

s — (Zﬂfm () 2 i<m .U3(j)> . (21 22)
- mem :u3(]) Z|j\§m:u4(j) - 22 23 ’
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and ' = D =D/, then Theorem 1 can be rewritten as

( 23 —uS, +25/4
‘/E(Cp_cp)_L)N(O,ZI*), whereZl*:[’u L K20+ 25/ i|C2

H (0)2 v

Therefore, an approximate 100(1 — «)% confidence interval of C, may be established as
the following:
) st i
Cp - Za(/2 77 Cp + ZOC/Z 7 s

. |:)_(221—)_(ﬁ:2+i3/4:|62

where

1
L7 = S4 P’

ﬁl, ﬁ‘.z, 23 are sample auto-covariances of X, X,, and X3, respectively, and Z,, is the upper
o/2 quantile of standard normal distribution. Let 1, = E(X — )" be the kth central moment.
Then, for the case with m = 0, that is, the process data are independent, we have

S _%,— (uz(O) u3(0)) _ ( o’ us + 2u0’ >
143(0)  14(0) s 4 2u0% g+ 4pps + 4o’ — o

COROLLARY 1.1 Let {X,} be an independent (m = 0 in this case) stationary process with
common mean [i, auto-covariance W, (j), and higher moments 115(j), us(j), which are finite.
Then,

R _ 4
Vi€, — C) 5 N(0, %)), where =) = %Cj;

We note that for m = 0, the results just obtained are consistent with part (a) of the Theorem in
Chan et al. (1990) for processes with independent data.

COROLLARY 1.2 Let {X,} be an independent (m = 0 in this case) Gaussian stationary
process with common mean [, auto-covariance W,(j), and higher moments ps(j), pa(j)
which are finite. Then,

1

VG, = €)= N(O.Zfy),  where Zjy, =

2
G,

THEOREM 2 Let {X,} be a strictly m-dependent stationary process satisfying the assump-
tions in Lemma 2. Then

\/ﬁ(épm - Cpm) i> N(O, DzED’z),

where D, = (Td/3[u,(0) + (u — T)*/%, —d/6[u,(0) + (u — T)*1/?), and T is given in
Lemma 2.
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Proof Let
d if a € (LSL, USL)
a 9 9
g(a.b)=13/b—a? + (T — ay
0 otherwise,
Dy — <6g2(a, b) 0gx(a, b))
h = ,
0a b Jlab=um©rt),
then

D = (Td/3[(0) + (1 — TY’FP/?, =d/6[u2(0) + (1 — TY’T?).

By Lemma 2 above, and Proposition 6.4.3 in Brockwell and Davis (1987),
A X X2
A(Copn = Cp) = /0 [gz (Z ~, ; 7) — 221, 112(0) + uz)}
£ N0, D,ED). m
If we let 22 = D,2D), then Theorem 2 can be rewritten as

A L
\/E(Cpm - pm) g N(O» 22*)v

where

s _ [T221 - T3, +23/4] 2
[1,(0) + (T — P 17"

Therefore, an approximate 100(1 — o) % confidence interval of C,,, may be established as the

following:
. [v2¢ [y2%
Cpm - Zot/2 7’ Cpm + Zot/Z 7 P
where

S _ 7%, - T3, Jf23/4 o
[+ (T -X7F | ™"
COROLLARY 2.1 Let {X,} be an independent (m = 0 in this case) stationary process with

common mean W, auto-covariance [,(j), and higher moments u;(j), ws(j) which are
finite. Then,

~ L
\/ﬁ(cpm - Cpm) g N(O, Z%),
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where

52— [(T — w0 — (T — s + (g — 64)/4] e,

[02 + (T — P

When m = 0, the above results coincide with part (c) of the Theorem in Chan et al. (1990)
for processes with independent data.

COROLLARY 2.2 Let {X,} be an independent stationary Gaussian process (m = 0 in this
case) with common mean i, auto-covariance [, (j), and higher moments p5(j), t4(j) which
are finite. Then,

~ L
\/ﬁ(cpm - pm) - N(Oa ZéN)v

where

%N_Fr—m%?+&ﬂ}z

IR NTEENCEE N

THEOREM 3 Let {X,} denote a strictly m-dependent stationary process satisfying the
assumptions in Lemma 2. Define

-1, if M <
Sgn(M_“)Z{H ifM>Z
Then
| [ NO.D:ED)). if u£ M,
V(G = Gy =1 hd 17 , ifu=M,
31(0)  3,/u,(0)
where

sgn(M — p) | p(d — [sgn(M — WM — )

D. — 3y 1(0) 3#2(0)3/2
3 [d — [sgn(M — WM — )] ’
6(11(0))*?

and (Wy, W») are N((0, 0), D*D*), with

u

O — vV 12(0)

1
2/ 1,(0)
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Proof Define

d—|M—a

——————— if a € (LSL, USL),
g3(a1 b) = 3\/ b — a2 na ( )
0

otherwise.

Then Cpe = gs(i, 1(0) + 1), G = g3(X, Xi/n, Y1y X7 /n) and
; "X X :
V(G = G = v/ g5 D0 D S | = sl 1(0) + 42 |.
i=1 i=1

Case 1 IfLSL < u<M,LSL <a < M, then

(a.b) d—M+a
a, - =
&3 3V — &2

D: — ag3(a1 b) ag3(a1 b)
T\ a0 o

(a,b)=(t, 1> (0)+1%)

Then

sgn(M — p) n wd — [sgn(M — WM — )

| 3V 3u,(0)°?
3 (d — [sgn(M — WI(M — )
6(11,(0))?

By Lemma 2 above, and Proposition 6.4.3. in Brockwell and Davis (1987),

A X X
V(G = Cu) = [g3 (Zf Z)i) ~ (1 150) + uz)}
i=1 i=1
5 N(0, DyEDY,).

Case 2 If M < u < USL, M < a < USL, then

d+M—a

,b) = .
gila.b) ==

The proof can be carried out using the same technique as that in Case 1.
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Case3 Ifu=M

R B "X & Xviz 5
\/ﬁ(Cpk - Cpk) = \/—ﬁ &3 > Z? - g3(:uv HZ(O) +u )
L \'=1 i=1

n

d—|Y_ Xi/n—M  d
3 X X = (T Xy 3V 1a0)
41600 = T X n = (S /)
L3/ 2 = (T X/ (O

B |0 Xi/n — ul ]
3 X0 X2 0 — (0, Xi/n)

Let

1 1
X 2 = (0 X i) 35 K — (0 Xy

2
Wins Wap) = («/ﬁ(\/m_lz)%z_ (Z%) )’\/ﬁ<2%—u))

Then

V'in, Vau) =

b

W X

P d 1 A
Vins Vzn)—><m, 3@) = (I, 12).

Let (ki(a, b), k(a, b)) = (/1,(0) — Vb — a?, a — p). Define the following and evaluate it
at (4, ,(0) + u?). Then

Ok (a, b) dky(a, b) £
q)* _ Oa Oa = \/m
~ | Oki(a, b) Oka(a,b) | — | _ ! 0
ob ob 2\/1,(0)

By Lemma 2, we have (W1, Wz,,)—L> (W1, W»), where (Wy, W) are N((0, 0), D*Zd*).

Therefore, (V1uWin, V2nWan) 5 (1w, V2 W3). Since \/_ﬁ(épk = Coi) = ViuWin — V2, Wanl
is a continuous function of V,,W,, and V,,W,,, by the theorem on page 24 of
Serfling (1980), we have

L Wd W5

3500 3/0)

V(Cot = Co) = ViaWin — [Vau W
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Let 3 = D;EDf, and ¥ = ®*X®" . Then, Theorem 3 can be rewritten as
N(0, Z%%), if pu£M,

N L
VG~ Gy By d Wl

3,0) 3 /50

> 2uX; — 2 28— uZ, +23/4
H = l —I—[sgn(M—u)]|: - 3/22:| |:.“ L £ 22 o/ ]Cjk’
91,(0) 314,(0) 1(0)
(W1, W2) ~ N((0, 0), '), and
1PE) 25u 4, —ux X
w(0) ~ /1,(0) 211,(0)  2/u,(0)
N —'LLZ] _ 22 21
21(0)  2,/u,(0) 411,(0)

Therefore, an approximate 100(1 — )% confidence interval of C,; for u # M may be
established as the following:

. ¥ I35+
Cpk_Zoc/2 79 Cpk +ZO(/2 7 P

where

A

o 2
v _ o057 + sgn(M — X)|:

2XE, -3, | . X3 — X5y +33/4 ],
3S3:| Cor + [ 5 Cor-

COROLLARY 3.1 Let {X,} be an independent stationary process (m = 0 in this case) with
common mean W, auto-covariance [,(j), and higher moments us(j), ws(j) which are

finite. Then,

. I N(O, >3 o) if u#M,
\/ﬁ(cpk_cpk)_) wid |W2|

— == ifu=M.
302 300 K
1 2
= 5™ [sgn(M — u)] > Cpi 4 c;k,

(W1, W) ~ N((0,0), ), 3 = (;}1 lg)
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where

2(us + 202
Ay =42 +M + [y + 4y + 40”? — 6%,
B K (+20°
1 — — 3~ = A~_ >
2 20
n
Cr=g.

When m = 0, it is easy to see that the results in Corollary 3.1 is identical to part (b) of the
Theorem in Chan et al. (1990) for processes with independent data.

COROLLARY 3.2 Let {X,} be an independent Gaussian stationary process (m = 0 in this
case) with common mean y, auto-covariance [,(j), and higher moments y5(j), us(j) which
are finite. Then,

. L[ vo.=5), it M,
\/ﬁ(cpk - Cpk) - Wld |W2| . _
Ty ifp=M.
30 30

1

1
oy ==
ON 9+

2
2 G

4, B
om0 (3 %)

where

Ay = 1% +dop® + 46212 + 26*,

BZ z_g_oﬂv

n
szz.

Remark 1f p approaches m from above or below, then both limiting distributions in
Theorem 3 are normal with mean 0 but different variances.

By the same argument as the proof of Theorem 3, we have the following theorem.

THEOREM 4 Let {X,} denote a strictly m-dependent stationary process which satisfying the
assumptions in Lemma 2. Then

N(0, DsED)), if 1 # M,

~ L
\/E(Cpmk - Cpmk) - Wld — |W2| if u= M.

3[p2(0) + (u — T)z] 3/ 115 (0) + (1 — T)2’
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where

213/2
D, = | 3O+ k- Ty 3[1(0) + (u — 7)1/
d — [sgn(M — )M — p)
6(12(0) + (u — T)*)/?

(W, Wy) are N((0, 0), ** O*), and

T

1,(0) + (u— T)
1

2\/11(0) + (u = T)°

Let =% = D,ED),, and ¥** = OO . Theorem 4 can be rewritten as

O =
0

N(0, =%, ifpu#M,

N L
\/;l(cpmk - Cpmk) - Wld — |W2| if U= M.

(0 +(u—T)1 4 15(0) + (1 — T)Z’

2T, — 2, ]C
3[,“2(0) + (T _ ﬂ)2]3/2 pmk

45 2 _
‘mwnm—#ﬁ%wlm[
|:T221 —T22+Z3/4i| 2 .
[12(0) 4+ (T — P ] 7"

(W7 W) ~ N((0,0), ¥*), and ¥** — <A3 Bs )

By G
where
T’y 23,T
Ay = L+ 2 N
RO+ W=D i) + (= T)
—-T% 2
B3 = 2 s
A0+ —=T7)1 /15(0) + (1 — T)?
2

C; = .
pp(0) + (= T)7]

Therefore, an approximate 100(1 — )% confidence interval of C,,,x for u # M may be
established as the following:

. = 5o
(Cpmk - th/Z n Cpmk + Za/z n ) ,
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where

shx _ z)
O[S + (T — X)’]
T28, — TS, + 33/4 | »,
[$2+ (T —X)7P | ™

_ 2T, -3 A
+Sgn(M_X)|: 1 2 :| pmk

3[S2 + (T — X)*P? <

COROLLARY 4.1 Let {X,} be an independent stationary process (m = 0 in this case) with
common mean [, auto-covariance [,(j), and higher moments 15(j), 14(j) which are finite.
Then,

N(0, X9), if u#M,

N L
\/E(Cpmk - Cpmk) - Wld — |W2| if n= M»

3o+ (u—T)1 3o+ (u—T)7

2
4 o

20 =gy T [3

2T — o’ — uy c
(2 + (T — PP

s |:(T — 120% — (T — iz + (g — 64>/4} 2
[0 + (T — e

~ 4 e _ (A4 Ba
(W, W2) ~ N((0,0), ¥5), and ¥ _(34 C4>’

where

a2 T? 2 +2020)T
A= o+ L 2T (g + At + 4% — o)
o+ —=7) Jer+u-71)
3 —a’T (3 +20°1)
4 = - ,
A0+ (u—171 202+ (u— 7Y
2
(ox

“ e G

We note that for m = 0, the results reduce to Theorem 2.2 in Chen and Hsu (1995) for pro-
cesses with independent data.

If the process data are independent, and the process is normally distributed, the result sta-
ted in Corollary 4.1 can be further reduced to the following.
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COROLLARY 4.2 Let {X,} be an independent stationary Gaussian process (m = 0 in this
case) with common mean i, auto-covariance [, (j), and higher moments p5(j), 14(j) which
are finite. Then,

) , [N, o) if u#M,
ﬁ(cpmk - Cpmk) i Wld — |W2| lf "= M

32+ (u—T7)1 3o+ (u—T)

2T — p)a? i|
[ + (T — PP

2

s d _
BT e R [3

(T — '’ + 64/2} -
" [ o2+ (T — P |

(W1 3) ~ N((0, 0), ¥4y, and ‘B, — (A5 By )

Bs Cs
where
o212 462uT
A5 = 5 2+ " 2+[3O'4+40'2H2—04],
>+ w=T7Y a2+ (u-71)
—a’T a’u
Bs=-— 21 7’
A7 +U—171 Jo+ =17

o2

T S

5 SIMULATION STUDY

Central limit theorem results are often very useful when sample size is large. It is then inter-
esting to study its small sample behaviour. This section is devoted to a small sample simula-
tion comparison between central limit theorem and Edgeworth expansion.

We first generate a sequence of i.i.d. N(0, 1) random variables Z;,i = 1, 2, ..., n. Define
Xi=Z;+Ziy,then X;,i=1,2,...,n,is a sequence of 1-dependent random variables. It is

then easy to see that
s _ X X\ _ (4 0
T\ %) \0 12)

Each standardized empirical distribution of the four indices is compared with the standard
normal distribution and Edgeworth expansion (see Section 2.3 of Hall, 1992). The simulation
results (see Figs. 1-4) indicate that Edgeworth expansion works better than normal approx-
imation when sample size is 100. But the difference is not significant when
n =200, 300, 400. In Figure 1, Edgcp® means Edgeworth expansion, empcp* means the
standardized empirical when the sample size is *, and nor means the standard normal for
capability index C,. Notations used in the rest of the figures are defined in similar way for
the other three indices.
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FIGURE 1 Comparison of standardized empirical distribution, the Edgeworth expansion and standard normal for

C, with sample sizes 100, 200, 300 and 400.
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FIGURE 2 Comparison of standardized empirical distribution, the Edgeworth expansion and standard normal for
Cpm with sample sizes 100, 200, 300 and 400.
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FIGURE 3 Comparison of standardized empirical distribution, the Edgeworth expansion and standard normal for
Cyr with sample sizes 100, 200, 300 and 400.
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FIGURE 4 Comparison of standardized empirical distribution, the Edgeworth expansion and standard normal for
Cpmk With sample sizes 100, 200, 300 and 400.
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6 CONCLUSIONS

Process capability indices, providing numerical measures on process potential and process
performance, have received substantial research attention in quality control and quality
assurance literatures recently. Most research, have assumed that the process is normally dis-
tributed and the process data are independent. But, in real-world applications such as
chemical, soft drinks, or tobacco/cigarette manufacturing processes, process data are often
auto-correlated. In this paper, we considered the capability indices C,, Cpr, Cpm, Cpmi for
strictly m-dependent stationary processes, where each observation is correlated with its
preceding and exceeding m sample data and independent with other observations. We inves-
tigated the statistical properties of the natural estimators of the four indices. We derived the
asymptotic distributions of their natural estimators, and established confidence intervals.
Consequently, capability measures and testing can be performed for strictly m-dependent
stationary processes, particularly, for those with normal and near-normal distributions. It is
worth noting that when sample size is small, the performance of Edgeworth expansion
could be better than the central limit theorem.
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