
Design for Verification

48 0740-7475/03/$17.00 © 2003 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

THE HIGH COMPLEXITY of modern circuit designs

has made verification the major bottleneck in the entire

design process. There is an emerging need for a practical

solution to the problem of verifying large designs. The

recently proposed coverage-driven approach,1 which

uses some well-defined functional-coverage metrics2,3 to

perform a quantitative analysis on simulation complete-

ness, is rapidly becoming popular. Relying on coverage

reports, verification engineers can focus on the untested

areas and generate more patterns, using formal tech-

niques or the designers’ knowledge to achieve better test

coverage. Although 100% coverage still cannot guarantee

a 100% error-free design, it provides a more systematic,

efficient way to measure verification completeness.

It is not easy, however, to generate input patterns that

satisfy coverage requirements for designs written in a

hardware description language (HDL), especially for

deep sequential designs. Certain descriptions in the

designs could require execution of several hard-to-

achieve conditions, such as specific state sequences.

Without help from the original designers, it is hard for

verification engineers to generate such input patterns.

The literature discusses several techniques for auto-

matically generating functional test vectors for HDL

designs.4,5 Although these techniques do well on the

combinational part of HDL designs, they are still not fea-

sible for real designs, because they can become too

computationally expensive when deep

state sequences are present. This diffi-

culty resembles the major problem

encountered in research on sequential

automatic test-pattern generation.

A popular approach to this problem in

manufacturing test is to insert some extra

DFT circuits, such as test points or scan chains.6 Adding

these extra circuits can improve the testability of the

whole design. Moreover, it can significantly reduce both

the time needed to generate the required test patterns

and the number of patterns needed to achieve the

desired test coverage. This suggests that applying similar

ideas to functional verification could enable an

increase in simulation coverage and reduce verification

time by the insertion of some design-for-verification

(DFV) points into HDL designs.

Although DFT techniques have been well developed

and widely used for many years, various differences

between manufacturing test and functional verification

prevent their direct application to functional verifica-

tion. First, there’s the difference in operating levels.

Because the fault model used in manufacturing test is

defined at the gate level, most testing algorithms oper-

ate at that level. However, the inputs of functional veri-

fication problems are RTL descriptions. Obviously,

functional-verification algorithms should be modified

for running on high-level models the way DFT tech-

niques are modified for use at the RTL.7-9

Second, the objectives are different. Manufacturing

test checks for physical faults that occurred in the man-

ufacturing process, so it focuses only on the netlist struc-

tures. Functional verification, however, checks for

design errors. Functional correctness is the main con-

A Design-for-Verification
Technique for Functional
Pattern Reduction

This technique reduces the number of required functional patterns by first
defining conditions for hard-to-control (HTC) code in a hardware-description-
language design and then using an algorithm to detect such code
automatically. A second algorithm eliminates these HTC points by selecting
a minimum number of nodes for control point insertion.

Chien-Nan Jimmy Liu, I-Ling Chen, and
Jing-Yang Jou
National Chiao Tung University

cern when verifying designs. For manufacturing test,

designers can insert DFT circuits at any point to test the

gate structures without considering functionality.

However, some DFT circuits cannot be used in func-

tional verification, because they might cause unex-

pected functional errors after the test mode finishes.

Therefore, functional verification requires carefully

modified approaches to avoid such functional issues.

Third, the constraints are different. Engineers perform

manufacturing test on the actual manufactured hard-

ware, but functional verification occurs mostly through

software simulation. Some limitations become unnec-

essary in functional verification because the designs

under test are not real hardware. For example, both con-

trollability and observability6 should be considered in

manufacturing test because access to the internal nodes

is possible only through the primary inputs (PIs) and pri-

mary outputs (POs). However, during functional verifi-

cation, it’s possible to observe internal nodes in most

software simulation environments with little overhead.

In such cases, observability issues are less important.

Adding scan chains is also a popular DFT technique

in manufacturing test. Although test time increases for

shifting in the required values and shifting out the

observed values one by one, this technique can reduce

the extra overhead on the additional I/O pins present in

real hardware. However, in functional verification, scan

chains become unnecessary, because those extra pins

will not incur real overhead. These differing constraints

require suitable modifications.

With these considerations in mind, we propose an

efficient DFV technique to help verification engineers

reduce verification time. First we define conditions for

hard-to-control (HTC) code in an HDL design, and then

we propose an efficient algorithm to automatically

detect such code. Along with HTC-code detection, we

propose an algorithm that can eliminate those HTC

points by selecting a minimum number of nodes on

which to set up control points. These control points, or

DFV points, are easily implemented through simulator

support or by inserting extra code, and they provide

greater control over a design’s internal nodes.

Enough controllability makes it easy to change a cir-

cuit’s internal states by applying suitable values to the PIs

and the DFV points. This capability lets verification engi-

neers reduce the number of functional patterns. For

example, if there’s a long state (S) sequence before a

branch point, as shown in Figure 1, this preceding

sequence will also be verified when branch 1 (Sn → Sn+1)

is verified. After that, verifying branch 2 (Sn → Sn+2)

requires going through the preverified state sequence

again to reach the branch point for branch 2. In this case,

the DFV points can change the internal states such that

the preverified state sequence can be skipped. This great-

ly reduces the number of required functional patterns,

especially for deep sequential designs. Verification qual-

ity remains high because only preverified functionalities

are skipped. These operations only reduce existing func-

tional patterns; they don’t generate any new patterns. The

existing output values can produce the expected out-

come without new computation, so the original response

analyzer can still work by synchronously skipping the

same number of clock cycles that were skipped at the

inputs. Therefore, using our DFV techniques for func-

tional pattern reduction incurs almost no quality degra-

dation. Experiments show that the techniques reduce the

number of functional patterns by an average of 37.7%.

HTC-code detection
Because the objectives in manufacturing test and

functional verification are quite different, it’s necessary

to redefine a suitable fault model and the testability

measurement for functional verification before devel-

oping the DFV techniques. The ability to observe the

internal nodes during simulation means only control-

lability issues must be considered in functional verifi-

cation. However, it isn’t necessary to control the exact

value of any net in a circuit when verifying functionali-

ty. The concern is whether the HDL descriptions gener-

ate correct results. Therefore, testability can be viewed

as the ability to fire every code block during functional

verification. Any hard-to-fire code blocks in the design

are candidates for the application of DFV techniques to

make them more testable.

Conditions of HTC code
In an HDL program, a triggering condition deter-

49March–April 2003

Skipped

S0 S1 Sn

Sn+1

Sn+2

Figure 1. Applying design-for-verification (DFV) techniques

makes it possible to skip preverified state sequences.

mines whether a description will execute. For example,

in the Verilog code shown in Figure 2a, the description,

count = count + 1, executes only when clk has a 0 → 1

transition, reset = 0, and count ≠ 255, where the inter-

section of these conditions is called the description’s

triggering condition. Thus, a description is HTC if its trig-

gering condition is HTC. Furthermore, because the val-

ues of the variables associated with a condition

determine the condition’s result, the triggering condi-

tion is HTC if the variables associated with it are HTC.

Therefore, HTC code is that which has one or more HTC

variables in the triggering conditions.

By this definition, HTC variables are those with HTC

values. Propagating an arbitrary value for a variable from

the PIs through some paths in the HDL code will make

this variable controllable. If no such path exists for a vari-

able, it’s called an HTC variable. For example, the vari-

able count in Figure 2a is an HTC variable because it can

be set only to a constant (0) and cannot propagate arbi-

trary values to it. The variable count in Figure 2b, how-

ever, is controllable because it can be set to any value

while the input “load” of this design equals 1.

Extended S-graph
Using an S-graph10 extension—the extended S-graph

(ESG)—to model the HDL design is the first step toward

automatically detecting the HTC variables in an HDL

design. In each hierarchy, a module, m, will have its own

ESG, say Gm, which is a directed graph, Gm (V, E), where

V = vertices and E = edges. The ESG contains six types of

vertices, v ∈ V; Table 1 shows the types and their mean-

ings. This table defines sequential signals as the signals

assigned in the edge-triggered process. Conditional state-

ments represent the if or case statements. Functional

blocks represent the other statements, except for condi-

tional statements and statements involving constants

only. All other vertices, except the M node, are single

output. The edges between vertices represent the data

dependency between them. Each directed edge,

e(i, j) ∈ E, i and j ε V, means that node i is a fan-in of

node j.

Building the corresponding ESG from HDL code is a

simple assignment transformation. Figure 3 shows an

ESG for the counter shown in Figure 2a. The corre-

sponding assignments for the X and F nodes appear to

the right of Figure 3. In this example, there are still two

“count = 0” statements not shown in the ESG, because

they are constant assignments and can be ignored in

the following discussion. Therefore, multiplexers X1 and

X2 in Figure 3 have only one data input, because the

other input is from the “count = 0” assignment and can

be omitted.

Sequential depth
The literature contains many definitions of controlla-

bility in a circuit,6-9 but they do not pertain to our appli-

cation. Some definitions apply at the gate level and are

not suitable at the RTL.6 Others may be too complex for

Design for Verification

50 IEEE Design & Test of Computers

module ex1(clk,reset,count);
input clk, reset;
output [7:0] count;
reg [7:0] count;
always @ (posedge clk) begin

if (reset) count=0;
else begin

if (count==255) count=0;
else count=count+1;

end
end

endmodule

(a)

module ex2(clk,reset,load,in,count);
input clk, reset, load;
input [7:0] in;
output [7:0] count;
reg [7:0] count;
always @ (posedge clk) begin

if (reset) count=0;
else begin

if (load) count=in;
else if (count==255) count=0;
else count=count+1;

end
end

endmodule

(b)

Figure 2. Verilog examples of hard-to-control

(HTC) code (a) and controllable code (b).

Table 1. The types of vertices in the extended S-graph (ESG) and their

meanings.

Vertex type Meaning

PI Primary input

CR Controlling register (sequential signal that affects

conditional statements)

NR Noncontrolling register (sequential signal that does not

affect conditional statements)

X Conditional statement (multiplexer)

F Functional block

M Module instantiation

our simplified problem.9

Therefore, we modify the

sequential depth (SD)10 to

represent the difficulty of

controlling the value of the

node’s output net in the

ESG. In our definition, SD

is the minimum number of

registers encountered from

the PIs to the current node.

From another viewpoint,

it’s the minimum number

of clock cycles needed to

propagate the required

value from the PIs to the

current node. If a node’s SD is very large, it is often hard to

control the node’s value directly from the PIs. Therefore,

in our definition, if a node’s SD is infinite, its output net

is recognized as an HTC variable.

Sequential-depth calculation
With a definition for the SD of each node (see the

“Sequential-depth definitions for nodes” sidebar), it’s pos-

sible to calculate the SD value of each node in the ESG, as

51March–April 2003

Because different types of vertices have different
properties, there are different ways to calculate their
sequential depths (SDs). Here we explain the equations
and their meanings for the various types of vertices.

Node PI: SDPI = 0. It’s easy to assign any values to the pri-
mary inputs without extra effort, so their SDs are set to 0.

Node CR, NR: SDCR,NR = SD(in) + 1. The SD is equal to
the number of registers that the value passes in the path
from the PIs to the node. Therefore, a register node’s SD
should be incremented by 1 from its input SD to repre-
sent the increased number of registers in the path.
SD(in) means the SD value of its fan-in.

Node X: SDX = SDX_case1 or SDX_case2. Because there are
two possible cases for calculating the SD of an X node,
we explain their different formulations and the conditions
used in separate descriptions:

� Case 1: SDX_case1 = max {SD(in1), SD(in2), …}. If the
selection signal’s SD is larger than the SD values of
all data inputs, the selection signal will dominate the
output values. However, a value can still pass to its
output if all input values are the same. This results
in a shorter path to control the output values.

Therefore, the maximum value among the data
inputs indicates that the output net can be set after
the last input signal arrives.

� Case 2: SDX_case2 = max {min(SD(in1), SD(in2), …),
SD(select)}. If the selection signal’s SD is not larg-
er than the SD values of the data inputs, the signal
at the input with the smallest SD can be selected to
pass the multiplexer in the shortest case. However,
the signal can pass the multiplexer only when the
selection signal has been controlled. Therefore, the
minimum value from the data inputs and the maxi-
mum value between it and the selection signal
ensure that all required inputs can be ready before
the number of clock cycles obtained in the formula
results have elapsed.

Node F: SDF = max {SD(in1), SD(in2), …}. In the
extended S-graph, all combinational assignments are
represented as F nodes. In other words, only combina-
tional operations exist in the F nodes. Therefore,
although an F node’s exact function isn’t known, con-
trolling all of its inputs enables control of its output. On
the basis of this observation, the maximum value
among the data inputs represents the SD value of the
output net.

Sequential-depth definitions for nodes

Primary
input

Clock

Primary
input

Reset

F1

X2 X1

F2

X1:
X2:
F1:
F2:

if (reset)
if (count == 255)
count == 255
count = count + 1

Controlling
register (CR)

Figure 3. An ESG for the counter shown in Figure 2a.

shown in the pseudocode of Figure 4. At the beginning,

each node’s initial SD value is set to infinity. The initial

SD values of PI nodes, however, are set to 0. After initial-

ization, the SD_calculation() function propagates the SD

values from PIs to internal nodes until each node’s SD

value stabilizes. Relying on the definitions of the SDs

makes it easy to determine the SD value of each node in

the Recalculate_SD() function. Because the operations

in this algorithm are similar to those in a breadth-first

search, the complexity is the same as that of performing

a breadth-first search—that is, O(V + E), where O is the

order of complexity and V and E are the numbers of

nodes and edges in all ESGs of the design.

If an M node is encountered, another ESG in the lower

hierarchy must be traversed for the instantiated module.

For each M node, the function Set_input_value() sets the

current SDs at the node’s input nets as the initial SD val-

ues of this module’s PI nodes. Then the calculation

process can recursively traverse down one level and per-

form the same calculation on the instantiated module’s

ESG. When the calculations at lower hierarchies are com-

plete, the returned SDs can set the SD values at the nodes’

output nets using function Set_output_value(), and SD

calculation of the nodes that follow the M node contin-

ues. This strategy can solve the hierarchical issues in the

HDL descriptions.

HTC-code elimination
There are many ways to make the HTC code in an

HDL design more testable—for example, the force-

branching approach proposed by Hsu, Rudnick, and

Patel.8 However, not all these methods are useful in

functional verification, because they can cause unex-

pected functional errors. We therefore decided to use

the value-controlling approach. With careful consider-

ation of the loaded values, adding some control points

to control the values of the HTC variables can drive the

circuit to any known state without functional errors.

Because the modified descriptions’ PIs can directly con-

trol those variables, their SDs can be reduced.

Controlling node values
Some HDL simulators support special commands for

directly controlling the values of any internal nodes, per-

mitting control of the HTC variables without extra cost.

If those commands are available, the DFV points can

indicate where to fire the commands. However, not all

HDLs and simulators support these commands.

When direct control of the internal variables’ values

isn’t possible, inserting an extra input into the HDL code

permits direct loading of the desired value into the HTC

variable in test mode. Verification engineers can choose

either of the two approaches, depending on their simu-

lation environment.

Selecting nodes for DFV insertion
Typical HDL designs can contain many HTC vari-

ables. Inserting a DFV point at every HTC variable will

incur too much overhead in terms of simulation time.

It’s better to try to eliminate all HTC variables with the

fewest possible nodes selected for DFV point insertion.

Generally speaking, controlling the values of all regis-

ters in a design makes it possible to control the values

of all other nodes. Therefore, only register nodes for

controlling and noncontrolling registers (types CR and

NR) should be considered for DFV point insertion.

Because only the variables in the conditional state-

ments can influence an HDL design’s testability, the NR

nodes do not contribute to testability improvement, so

only the CR nodes must be considered for DFV inser-

tion. Placing DFV points at every HTC CR node can

eliminate all HTC variables in the design.

Actually, it isn’t necessary to insert DFV points for

all HTC CR nodes, because the SDs of successor nodes

might change when DFV points are inserted at their

predecessor nodes. Carefully considering the func-

tional dependencies between these nodes can pro-

duce the same testability improvement with fewer

inserted points. There are two cases in which the SDs

of some CR nodes will be infinite. As Figure 5 shows,

Design for Verification

52 IEEE Design & Test of Computers

SD_calculation (ESG g) {
// deal with primary inputs

for each PI node i in g
Add_list (i, SD_changed) ;

// propagate the SD values
while (SD_changed != NULL) {

for each node d in SD_changed {
for each fanout node f of d {

if (f.type == M) {
Set_input_value (f, f.ESG) ;
SD_calculation (f.ESG) ;
Set_output_value (f, f.ESG) ;

}
else Recalculate_SD(f) ;
if (SD(f) is changed)

Add_list (f, SD_new) ;
}

}
SD_changed = SD_new ;

}
}

Figure 4. The algorithm for sequential-depth calculation.

they are classified as nonloop and loop cases.

In nonloop cases, the register nodes have infinite SDs

because they inherit the infinite SDs of predecessor reg-

ister nodes. In these cases, eliminating the first node

means that all subsequent nodes can be eliminated.

Fortunately, it’s easy to recognize such source nodes

because they have an obvious, unique property: no fan-

in. All nodes, except for PI nodes, have at least one

input in the ESG. If a node has no fan-in, its input must

connect to a constant in the HDL descriptions; such a

node is hard to control from the PIs. Therefore, select-

ing the CR nodes without fan-in in the ESG to be the DFV

insertion nodes makes it possible to eliminate all HTC

registers belonging to the nonloop cases.

With the nonloop HTC registers eliminated, the

remaining HTC registers then belong to the loop cases.

So selecting one register in a loop to be the DFV inser-

tion node permits elimination of all HTC nodes in the

same loop. Therefore, finding the minimum number of

nodes in the ESG that can appear at least once in all

loops formed by the HTC CR nodes amounts to finding

the desired nodes at minimal cost. This problem is the

same as the well-known cycle-breaking problem, which

has many efficient algorithms proposed in the literature

as solutions.11,12 These algorithms can directly obtain the

optimal node selection.

In summary, there are two phases in the HTC-code

elimination algorithm. The first deals with the nonloop

cases. Because the SDs of the nodes in the ESG may

change after the DFV points are inserted, SD must be recal-

culated to obtain the updated SD values. The second

phase concerns the loop cases. The remaining HTC reg-

isters in the ESG require a simplified S-graph. The vertices

in the S-graph are the HTC CR nodes, and the edges in the

graph represent the nodes’ functional dependencies. All

other nodes in the ESG are simplified to the edges in the

new S-graph; that is, along with their connections, these

nodes become only a signal path in the new graph.

Performing the cycle-breaking algorithm on this S-graph

obtains the optimal selection of nodes for DFV insertion.

Experimental results
Table 2 shows the experimental results of HTC-code

detection and elimination for several designs: an 8-bit

counter (Counter8), a controller for a simple vendor

machine (Vendor), a controller for a blackjack game

machine (BJC), and a (63, 51) Bose-Chaudhuri-

Hochquenghem–code decoder. The second-to-last row

is for an 8 × 8 presorted rank filter (Rankf). This filter

puts the last eight 8-bit data chunks in a register array

according to their ranks in a way that permits observa-

tion of the corresponding data at the output when users

send the desired rank to the Sel input.

Following the proposed algorithms, we implement-

ed the DFV selection tool in C++. The number of regis-

ter nodes with infinite SDs, after the SDs of all nodes

53March–April 2003

(a) (b)

Controlling
register

Controlling
register

Functional
block

Controlling
register

Controlling
register

Conditional
statement

(multiplexer)

Functional
block

Figure 5. Two cases of the controlling register nodes with infinite sequential depths: nonloop (a) and loop (b).

Table 2. Experimental results of DFV point selection for several designs.

No. of No. of No. of No. of No. of

lines in No. of No. of bits nodes in HTC nodes

original bits bits in all corresponding register selected for CPU

Design HDL code in PIs in POs registers ESG nodes DFV insertion time (s)

Counter8 15 2 8 8 7 1 1 0.02

Vendor 119 7 5 7 141 5 1 0.03

BJC 195 8 8 12 71 3 3 0.05

Rankf 570 13 8 88 1,956 16 2 0.13

BCH 1,073 4 64 288 1,745 156 10 0.34

have been calculated, appears in the “No. of HTC reg-

ister nodes” column. Having obtained the SDs, we per-

formed the proposed selection algorithm to determine

the number of selected nodes for DFV point insertion.

As the results show, the number of HTC register nodes

and the number of selected nodes aren’t always the

same. This means the extra selection step is necessary

to obtain a smaller set of selected nodes. The compu-

tation time for total operations, performed on a 300-MHz

UltraSparc II, appears in the last column of Table 2.

To demonstrate how the DFV techniques reduce the

number of functional patterns, we performed another

experiment on the same designs. The results appear in

Table 3. For each design, we asked the designers to

enhance their original functional patterns until the state-

ment coverage achieved 100%, and the second column

of Table 3 gives the old number of input patterns. After

inserting the DFV points, we analyzed the original pat-

terns and applied those points to skip the redundant

state sequences, as shown in Figure 1, without losing

any statement coverage. The number of new input pat-

terns appears in the third column of Table 3. According

to the reduction ratio, defined as (old – new)/old and

appearing in the fourth column, the number of required

functional patterns can be greatly reduced with an

accompanying reduction in verification time.

SUCH REDUCTIONS in verification time can help verifi-

cation engineers. Currently, we can use the proposed DFV

techniques only to reduce the user-provided functional

patterns, because we have not been able to find an auto-

matic test-bench generator for functional verification. We

will try to build one that supports the DFV techniques to

the extent that initial pattern generation can also be

skipped. At the same time, we will consider simulation

overhead in our future improvements so that we can min-

imize the extra cost our DFV techniques incur. �

Acknowledgments
Partial support for this work by the R.O.C. National

Science Council under grant NSC89-2218-E-009-060 is

greatly appreciated.

References
1. A. Gupta, S. Malik, and P. Ashar, “Toward Formalizing a

Validation Methodology Using Simulation Coverage,”

Proc. 34th Design Automation Conf. (DAC 97), ACM

Press, 1997, pp. 740-745.

2. D. Drako and P. Cohen, “HDL Verification Coverage,”

Integrated System Design, June 1998; http://www.

eedesign.com/editorial/1998/codecoverage9806.html.

3. J.-Y. Jou and C.-N. Liu, “Coverage Analysis Techniques

for HDL Design Validation,” Proc. 6th Asia Pacific Conf.

Chip Design Languages (APCHDL 99), ACM Press,

1999, pp. 3-10; http://www.ee.ncu.edu.tw/~jimmy/

publication.html.

4. K.-T. Cheng and A.S. Krishnakumar, “Automatic Func-

tional Test Generation Using the Extend Finite State

Machine Model,” Proc. 30th Design Automation Conf.

(DAC 93), ACM Press, 1993, pp. 86-91.

5. F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector

Generation for HDL Models Using Linear Programming

and 3-Satisfiability,” Proc. 35th Design Automation Conf.

(DAC 98), ACM Press, 1998, pp. 528-533.

6. M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital

Systems Testing and Testable Design, Computer

Science Press, New York, 1990.

7. S. Dey and M. Potkonjak, “Non-Scan Design-For-

Testability of RT-Level Data Paths,” Proc. Int’l Conf.

Computer-Aided Design (ICCAD 94), IEEE CS Press,

1994, pp. 640-645.

8. F.F. Hsu, E.M. Rudnick, and J.H. Patel, “Enhancing

High-Level Control-Flow for Improved Testability,” Proc.

Int’l Conf. Computer-Aided Design (ICCAD 96), IEEE CS

Press, 1996, pp. 322-328.

9. S. Dey, A. Raghunathan, and R.K. Roy, “Considering

Testability during High-Level Design,” Proc. Asia and

South Pacific Design Automation Conf. (ASP-DAC 98),

IEEE Press, 1998, pp. 205-210.

10. K.-T. Cheng and V.D. Agrawal, “A Partial Scan Method

for Sequential Circuits with Feedback,” IEEE Trans.

Computers, vol. 39, no. 4, Apr. 1990, pp. 544-548.

11. D.H. Lee and S.M. Reddy, “On Determining Scan

Flip-Flops in Partial-Scan Designs,” Proc. Int’l Conf.

Computer-Aided Design (ICCAD 90), IEEE CS Press,

1990, pp. 322-325.

12. H.-M. Lin and J.-Y. Jou, “On Computing the Minimum

Feedback Vertex Sets of a Directed Graph by Contrac-

Design for Verification

54 IEEE Design & Test of Computers

Table 3. Experimental results on functional pattern reduction.

No. of old No. of new Reduction

Design patterns patterns ratio (%)

Counter8 257 3 98.8

Vendor 43 36 16.3

BJC 42 30 28.6

Rankf 71 62 12.7

BCH 239 162 32.2

Average 37.7

tion Operations,” IEEE Trans. Computer-Aided Design,

vol. 19, no. 3, Mar. 2000, pp. 295-307.

Chien-Nan Jimmy Liu is an assis-
tant professor in the Department of
Electrical Engineering at National Cen-
tral University in Taiwan, R.O.C. His
research interests include functional

verification for HDL designs and verification of system-
level integration. He has a BS and PhD in electronics
engineering from National Chiao Tung University, Tai-
wan, R.O.C. He is a member of Phi Tau Phi.

I-Ling Chen is a member of the tech-
nical staff at the SoC Technology Cen-
ter of the Industrial Technology
Research Institute, Taiwan, R.O.C. Her
research interests include functional

verification for HDL designs and RTL sign-off method-
ology. She has a BS and MS in electronics engineer-
ing from the National Chiao Tung University, Taiwan,
R.O.C.

Jing-Yang Jou is a full professor
and chair of the Electronics Engineer-
ing Department at National Chiao
Tung University, Hsinchu, Taiwan. His
research interests include behavioral

logic, physical synthesis, design verification, and CAD
for low power. He has a BS in electrical engineering
from National Taiwan University and an MS and PhD
in computer science from the University of Illinois at
Urbana-Champaign. He is a member of Tau Beta Pi.

Direct questions and comments about this article
to Jing-Yang Jou, Department of Electronics
Engineering, National Chiao Tung University, Taiwan,
R.O.C.; jyjou@ee.nctu.edu.tw.

For further information on this or any other computing

topic, visit our Digital Library at http://computer.org/

publications/dlib.

55March–April 2003

Let your e-mail address
show your professional
commitment.
An IEEE Computer Society e-mail alias

forwards e-mail to you, even if you change

companies or ISPs.

you@computer.org

The e-mail address
of computing professionals

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

