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A Low Memory Zerotree Coding for
Arbitrarily Shaped Objects
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Abstract—The Set Partitioning In Hierarchical Trees (SPIHT)
algorithm is a computationally simple and efficient zerotree coding
technique for image compression. However, high working memory
requirement is its main drawback for hardware realization. In this
study, we present a low memory zerotree coder (LMZC), which
requires much less working memory than SPIHT. The LMZC
coding algorithm abandons the use of lists, defines a different
tree structure, and merges the sorting pass and the refinement
pass together. The main techniques of LMZC are the recursive
programming and a top-bit scheme (TBS). In TBS, the top bits
of transformed coefficients are used to store the coding status of
coefficients instead of the lists used in SPIHT. In order to achieve
high coding efficiency, shape-adaptive discrete wavelet transforms
are used to transformation arbitrarily shaped objects. A compact
emplacement of the transformed coefficients is also proposed
to further reduce working memory. The LMZC carefully treats
“don’t care” nodes in the wavelet tree and does not use bits to code
such nodes. Comparison of LMZC with SPIHT shows that for
coding a 768 512 color image, LMZC saves at least 5.3 MBytes1

of memory but only increases a little execution time and reduces
minor peak signal-to noise ratio (PSNR) values, thereby making it
highly promising for some memory limited applications.

Index Terms—Arbitrarily shaped image coding, image com-
pression, low memory, recursive programming, shape adaptive
zerotree coding.

I. INTRODUCTION

T O SAVE the transmission time or the storage space of
an image, nowadays many people widely use the image

compression technique to transmit or to store an image. Among
various compression techniques, transform coding is a favorite
technique. In the past decade, the discrete cosine transform
(DCT) has been the most popular transform because it provides
an almost optimal performance and can be implemented at a
reasonable cost. However, discrete wavelet transform (DWT)
has been widely used recently because of its ability to solve
the blocking effect introduced by DCT and its suitability in
multi-resolution analysis. By taking advantage of DWT, the
zerotree coding technique has proven that it is not only com-
putationally simple but also is very effective in compression.
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119 (bits)� 768� 512� 3 (colors)� 2/8 bits/1K/1K= 5.3 MB

In addition, its embedded coding property is beneficial to
progressive transmission.

In a related work, the original zerotree algorithm is called em-
bedded zerotree wavelet (EZW), introduced by Shapiro [1]. Said
and Pearlman [2] further enhanced the performance of EZW by
presenting a more efficient and faster implementation called set
partitioning in hierarchical tree (SPIHT). The SPIHT’s perfor-
mance in peak signal-to noise ratio (PSNR) and in execution
time is almost the best one among those related works. Because
EZW-like coder can provide an efficient coding for still images
and visual textures, the MPEG-4 standard also uses it in the vi-
sual texture mode [3]. In addition, EZW-like coder can also pro-
vide spatial and quality scalabilities, which are the desired func-
tionalities of the MPEG-4 standard [4] and JPEG2000 standard
[5]–[7]. Since the excellent performance of EZW-like coders,
several other coding algorithms have been developed based on
the zerotree theory [8]–[14].

However, the previous zerotree coders generally require some
lists to store the states of coefficients and the coordinates of par-
titioning sets during coding, which leads to high memory re-
quirement and high cost in terms of hardware realization. For
example, SPIHT requires three lists, called list of significant
pixels (LSP), lost of insignificant pixels (LIP), and list of in-
significant sets (LIS). For a 768 512 color image, each entry
of the lists requires at least bits to store the coordi-
nates, where 10 bits are required to represent the column value
in the range 0 to 767 and 9 bits are needed for 512 rows. Given
that and the total number of list entries is approximately twice
of the total number of coefficients, the total memory required is
5.3 MBytes.2 If integer variables with 4 bytes are used to store
the coordinates, it will require about 9.4 MBytes.3 In addition
to this high memory requirement, another drawback of SPIHT
is that the number of entries increases as the coded bit rate in-
creases. Therefore, one should prepare enough memory for the
application of coding at various bit rates.

To reduce the memory requirement, one method is to
use other coding algorithms, for examples, Embedded Block
Coding with Optimized Truncation of the embedded bit-streams
(EBCOT) [5], [15] and space-frequency decomposition (SFD)
[16]. In EBCOT, each subband is partitioned into relatively
small blocks of samples, which is called code-blocks. EBCOT
generates a separate highly scalable bit-stream for each
code-block. Since it is possible to independently compress
relatively small code-blocks, EBCOT needs only a small
amount of buffer for rate–distortion optimization. However,
a high amount of buffer is required for a global optimization
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because a rate control scheme has to decide which coding
passes of a code block should be included into the output bit
stream [6]. If not, the rate–distortion information for each
truncation point of coding passes for each code block should
be at least saved. In SFD, the wavelet tree is trimmed, so that
the working memory can be reduced. However, these two
algorithms generally are based on a rate–distortion sense, and
therefore modest computational complexity is required to find
the optimal operating point in the rate–distortion curve.

In this study, we present another method, called a low
memory zerotree coder (LMZC). The algorithm of LMZC
is similar to SPIHT but different in implementation. The
differences between LMZC and SPIHT are on threefold. First,
LMZC abandons the use of lists during coding and decoding
but preserves the embedded coding property of SPIHT. The
main techniques in LMZC are the recursive programming and
a top-bit scheme (TBS). Since the wavelet tree structure is of
similarity, it is suitable for the use of recursive programming.
In TBS, the top bits of transformed coefficients are used to
store the status of coefficients instead of the lists. Therefore,
no additional memory is needed. Second, a new tree structure
like EZW’s tree structure [1] but not SPIHT’s tree structure is
proposed. The new tree structure allows a parent node having
at most nine child nodes, and it is suitable for further reducing
the working memory for coding an arbitrarily shaped image.
Third, LMZC merges the sorting pass and the refinement pass
to one single pass to reduce the execution time.

The idea of low memory zerotree coding is originally pro-
posed in our previous work [13]. In that work, we designed the
coder for coding rectangular images. Lin and Burgess extended
our previous work by proposing a listless zerotree coder (LZC)
for coding color images [10]. However, the statistical dependen-
cies between adjacent pixels and between adjacent trees are not
exploited in LZC. In this study, we exploit these dependencies
by using the multi-models of adaptive arithmetic coding algo-
rithm of Wittenet al. [17], and extend the idea of low memory
zerotree coder to the coding of arbitrarily shaped visual ob-
jects. The novelties of the new design are on twofold. First,
the shape-adaptive wavelet transform [9], [18] is used to trans-
formation arbitrarily shaped visual objects for getting a better
coding efficiency than other transformation schemes. We care-
fully treat “don’t care” nodes in the wavelet tree and use no
bits to code such nodes. Second, a compact emplacement [see
Fig. 1(a)] is proposed to store the transformed coefficients in-
stead of the regular emplacement [see Fig. 1(b)], so that the
working memory can be further reduced.

Fig. 1 shows the corresponding binary alpha planes of an ob-
ject after a three-scale decomposition. The white regions repre-
sent the object regions and black regions are the backgrounds.
Fig. 1(a) is the result of the compact emplacement, whereas
Fig. 1(b) is the result of the regular emplacement. The size of
the bounding box in the compact emplacement is just equal to
the size of the smallest box to bind the coded object, whereas the
size of the bounding box in the regular emplacement needs to be
adjusted to the size of a power of 2 so that the typical one-parent
to four-children relation is preserved. By using the compact em-
placement, the working memory of coding an arbitrarily shaped
image is largely reduced. For example, a 352261 arbitrarily

(a) (b)

Fig. 1. The corresponding alpha planes of an arbitrarily shaped image after
three-scale decomposition (a) for the compact emplacement; (b) for the regular
emplacement. The size of the smallest box to bind the image is 352� 261. The
size of the bounding box in the compact emplacement is also 352� 261 but it
is 512� 512 in the regular emplacement.

shaped color image with five-scale decomposition requires a
512 512 bounding box to store the transformed coefficients in
the regular emplacement, which needs 3 MBytes4 (we assume
that each transformed coefficient requires four bytes to store its
value). However, the size of bounding box is 352261 in the
compact emplacement, which only needs 1.1 MBytes.5 We can
save 1.9 Mbytes or equal to 63% of memory. The penalty of
using the compact emplacement is that it requires more exe-
cution time to find the number of child nodes of each parent
node than the regular emplacement, because the one-parent to
four-children relation is broken in the compact emplacement.

The organization of this study is as follows. In the following
section, we briefly introduce the algorithm of SPIHT for com-
pleteness. Section III describes the method of decomposing an
arbitrarily shaped visual object in the compact emplacement.
Section IV addresses the coding algorithm of LMZC. In
Section V, we analyze the computational complexity of the pro-
posed method. In Section VI, experimental results are shown.
Finally, we make the concluding remarks in Section VII.

II. BRIEF REVIEW OF SPIHT

For completeness, we briefly introduce the SPIHT coding al-
gorithm in this section. More details of SPIHT can be referred
to [2]. Fig. 2 illustrates the wavelet tree structure of a typical
three-scale pyramidal decomposition of an image. The image
is generated by three stages of two-dimensional (2-D) DWT
[19]. The notations , , , and denote the output
channels from theth stage. The parent-offspring dependency
for tree structures is also demonstrated. Each node has either
four offspring or no offspring. The nodes has no offspring are
located on (i.e., the bands , , and ) and
some of them are located on the highest layer (one of them in-
dicated by the “” in Fig. 2).

We call a node (i.e., transformed coefficient) at a
coarse scale a parent. All nodes at the next finer scale with
the same spatial location, and of similar orientation are called
children, this set denoted . More precisely,

, , ,
except the nodes at the highest layer ( in Fig. 2) and the
lowest layer ( in Fig. 2). All nodes at all finer scales
with the same spatial location, and of similar orientation are
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Fig. 2. Examples of the SPIHT tree structure in a typical three-scale pyramidal
decomposition of an image. The arrows are oriented from the parent node to its
offspring.

called descendant, denoted . A set is defined as
, and the set is the group of coor-

dinates of all the tree roots (nodes in the highest layer). We also
refer to a node or a set as significant if the result of the signifi-
cant test (1) is 1

if ,

otherwise,
(1)

where represents , , or . Equation
(1) indicates that if the coefficient with maximum magnitude in
a set is significant, then the significant test results in 1.

If is significant, then it is partitioned into ,
and if exists. If not, it is a zerotree of type.
If is significant, then it is partitioned into ,

, , except the
coordinates in the highest layer. Otherwise, it is a zerotree of
type . If we encounter a zerotree, we code such tree as a ze-
rotree symbol, and avoid coding all its nodes. The nodes are
scanned by the order of importance. It is performed so that no
child is scanned before its parent. Therefore, one starts scan-
ning the nodes for and the sets for

. The result of significant test for a node or for a set
is coded. In addition, for each node , if it is significant,
its sign bit is also coded.

The process begins with setting LSP as an empty list, adding
the coordinates to the LIP, adding those with descen-
dants to the LIS as type entries, and outputting the maximal
value of . The value of can be obtained by using

(2)

where is to truncate near to zero. Then the following two
passes, the sorting pass and refinement pass, are used for every

value. In the sorting pass, we scan each in the LIP and
each or in the LIS, extract significant nodes,
and put them into the end of the LSP. In the refinement pass,
however, another bit of precision is added to the magnitudes of
nodes in the LSP. We decreaseby one, i.e., cut the threshold
in half, and use these two passes for eachin the order of the
sorting pass first until the bit budget is exhausted.

The algorithm addressed above does not consider the statis-
tical dependence between adjacent nodes and between adjacent
sets. To increase the coding efficiency, the significance values
of 2 2 adjacent nodes (the nodes with the same parent) were
grouped and coded as a single symbol by the arithmetic coding
algorithm. Since the decoder only needs to know the transition
from insignificant to significant, the amount of information that
needs to be coded changes according to the numberof in-
significant nodes in that group, and in each case it can be con-
veyed by an entropy-coding alphabet with symbols. With
arithmetic coding it is straightforward to use several adaptive
models [17], each with symbols, to code
the information in a group of at most four pixels. Likely, the sig-
nificance values of adjacent sets are coded as a single symbol.

III. T RANSFORMATION

Symmetric extension on both boundaries of each segment
is used to reduce edge effects. Among the four symmetric
structures, i.e., whole-point symmetry (WS), half-point sym-
metry (HS), whole-point anti-symmetry (WA), and half-point
anti-symmetry (HA) [19]—the WS structure is used for odd
length filters.

To reduce computational complexity, we perform the wavelet
decomposition separately to the rows and columns of an arbi-
trarily shaped image. Moreover, the decomposition is only ap-
plied to object regions. If an object region contains holes, the
decomposition is suspended on the edges. This means, if a row
or column of a region is split into unconnected segments,
each segment is filtered and downsampled separately.

In a two-band, perfect reconstruction filter bank, [20] indi-
cated that the filters should satisfy

and (3)

where , , , and represent the analysis high-pass
filter, the analysis low-pass filter, the synthesis high-pass filter,
and the synthesis low-pass filter, respectively.

Assume that a pair of symmetric odd length filters ( ) is
given and defined in the following intervals: for

and for . From (3), we can obtain the values:
for and for .

According to the definition of discrete convolution, we have the
following results:

and

(4)
where and represent the convolution results, and

the extended version of input sequence . Notably,
is of WS structure on its both sides, i.e., WSWS structure herein.
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Fig. 3. Sequences involved in computing a discrete convolution. (a) and (b)
the sequences~a[k � n] andh[n] as a function ofn for different values ofk.
(c) Corresponding output sequence as a function ofk. (d) Even downsampling
output. (e) Odd downsampling output.

After the convolution, a downsampler, with a downsampling
factor of 2, follows in order to remove redundancy. Depending
on the retained index terms of a convolution result, even or odd,
we have even downsampling (ED) or odd downsampling (OD).
For simplicity, we define that

and (5)

where represents the type of the downsampler. For ED, .
For OD, . Fig. 3 illustrates sequences involved in com-
puting a discrete convolution. The input sequence is as-
sumed to be of even length . The extended samples of
are denoted with dashed lines. The symmetric axes of sequences
are also shown.

Without a loss of generality, each segment can be relocated
to a new starting position 0 or 1, depending on its original
starting position being even or odd, respectively. According to
the starting position (0 or 1) and the length (even or odd) of a
segment, there are four cases of processing to address.

Table I lists the symmetric structures of and when
filtering the four cases. Each sequence ( or ) has two

symmetric axes, and we only need to retain the samples that fall
into the axes. For example, if the symmetric axes of are (0,

), we retain for . As can be easily
verified, the total length of retained samples for each the pair of

and is equal to the length of input sequence .
Since ED and OD are available, we have two types of

SA-DWT. In this study, the SA-DWT with ED is adopted.
Fig. 4 illustrates the successive approaches of such SA-DWT
to decompose an arbitrarily shaped object.

The formula corresponding to (4) for reconstruction is

(6)

IV. CODING ALGORITHM

The LMZC coding algorithm and SPIHT are quite similar,
except that LMZC abandons the use of lists, defines a different
tree structure, and merges the sorting pass and the refinement
pass together. The LMZC coding algorithm is implemented by
entropy-coding its output. The statistic dependencies between
adjacent nodes and between adjacent trees are exploited in the
multi-models of the adaptive arithmetic coding algorithm of
Witten et al. [17].

Fig. 5 shows the parent-child dependency of the LMZC tree
structure and also shows the extent of each band of a 19
14 image in the three-scale SA-DWT decomposition. A parent
node may have six child nodes in this figure. If an arbitrarily
shaped image is coded, the corresponding binary alpha plane
(shape mask) of the image is also decomposed to the same scale.
Then, there are two types of nodes in a tree: nodes and out-
nodes (with don’t care values). The out-nodes are identified
from the decomposed alpha plane and do not need to be coded.
The LMZC adopts the tree structure like to EZW’s tree struc-
ture not the SPIHT’s tree structure. The node in the highest layer
has one child in each of the high frequency bands, (i.e., ,

, and in Fig. 5). This is better than SPIHT because
SPIHT needs even size of frequency bands in the highest trans-
form level. Therefore, when coding arbitrarily shaped images,
the size of bounding box needs to be adjusted to allow even size
frequency bands in the highest level. Note that we call, here, the
new tree structure is like to but not equal to EZW’s tree struc-
ture, because the new structure allows that one parent node has
more than four and at most nine offspring.

The symbols used in LMZC are like those used in SPIHT. The
new notation is and , which represent the sig-
nificance state of and the significance state of ,
respectively. To identify a significant coefficient or a significant
set, the significant test of (1) is revised to

if ;

otherwise
(7)
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TABLE I
OUTPUT SYMMETRIC STRUCTURESWHEN BOTH ANALYSIS FILTERS ARE OFODD LENGTH AND SYMMETRIC

Fig. 4. Successive steps involved in performing an even downsampling SA-DWT forward transformation on an arbitrarily shaped image in the compact
emplacement (size of bounding box: 9� 8). (a) Original image; (b) location of coefficients after horizontal SA-DWT; and (c) location of 2-D SA-DWT
coefficients.

Fig. 5. Examples of parent–children dependencies in the LMZC tree
structure. The arrows are oriented from the parent node to its offspring. The
size of bounding box is 19� 14 in this figure. A tree may contain some
out-nodes (with don’t care values) and they do not need to be coded.

Fig. 6. Sizes ofF map andF map.

where denotes or . If integer variables
are used to store the values of transformed coefficients, checking
whether the magnitude of is fallen into the range
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to is equivalent to checking whether theth most
significant bit (MSB) of the magnitude of is “1.”

Each has an associated binary state variable .
Significance states are initialized to 0 (coefficient is insignifi-
cant) and may become 1 (coefficient is significant) during the
coding run. Likely, each has an associated binary state
variable to denote its significance state. Fig. 6 shows
the sizes of map and map. The size of map
is the same as the image size, but the size ofmap is a quarter
or near a quarter of the image size because the coefficients in

do not have descendents. For a color image with size
768 512, these two maps may cost 184 KBytes6 for all bit
rates, which is much less than the 5.3 MBytes memory require-
ment of SPIHT. In TBS, the top bits of coefficients are used to
serve as these two flag maps. Therefore, the memory require-
ment of these two maps can be further omitted.

In LMZC, the sorting pass and the refinement pass are
combined together to reduce the execution time. Before coding,
LMZC transforms a RGB color image to a YUV image in order
to remove the correlation among R, G, and B components. Also,
LMZC initializes the and maps of YUV components to
“0.” The initial value of is set to be the index of the MSB of
the largest magnitude of Y, U, and V components. For each,
Y, U, and V components are coded in the order of Y, U, and
V. In the first coding run, the magnitude, sign, and position
information of coefficients in the range to are
coded. After that, for the next run, the value ofis decreased
by one. This process continues until the bit budget is exhausted.

The main coding procedure of LMZC is shown as Fig. 7.
For simplicity, we assume, herein, that each coefficient has four
offspring. The adjacent coefficients with the same parent are
grouped and coded together to remove redundancy. The same
scheme is used to code the significance of adjacent sets. LMZC
begins coding the coordinates in the highest layer (i.e., the
in Fig. 5). For each coordinate , it codes the individual
coefficient and the descendant set . Whenever
coding , it checks whether has been significant
from the previous coding run according to the flag map .
If , giving that is significant from the pre-
vious coding run, it outputs the refinement bit of . Oth-
erwise, it checks the result of . If
, it sets to be “1,” outputs the most significant bit

of , and outputs the sign bit of . If not, it does
nothing.

After coding , LMZC checks the significance of
according to the flag map . If is

insignificant in the previous coding run [i.e., ], it
checks the result of . If , it sets

. If not, it finishes this branch. When ,
the set will be partitioned. Before partitioning ,
LMZC counts both the number of insignificant coefficients,

, and the number of insignificant sets, , fallen
into the offspring set, and performs the significant test
(7) to these insignificant coefficients to get a value ,
and to the insignificant sets to get a value . Since the
decoder only needs to know the transition from insignificant to

6(768� 512+ 384� 256)� 3 (colors)/8 bits/1K= 184K

Fig. 7. LMZC coding procedure diagram. A tree contains a nodeC(i; j) and
a descendant setD(i; j). The coder changes the coding branch according to the
state ofF (i; j), the state ofF (i; j), the result ofS (C(i; j)), and the result
of S (D(i; j)). A significant setD(i; j) is partitioned to four child nodes
and four child sets. Before partitioningD(i; j), the transition information of
the four child nodes and the four child sets from insignificant to significant are
calculated and outputted.

significant, the amount of information that needs to be coded
changes according to [or ] in the offspring
set, and in each case the valueof the number of insignif-
icant coefficients (or insignificant sets) is conveyed by an
entropy-coding alphabet with symbols. The value
[or ] represents one of symbols. Fig. 8 shows an
example to get the values of and . In this
example, is equal to 1 because only one coefficient
is not yet significant from the states of map. By using (7),
we can get the values of and . If ,
then LMZC outputs . If not, it does nothing. Likewise,
if , it outputs . Otherwise, it does nothing.
After partitioning , LMZC traces into each partitioned
branch until each branch is finished.

V. COMPLEXITY ANALYSIS

In SPIHT, three lists namely LIP, LIS, and LSP are used to
store the coordinates of partitioning sets and coefficients. In
LMZC, no such lists are used. Instead of the lists, two flag
maps should be applied to denote the states of coefficients and
sets during coding. Compared with the lists, the memory re-
quirement of these two maps is reduced significantly. If the top
bits of coefficients are available to represent the states of the
two maps, the memory requirement for these two maps can be
further omitted. The penalty of this method is requiring much
time to distinguish the magnitude of from the states
of and . Therefore, one should trade off the
amount of memory requirement against the execution time.
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Fig. 8. Example of conveying the information of significance transition to
values. In this example, a setD(i; j) is assumed it contains one insignificant
child node and two insignificant child sets. After using the significant test to the
node and sets, we have two cases for the node and four cases for the sets to be
processed. The valuesV (i; j) andV (i; j) are used to represent one of the
cases for the node and one of the cases for the sets, respectively.

Fig. 9. One stage of anS-scale DWT.

To show that the top bits of coefficients indeed can be used to
serve as the two flag maps, we take the upper bound of mag-
nitudes of transformed coefficients into consideration. Fig. 9
shows one stage of an-scale DWT. In Fig. 9, we use “ ” to
represent the downsampling. When , is equiv-
alent to the input image , and the output coefficients are
as follows:

(8)

(9)

(10)

(11)

From (8), the magnitude of satisfies that

(12)

where . Let
and . Equation (8) can be rewritten to

. By a similar analysis as above, we
have , , and

. For the next scale, the band is fur-
ther decomposed, which results in four bands, i.e., , ,

, and . The upper bounds of magnitudes of coefficients
in these four bands are separately ,

, , and
.

For an -scale DWT, by induction, we get

(13)

(14)

(15)

(16)

Suppose that the 9/7 filter [20] as shown in Table II is used
to filter images. Then, and .
For a six-scale decomposition, the upper bound of magnitudes
of transform coefficients [obtained from (16)] is 3062.294

, which is smaller than for . An integer
variable occupying four bytes of memory is sufficient to store
the value of transformed coefficients and to serve as the two flag
maps and .

VI. EXPERIMENTAL RESULTS

The original rectangular images and arbitrarily shaped im-
ages are shown in Figs. 10 and 11, respectively. The Lena image,
Barbara image, and the Tulips image are of rectangular images.
The size of Lena is 512 512, and so is Barbara, and the size of
Tulips is 768 512. The Jaguar image, Miss America image,
and the Akiyo image are of arbitrarily shaped objects. The size
of bounding box is 465 702 to contain the Jaguar image, and
it is 352 261 to contain the Miss America image and is 516

421 to contain the Akiyo image. The corresponding binary
alpha planes of these three images are shown in Fig. 11(b), (d),
and (f). The numbers of pixels contained in the object regions
of Jaguar, Miss America, and Akiyo are 187 568, 50 341, and
128 339, respectively. The alpha planes are not coded for sim-
plicity. The 9/7 filter shown in Table II is used, and the sym-
metric extension is applied to the image edges. The number of
decomposition scale is varied from image to image, depending
on their sizes. A 26-bit header is saved to each coded file for
recording the image width (10 bits), the image height (10 bits),
the number of decomposition scale (4 bits) and the number of
colors (2 bits). The reconstructed images are compared to their
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TABLE II
FILTER COEFFICIENTS OF9/7 FILTER. h[�n] = h[n] AND g[�n] = g[n]

(a) (b)

(c)

Fig. 10. Original rectangular images (a) 24-bit color Lena; (b) 8-bit gray Barbara; and (c) 24-bit color Tulips.

original ones in PSNR value. The PSNR value for color images
is defined as

(17)
We compare the coding results of LMZC with that of LZC

[10] and that of SPIHT [2]. The LZC is extended from our pre-
vious work, embedded recursive zerotree coding (ERZC) [13].
LZC takes the coding of color image into consideration, and its
coding algorithm is much similar to LMZC coding algorithm
except that LZC does not exploit the correlation of neighboring
pixels or neighboring sets and does not deal with the coding of
arbitrarily shaped images. In this study, LMZC not only exploits
the correlation of neighboring pixels and neighboring sets com-

pletely, but also extends the idea of a low memory implementa-
tion from the coding of rectangular and gray image to the coding
of arbitrarily shaped and color objects. Since the original SPIHT
algorithm [2] and LZC do not deal with the coding of arbitrarily
shaped images, we extend them, herein, for a fair comparison.
The extended version of SPIHT algorithm uses the regular em-
placement of transformed coefficients so that the one-parent to
four-children dependency is preserved. In addition, the extended
SPIHT uses YUV transform as the intercomponent transform
for coding color images. It is different from the Internet version
of SPIHT [2], which uses KL transform. As a result, the data
shown herein is not the same as the original [2]. Note that when
the extended version of SPIHT is used to code a gray rectan-
gular image, the coding results are worse than those of Internet
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Original arbitrarily shaped images (a) 24-bit color Jaguar; (c) 24-bit color Miss America; (e) 8-bit gray Akiyo; (b), (d), and (f) are the corresponding
alpha planes of (a), (c), and (e), respectively.

SPIHT on average about 0.2 dB. This is caused by the fact that
some implementing details are different and that it is difficult to
exactly reproduce the same coder without its source codes.

Fig. 12 shows the comparison of performance in PSNR
values. The main improvement of LMZC to LZC is on PSNR
value. As shown in Fig. 12, LMZC’s PSNR values outperform
LZC’s PSNR values over a wide range of bit rates. On the
average, 0.45 dB improvement can be achieved. The PSNR
values of LMZC, however, are near to that of SPIHT. In general,
LMZC performs better than or near to SPIHT in the coding of
arbitrarily shaped images but worse than SPIHT in the coding

of rectangular images, especially in the coding of rectangular
gray images. For the Barbara image, LMZC’s PSNR values are
less than SPIHT’s PSNR values on the average about 0.4 dB.

Table III shows the comparison on the corresponding CPU
times, excluding the time spent in the image transformation, for
coding and decoding the Lena image. The programs were not
optimized, and these times are shown just to give an indication
of the LMZC’s speed. Since the LZC does not need to group the
statesofadjacentpixelsandadjacentsetstogether, itcansavelittle
execution time than the LMZC, but the difference is small. The
LMZC uses the same strategy as the SPIHT to code the states of
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Comparison of different zerotree entropy coding schemes in PSNR values (a) for Lena; (b) for Barbara; (c) for Tulips; (d) for Miss America; (e)for
Jaguar; and (f) for Akiyo.

adjacent pixels and adjacent sets together, so the computational
complexity of LMZC and SPIHT is the same in this point of view.
However, the LMZC and LZC uses the recursive programming,
leadingtothatCPUmustpushandpopthevaluesofsomeregisters,
which requires a little execution time. Except this difference, the
LMZCrecordsthecodingstateof [or ]bysettinga
top-bitof ,which isdifferent fromtheSPIHTthatneeds to
record the coordinate into the lists. Setting a top-bit of a co-
efficient requires one OR operation, but recording the coordinate

requires twoassignoperations. Thus, LMZC saves a little
executiontimethanSPIHTatrecordingthecodingstates.

The main improvement of LMZC to SPIHT is on the amount
of working memory. For a 768 512 color image, LMZC can
save at least 5.3 MBytes of memory, which leads to a low cost
hardware implementation. As well as its advantages for hard-
ware implementation, LMZC algorithm is also more suitable for
incorporation into a plug-in program for Internet browsers than
SPIHT. Since LMZC requires less memory during encoding
and decoding but has a comparable source code complexity, the
program footprint is relatively smaller that SPIHT. That is, the
working memory used to store program code and to process data
is smaller than SPIHT. This is clearly a good feature from the
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(a) (b)

Fig. 13. LMZC reconstructed Jaguar images (a) 0.5 bpp (48 : 1), 29.175 dB and (b) 1 bpp (24 : 1), 32.522 dB.

TABLE III
COMPARISON ON THECUP TIMES (s) TO CODE AND DECODE THECOLOR

IMAGE LENA 512� 512 (PENTIUM III 800 CPU, 128 MB RAM)

user’s point of view. As to LZC, LMZC uses the same size of
memory in coding.

Except the above comparison, we also compare the difference
between the two pass coding (the sorting pass and the refinement
pass) and the one single pass coding (merging the two passes to
one) in the PSNR values and in the execution time. The differ-
ence is minor in PSNR values but is obvious in the execution
time. In our experiments, a two-pass LMZC can elevate about
0.01 dB in PSNR value for coding the Lena image, but it requires
an additional flag map to denote those just significant nodes and
requires about 0.5 sec for the execution of the second pass.

Fig. 13 shows the LMZC reconstructed images of Jaguar at bit
rates 0.5 bpp, and 1 bpp. As shown in Fig. 13, these images show
good visual quality and no subject difference from the original
one.

VII. CONCLUSION

In this study, we proposed a low memory zerotree coder for
coding of arbitrarily shaped objects. The proposed coder takes
advantage of the recursive programming and uses the top bits
of transformed coefficients to serve as flags, so that no addi-

tional memory are needed during coding and decoding. In ad-
dition, a compact emplacement of transformed coefficients was
proposed to further reduce the working memory for coding ar-
bitrarily shaped objects. Compared with SPIHT, the proposed
coder can save at least 5.3 MBytes of memory for coding a 768

512 color image. Besides, the proposed coder preserves most
of the merits of SPIHT (such as simple computation, effective
compression, and embedded coding), thereby making it highly
promising for some memory limited applications.
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