
1 Introduction

Edge-preserving texture
filtering for real-time
rendering

Yuan-Chung Lee,
Chein-Wei Jen

Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, ROC
E-mail: {yzlee, cwjen}@twins.ee.nctu.edu.tw

Published online: 28 January 2003
c© Springer-Verlag 2003

Texture filtering is essential in enhancing
the visual quality of real-time rendering.
Conventional schemes do not consider the
characteristics of texture content, thus the
sharpness of edges in texture images can-
not be retained. This paper proposes a novel
texture-filtering algorithm, which consists
of edge-preserving interpolation and edge-
preserving MIP-map prefiltering. The mem-
ory bandwidth requirement is kept the same
as in conventional schemes by dynamically
adjusting the interpolation kernel. Hardware
implementation is also provided to show the
real-time processing capability.

Key words: Filtering – Resampling – Tex-
ture mapping

Texture mapping is an important operation to en-
hance photorealism in high-quality computer graph-
ics. It maps image patterns onto 3-D surfaces to
improve visual details. After the mapping trans-
formation, texture filtering resamples the texels to
prevent aliasing artifacts. Heckbert (1986) provided
a comprehensive survey of various texture filter-
ing algorithms for 2-D texturing. The direct con-
volution filters (Blinn and Newell 1976; Feibush et
al. 1980; Gangnet et al. 1982) use a weighted av-
erage of the texels corresponding to each screen
pixel. Greene and Heckbert (1986) proposed the
elliptical weighted average (EWA) filter to reduce
the computational cost while maintaining quality.
These algorithms, however, suffer from high mem-
ory bandwidth consumption, because the texture re-
gion mapped to the corresponding screen pixel may
be arbitrarily large.
Prefiltering is an effective means of reducing the run-
time memory access. Summed-area tables (Crow
1984) store two-dimensional preintegrated results,
but take two to four times as much memory. MIP-
map image pyramids (Williams 1983) combined
with bilinear and trilinear interpolation are the most
widely used schemes. MIP-map prefiltering serves
as precomputed texture minification and is very
efficient for real-time rendering. However, bilin-
ear and trilinear filtering is limited in that the fil-
ter kernels are square only and cannot simulate
an anisotropic effect. In recent years, the devel-
opment of texture filtering has been focused on
anisotropic filtering. NIL-maps (Fournier and Fi-
ume 1988) store the preconvolution of basis func-
tions to yield constant-time filtering, but the mem-
ory and computational cost is extremely high. The
clustering technique (Demirer and Grimsdale 1994)
uses precalculated cluster maps to decrease the ac-
cess time. Footprint assembly (Schilling et al. 1996)
approximates an anisotropic region by a number
of square and MIP-mapped texels. The technique
called Feline (McCormack et al. 1999) computes
a more appropriate length for the sampling line of
an anisotropic region. Fast footprint MIP-mapping
(Huttner and Strasser 1999) provides a scalable foot-
print to respect the memory bandwidth of a graph-
ics system. Texture potential MIP-mapping (Cant
and Shrubsole 2000) presums texels on one axis
and accumulates them dynamically on the other
axis. A low-cost anisotropic filter may also be im-
plemented by averaging multiple isotropic regions
(Ewins et al. 2000). These filter kernels match the

The Visual Computer (2003) 19:10–22
Digital Object Identifier (DOI) 10.1007/s00371-002-0169-8



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 11

desired projection of the screen pixels in texture
space more accurately than bilinear and trilinear
filtering.
The above methods attempt to approximate the
ideal sampling theory to avoid aliasing; never-
theless, they still result in blurred edges. Their
finite-duration kernels with band-limited input sig-
nals cannot reconstruct images with very sharp
edges. However, it is known that edges carry the
most perceptible characteristics in human vision
(Hubel 1988). The above methods do not con-
sider the content of texture images, so they in-
volve no special process to handle the edges. More-
over, closer observation of a 3-D surface reveals
that the selected MIP-map level is out of the MIP-
map pyramid. In such a case, the above meth-
ods degenerate into the traditional bilinear or sim-
plified bicubic interpolation, which produces ex-
cessively blurred or jagged edges. Although data-
dependent triangulation (Yu et al. 2001) breaks tex-
ture images into a mosaic of triangles according
to the texture contents, it generates a huge amount
of triangles, which are not efficient for real-time
rendering.
In order to develop an edge-preserving texture-
filtering algorithm for real-time rendering, several
requirements should be met.

1. Arbitrary resizing. The filtering should be able to
resample the texture into an arbitrary size based
on texture coordinates.

2. Small memory bandwidth consumption. The con-
sumption should be as small as possible since
memory bandwidth is the current bottleneck of
graphics hardware.

3. Real-time processing. The hardware should cope
with the pixel rate demanded by state-of-the-art
graphics hardware at moderate cost.

A novel edge-preserving texture-filtering algorithm,
which meets the above requirements for real-time
rendering, is proposed in this paper. This filtering
consists of real-time edge-preserving interpolation
and off-line edge-preserving MIP-map generation.
The interpolation can perform arbitrary up-sampling
as well as produce less-jagged edges. The interpo-
lation kernel can be adjusted dynamically accord-
ing to the texture cache status. The MIP-map pre-
minification is also conducted by edge-preserving
method to enhance visual sharpness. The hardware
design has been implemented to prove its real-time
capability.

2 Edge-preserving interpolation

2.1 Previous works

Several edge-preserving interpolation algorithms
have been developed for image processing and video
de-interlacing. In image processing, Ting and Hang
(1997) and Michaud et al. (1997) utilized fuzzy in-
ference. Carrato and Tenze (2000) applied a rational
operator with optimization of parameters. Jensen
and Anastassiou (1995) exploited sub-pixel edge lo-
calization. Cubic spline-under-tension (Xue et al.
1992), a quadratic Volterra filter (Thurnhofer and
Mitra 1996), and rank-order filtering (Algazi et al.
1991) have also been introduced to perform edge-
preserving interpolation.
In de-interlacing, the edge-based line average (ELA)
algorithm (Doyle and Looymans 1990) reconstructs
the missing lines by interpolating along the high-
est correlation of three directions in a 2 × 3 win-
dow. Salonen (1994) extended the ELA algorithm to
a 2 × N interpolation kernel for detecting more di-
rections. Kuo et al. (1996) improved the quality of
horizontal edges in the ELA algorithm. Chen et al.
(2000) and Lee et al. (2000) incorporated the ELA
algorithm with some checking rules to increase the
accuracy of interpolation. In addition, a directional-
correlation dependent interpolation filtering (DIF)
algorithm (Lee et al. 1994) solves the defect of the
ELA algorithm that occurs when the signals have
components with a high horizontal frequency. The
DIF algorithm simply splits the frequency bands into
two parts. The ELA-like interpolation is used for the
low-frequency part, and the simple line duplication
is adopted for the high-frequency part. Kang (2000)
also recommended this frequency division concept.
Most of the edge-preserving interpolation schemes
described above only double the resolution of im-
ages and cannot perform arbitrary resizing. Hence,
we propose a novel edge-preserving interpolation
scheme to overcome this problem. Our algorithm uti-
lizes the band-split concept of the DIF algorithm but
modifies the interpolation techniques for each fre-
quency band. This band-split approach is excellent
at preventing high-frequency interference, which
many other edge-preserving interpolation schemes
fail to do.

2.2 The proposed interpolation

In the processing of texture mapping, the texture
coordinates of each pixel inside a polygon are in-



12 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

1

2a 2b

Fig. 1. Block diagram of the edge-preserving interpolator
Fig. 2a,b. Interpolation kernel style: a source grid; b directional correlations

terpolated in a perspective-projection manner. The
integer parts of the texture coordinates indicate the
texel address where the screen pixel is mapped
in the texture source grid. The decimal fraction
parts control the resampling procedure. The inter-
polation generates the output color at the resam-
pled position based on the decimal fractions, just
as in the bilinear interpolation of the conventional
scheme.
The block diagram of the proposed edge-preserving
interpolator is shown in Fig. 1. The source texels lo-
cated around the resampled position are sent to the
interpolator. The simple low-pass filter first extracts
the low-frequency signals from the source texels.
These signals are subsequently interpolated by the
weighted selection directional interpolation module.
The high-frequency signals are obtained by subtract-
ing the low-frequency signals from the source texels.
Bilinear interpolation is adopted for high-frequency
signals. Finally, the color at the resampled position
is generated by merging the results of these two
parts.

Figure 2a shows the interpolation kernel style, which
comprises 12 source texels. The sample to be inter-
polated is located in the center square of the kernel.
The fractional parts of texture coordinates control
the exact resampled position. Figure 2b illustrates
the directional correlations, which are used by the
weighted selection directional interpolation module.
The measured directions are shown as dashed lines.
In this module, the interpolation takes place along
the direction of the smallest color difference, i.e.,
along the edge. The choice of interpolation direc-
tion should also take into account the fractional parts
of the texture coordinates. The influence of this di-
rection is less significant if the resampled position
is farther from the measured direction. Hence, we
attach a weighting to each measurement of color dif-
ferences based on the distances.
Let x f and y f be fractions of texture coordinates, and
∆Pi be the color differences in the measured direc-
tions. The interpolation direction is chosen as

min(wi ×∆Pi), i ∈ all measured directions, (1)



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 13

where the weighting is

wi = 1
∥
∥
∥1− di

ROIi

∥
∥
∥

. (2)

di is the Euclidean distance from the resampled po-
sition to the line of each measured direction and is
calculated according to x f and y f . The ROI (region
of influence) is the maximum distance that the cor-
responding measured direction can affect. The sym-
bol ‖x‖ means that wi should be set as a very large
number if the value x is negative or zero, so that
this direction is not chosen for interpolation. A very
small threshold should be adopted for implementing
the ‖x‖ operation to prevent overflow due to finite
precision. As a result, the corresponding measured
direction is not taken into consideration if di is larger
than ROIi .
In our simulation, ROI is set to 0.5 for the hori-
zontal and vertical measured directions,

√
2/4 for

the diagonals, and 1/2
√

5 for the 2 × 1 directions
(26.6◦, 63.4◦, 116.6◦ and 153.4◦). These ROI set-
tings are determined by the halves of distances from
the lines of measured directions to the nearby corners
of the center square. This means that more important
directions (horizontal, vertical and diagonals) have
a greater influence. The total number of measured di-
rections is 22. The diagonals of the four outer squares
of the kernel grid are also included, because they in-
fluence the regions near the four corners of the center
square. However, the 3×1 directions (18.4◦, 71.6◦,
108.4◦ and 161.6◦) are not utilized, because their
texels are too widely spaced, possibly resulting in
high-frequency distortion. Finally, after the decision
of interpolation direction is made, the color at the re-
sampled position is generated by linear interpolation
along the selected direction. As shown in Eq. (3), Cp
and Cq are the low-frequency colors of the source
texels on the line of the selected direction. The inter-
polated color of the low-frequency part is the linear
blending of these two colors according to one of its
fractional coordinates that ranges from 0 to 1 in the
selected direction.

CLow = (1− t)×Cp + t ×Cq, t ∈ x f or y f . (3)

The simple low-pass filter is realized with an asym-
metrical median filter. Three-point median filters are
applied to generate the low-frequency signals of the
eight boundary texels, while five-point median filters
are applied to generate the low-frequency signals of

the four central texels. Thus, no extra memory access
is imposed for the low-pass filtering beyond the orig-
inal 12 source texels. Furthermore, the median filter
is superior to weighted convolution in low edge blur-
ring. The detailed equation is shown in Eq. (4).

C1low = median(C1, C2, C4)

C2low = median(C1, C2, C5)

C3low = median(C3, C4, C7)

C4low = median(C1, C3, C4, C5, C8)

C5low = median(C2, C4, C5, C6, C9)

C6low = median(C5, C6, C10)
(4)

C7low = median(C3, C7, C8)

C8low = median(C4, C7, C8, C9, C11)

C9low = median(C5, C8, C9, C10, C12)

C10low = median(C6, C9, C10)

C11low = median(C8, C11, C12)

C12low = median(C9, C11, C12).

The high-frequency source signals are the differ-
ences between source texels and the low-frequency
signals generated by Eqs. (4). These differences can
be either positive or negative. Bilinear interpolation
is the operation used for high-frequency processing,
as shown in Eq. (5). The four weighting coefficients
are first calculated according to (x f , y f ). The four
high-frequency signals are then multiplied by the
weighting coefficients and summed up as the high-
frequency result.

CHigh = (1− x f )(1− y f )H4+ x f (1− y f )H5
+ (1− x f )y f H8+ x f y f H9. (5)

The overall interpolation I is the combination of
low- and high-frequency results.

I = CLow +CHigh. (6)

2.3 Refinement for specific issues

For color texture images with RGB components,
some operations should be handled specifically. The
sorting process of the median filter is determined by
the luminance (Y) component, so an RGB-to-Y con-
version is initially performed. The color difference
operation uses the sum of absolute values of the three
component differences. The linear interpolation is
then carried out in a component-wise manner.



14 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

a b

Fig. 3a,b. Two additional kernel styles for dynamic kernel adjustment: a T-shape; b L-shape

Some kinds of texture images, such as light-maps, do
not benefit from edge-preserving filtering. The color
deviation of a light-map is continuous over the whole
map, so no edge exists. The light-map simulation re-
sults of edge-preserving filtering are almost identical
with that of bilinear filtering. In this situation, bilin-
ear filtering is more suitable for light-maps due to its
lower computational cost.
When the interpolation is combined with MIP-map
prefiltering, the two results of adjacent levels can be
linearly blended, just as in trilinear filtering, to elim-
inate the level-switching jittering. Possible temporal
aliasing during animation is also reduced. Although
the image sharpness of this method is slightly infe-
rior to that of the method using only one level, edges
are still much sharper than with trilinear filtering.

3 Dynamic kernel adjustment

An advantage of our interpolation algorithm is that
the number of the measured directions is adjustable.
Hence, a dynamic kernel adjustment approach, based
on the texture cache status, is presented to eliminate
the extra off-chip texture access. The use of texture
caches is prevalent for minimizing bandwidth de-
mands by integrating a small amount of high-speed,
on-chip memory. Hakura and Gupta (1997) analyzed
the effects on the performance of caches by vary-
ing the cache organization and rasterization order.
A texture cache is in a blocked representation to
increase the spatial locality of texture access. The
block size usually ranges from 4 × 4 to 8 × 8, and
even above. Our interpolation kernel is dynamically
adjusted according to the relationship between cur-

rent texture position (memory address) and the cache
block boundaries.
In addition to the original cross-shaped kernel, two
kinds of kernel styles, T-shape and L-shape, are in-
cluded, as shown in Fig. 3. The T-shape kernel com-
prises 10 source texels and 18 measured directions,
while the L-shape kernel comprises 8 source texels
and 14 measured directions. Each of these two styles
has four transformations by orthogonal rotations.
Take Fig. 3a for example. The source texels C1 and
C2 are not available. The simple low-pass filter for
C4Low is adjusted to the median of C3, C4, C5, C8,
and C9. Similarly, C5Low is adjusted to the median
of C4, C5, C6, C8, and C9. The measured directions
related to C1 and C2 are ignored.
Figure 4 depicts the usage of these three kernel styles
in a cache block. The borders represent the bound-
aries of the block. The interpolator employs the orig-
inal cross-shaped kernels inside the cache block, the
T-shape kernels on the boundaries, and the L-shape
kernels at the corners. When the center square of the
kernel is located between two or four neighboring
cache blocks, the conventional bilinear interpolation
has to fetch all of these blocks. In this situation, our
interpolator can utilize the same fetched blocks and
apply the cross-shaped or the T-shape kernel across
these neighboring blocks. As a result, our interpola-
tion consumes the same off-chip memory bandwidth
as the conventional bilinear or trilinear interpola-
tion. Moreover, our interpolation makes better use of
the texels already in the cache by considering their
correlations.
The reduction in quality from that of the full cross-
shaped style is hardly visible, since sufficient direc-
tions are measured in the whole operation. Notably,



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 15

Fig. 4. Dynamic kernel adjustment in a cache
block

the utilization of the cross-shaped style can be in-
creased by the texture-prefetching technique or ex-
amining whether the neighboring blocks are already
in the cache.

4 Edge-preserving MIP-map
generation

Image pyramids are widely used in image coding,
progressive transmission, and pattern recognition.
A pyramid is typically generated by successively fil-
tering and down-sampling by a factor of 2 in both
dimensions. The common down-sampling filters are
convolution-based, such as the box filter, Gaussian
filter, and windowed sinc filters. However, some
studies have indicated that nonlinear methods poten-
tially produce more visually pleasing results.
Defee and Neuvo (1991) described three classes of
median-type filters for preserving details. A multi-
level median filter stacks median operations, which
are performed over cross- and diamond-shaped
masks in a 3 × 3 window. A FIR-median hybrid
filter cascades averaging operations with a multi-
level median filter. A recursive predicting FMH fil-

ter includes averaging filters and backward/forward
optimal ramp predictors with half of the structure
operating in a recursive loop. The authors’ analyzes
showed that these median-type filters with high-
frequency periodic component removal best fit the
pyramid scheme.
You and Kaveh (1996) demonstrated anisotropic dif-
fusion for low-pass filtering. Anisotropic diffusion
is derived from a specific partial differential equa-
tion with a carefully chosen diffusion coefficient.
Their simulation showed that this method possesses
the good property of preserving edges and their
locations.
Decenciere et al. (2001) developed content-depend-
ent down-sampling techniques. A reference image
that specifies the importance given to each pixel
is initially constructed. The construction uses the
morphological Laplacian and the tophat operator.
The recursive procedure to build a MIP-map is then
based on the reference image but is modified to
preserve small details during only one MIP-map
level.
The above algorithms can be employed in edge-
preserving MIP-map generation; otherwise, our in-
terpolation algorithm can be modified to achieve



16 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

down-sampling by 2. The basic idea is to use the edge-
preserving interpolation results at the centers of the
even squares of the texture grid as the enhancement of
the conventional convolution-based down-sampling.
Let Mn(x, y)bethenthlevelMIP-mapimage,andlevel
0 be the original texture image. The down-sampling
operation is the weighted blending of a convolu-
tion function G with our interpolation I at specific
locations. The formula is defined as follows:

Mn+1(x, y) = (1−α)G(Mn)

+αI(Mn(2x +0.5, 2y +0.5)). (7)

If the convolution function is the box filter, the func-
tion G is expressed as

G(Mn) = 1

4
[Mn(2x, 2y)+ Mn(2x +1, 2y) (8)

+ Mn(2x, 2y +1)+ Mn(2x +1, 2y +1)].
A Gaussian filter can also be used as a function G
and outperforms the box filter. The positions inter-
polated by I are at the centers of the cross-shaped
kernels on the even source squares of the texture
grid. The weighting, α, controls the degree of edge
preserving. Since a MIP-map is usually generated
offline, α can be chosen carefully by trading off alias-
ing and blurring.
One possible advantage of extending the interpola-
tion to the MIP-map generation is that the generation
may be hardware accelerated. First, the convolution
results are put into an accumulation buffer. Then, the
interpolated results at specific locations are blended
into the accumulation buffer as down-sampled tex-
ture images. This acceleration is helpful in real-time
created textures, such as environment maps.

5 Simulation results

The proposed algorithm has been implemented us-
ing the Mesa 3D graphics library (Paul 2001) to ob-
serve the visual quality. The proposed algorithm is
only compared to bilinear and trilinear filtering, be-
cause these algorithms consume the same memory
bandwidth. Future work should extend the proposed
algorithm to anisotropic filtering.

5.1 Texture magnification

Edge-preserving filtering exhibits a significant vi-
sual improvement when texture images are displayed

with magnification. Contrarily, trilinear filtering de-
generates into bilinear interpolation in magnifica-
tion. Many anisotropic filtering algorithms do not
deal with texture magnification, and also perform
bilinear interpolation. Cubic convolution requires
a 4 × 4 array of texels, which is more bandwidth
demanding than the proposed algorithm. Thus it is
omitted from this comparison.
Figure 5 is a portion of the Lena image that is scaled
up by three. Figure 6 is a Chinese word on a quadri-
lateral in a 3-D environment. Figure 7 is a simple
pattern on a teapot model. The staircase effects of
trilinear filtering are clearly visible, while the pro-
posed algorithm produces visually pleasing edges.
The smooth regions are similar in either algorithm,
but the details are much sharper with the proposed
algorithm.

5.2 Texture minification

Figure 8 shows texture-mapped text on a cubic
Bezier patch. The text, whose size is 1024×1024, is
shrunk to smaller than half its original size when dis-
played on the screen. The MIP-map generation filter
is the box filter as in Eq. (8) for the trilinear filter-
ing and uses α = 0.5 for the proposed algorithm. The
proposed algorithm preserves the details and pro-
duces less blurry results. The anisotropic situation is
also investigated, as shown in Fig. 9. The effect of
varying the parameter α is also explored. With the
proposed algorithm, the patterns in the foreground
area have less-jagged edges, while the patterns in the
background area are much clear. However, the re-
sult is not free from aliasing. The algorithm should
be transformed into an anisotropic style, when the
normal of the polygon is nearly perpendicular to the
view direction.

6 Hardware implementation

This study aims to design high-performance inter-
polation hardware suitable for real-time texture fil-
tering. The hardware should operate at a high clock
rate with low latency and be fully pipelined for burst-
mode processing. Parallel processing is employed to
meet the requirement. Some special designs are de-
scribed as follows.
A table look-up technique is adopted to implement
the complex weighting calculation of Eq. (2). For
each measured direction, ROIi is a constant and di is



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 17

5a 5b

6a 6b

Fig. 5a,b. Texture magnification of Lena image: a trilinear filtering; b proposed algorithm
Fig. 6a,b. Texture magnification of a Chinese word: a trilinear filtering; b proposed algorithm



18 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

7a

7b

8a 8b

Fig. 7a,b. Texture magnification on a teapot model: a trilinear filtering; b proposed algorithm
Fig. 8a,b. Texture minification of the text: a trilinear filtering; b proposed algorithm



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 19

a b

c d

Fig. 9a–d. Anisotropic situation: a trilinear filtering; b proposed algorithm with α = 0; c proposed algorithm with α = 0.5;
d proposed algorithm with α = 1

a predefined function of (x f , y f ). The inputs of each
weighting table are x f and y f . Four-bit precision
for each coordinate is enough. This implementation
subdivides a sampling lattice into 256 sub-regions.
The output of each table is wi , which exhibits eight-
bit precision. The gate count of each table is fewer

than 550 after hardware synthesis, and the latency
is 1.4 ns.
The schematic diagram of the asymmetrical me-
dian filter, serving as a simple low-pass filter, is
shown in Fig. 10. For color images, the luminance
(Y) is used for median selection. The RGB-to-



20 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

Fig. 10. Asymmetrical median filter module

Y converter is a carry-save adder tree with hard-
wired preshift. The median selection consists of
several two-input comparison cells, drawn as cir-
cles in Fig. 10. The comparison cells output the
larger result from the right-hand side, the smaller
result from the left-hand side, and a one-bit flag
indicating comparison result. The three-point me-
dian filter has three comparison cells in parallel
and a final selector. In the five-point median filter,
the initial four comparison cells sort out the maxi-
mum and minimum from the five texels. Then, the
remaining results pass through a three-point me-
dian filter to obtain the median of the five texels. In
addition, circular operation sharing is exploited to
merge the comparison cells that have the same in-
puts. Twelve comparison cells can be merged and
are illustrated as filled circles in Fig. 10. The to-
tal number of comparison operations is reduced
to 40.
The edge-preserving interpolation hardware was
synthesized with the Avanti 0.35 µm cell library us-
ing the TSMC CMOS 1P4M process. The design
can operate at 101.2 MHz with full pipelining and
three-clock latency. The performance is sufficient
for real-time rendering, since modern graphics chips
with the same manufacturing process only operate at
66 ∼ 90 MHz. The total gate count is 87 431. This
hardware area overhead is very small in comparison
with millions gate count of state-of-the-art graphics
chips.

7 Conclusion and future work

This paper has presented an edge-preserving texture-
filtering algorithm. With this algorithm, edges and
details are much sharper and more appropriate for
human perception. The jaggedness of edges under
texture magnification is greatly reduced. Text, in
particular, benefits significantly. The algorithm re-
quires no extra off-chip memory access, by combin-
ing texture caches and dynamic kernel adjustment.
Our hardware design attests that the algorithm is ca-
pable of real-time rendering with low hardware cost.
The same hardware can also be utilized for video re-
sizing since current graphics chips all support video
playback. Another potential benefit is that detailed
but seldom used MIP-map levels can be dropped
to save storage, because the algorithm retains good
quality under higher-ratio magnification. However,
temporal aliasing may sometimes occur in texture
minification during animation. Edge preserving may
not be advantaged for some texture images, such as
light-maps, because no edge exists on them. The al-
gorithm should be applied adaptively in considera-
tion of whether the texture will profit or not.
Several issues are still under research. For the pur-
pose of transforming the algorithm into anisotropic
filtering, one possible method is combination with
the footprint assembly technique. Besides, the ben-
efit of edge preserving for the transparency compo-
nent or bump mapping is interesting. Although only



Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering 21

2-D texturing is considered in this paper, the algo-
rithm may be extended further to 3-D texturing. The
extension may result in surface-preserving volume
filtering by grouping several measured directions on
a surface.

References

1. Algazi VR, Ford GE, Potharlanka R (1991) Directional in-
terpolation of images based on visual properties and rank
order filtering. In: Chan YT (ed) Proceedings of ICASSP
1991. IEEE Signal Processing Society Press, Piscataway,
pp 3005–3008

2. Blinn JF, Newell ME (1976) Texture and reflection in com-
puter generated images. Commun ACM 19(10):542–547

3. Cant RJ, Shrubsole PA (2000) Texture potential MIP map-
ping, a new high-quality texture antialiasing algorithm.
ACM Trans Graph 19(3):164–184

4. Carrato S, Tenze L (2000) A high quality 2x image interpo-
lator. IEEE Signal Process Lett 7(6):132–134

5. Chen T, Wu HR, Yu ZH (2000) Efficient deinterlacing algo-
rithm using edge-based line average interpolation. Opt Eng
39(8):2101–2105

6. Crow FC (1984) Summed-area tables for texture mapping.
SIGGRAPH Comput Graph 18(3):207–212

7. Decenciere E, Marcotegui B, Meyer F (2001) Content-
dependent image sampling using mathematical morphol-
ogy: application to texture mapping. Signal Process Image
Commun 16(6):567–584

8. Defee I, Neuvo Y (1991) Nonlinear filters in image pyra-
mid generation. In: Shenoi BA (ed) Proceedings of IEEE
International Conference on Systems Engineering. IEEE,
Piscataway, pp 269–272

9. Demirer M, Grimsdale RL (1994) Texture mapping us-
ing clustering techniques. In: Birand T (ed) Proceedings
of Mediterranean Electrotechnical Conference 1994. IEEE,
Piscataway, pp 355–358

10. Doyle T, Looymans M (1990) Progressive scan conversion
using edge information. In: Chiariglione L (ed) Signal Pro-
cessing of HDTV II. Elsevier, North-Holland, pp 711–721

11. Ewins JP, Waller MD, White M, Lister PF (2000) Im-
plementing an anisotropic texture filter. Comput Graph
24(2):253–267

12. Feibush EA, Levoy M, Cook RL (1980) Synthetic texturing
using digital filters. SIGGRAPH Comput Graph 14(3):294–
301

13. Fournier A, Fiume E (1988) Constant-time filtering with
space variant kernels. SIGGRAPH Comput Graph
22(4):229–238

14. Gangnet M, Perny D, Coueignoux P (1982) Perspective
mapping of planar textures. In: Greenaway DS, Warman EA
(eds) Eurographics 82. Elsevier, North-Holland, pp 57–71

15. Greene N, Heckbert PS (1986) Creating raster omnimax
images from multiple perspective views using the ellip-
tical weighted average filter. IEEE Comput Graph Appl
6(6):21–27

16. Hakura ZS, Gupta A (1997) The design and analysis of
a cache architecture for texture mapping. In: Pleszkun

A, Mudge T (eds) Proceedings of the 24th International
Symposium on Computer Architecture. ACM, New York,
pp 108–120

17. Heckbert PS (1986) Survey of texture mapping. IEEE Com-
put Graph Appl 6(11):56–67

18. Hubel DH (1988) Eye, brain, and vision. Scientific Ameri-
can Library, New York

19. Huttner T, Strasser W (1999) Fast footprint MIPmapping.
In: Knittel G, Pfister H (eds) Proceedings of the 1999
SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware. ACM, New York, pp 35–43

20. Jensen K, Anastassiou D (1995) Subpixel edge localization
and the interpolation of still images. IEEE Trans Image Pro-
cess 4(3):285–295

21. Kang DW (2000) Two-channel spatial interpolation of im-
ages. Signal Process Image Commun 16(4):395–399

22. Kuo CJ, Liao C, Lin CC (1996) Adaptive interpolation tech-
nique for scanning rate conversion. IEEE Trans Circuits
Syst Video Technol 6(3):317–321

23. Lee MH, Kim JH, Lee JS, Ryu KK, Song DI (1994)
A new algorithm for interlaced to progressive scan con-
version based on directional correlations and its IC design.
IEEE Trans Consumer Electron 40(2):119–129

24. Lee HY, Park JW, Bae TM, Choi SU, Ha YH (2000) Adap-
tive scan rate up-conversion system based on human visual
characteristics. IEEE Trans Consumer Electron 46(4):999–
1006

25. McCormack J, Perry R, Farkas KI, Jouppi NP (1999) Fe-
line: fast elliptical lines for anisotropic texture mapping.
SIGGRAPH Comput Graph 33(4):243–250

26. Michaud F, Dinh CTL, Lachiver G (1997) Fuzzy detection
of edge-direction for video line doubling. IEEE Trans Cir-
cuits Syst Video Technol 7(3):539–542

27. Paul B (2001) The Mesa 3D graphics library.
http://www.mesa3d.org/. Cited 3 Aug 2002

28. Salonen J (1994) Edge and motion controlled spatial up-
conversion. IEEE Trans Consumer Electron 40(3):225–233

29. Schilling A, Knittel G, Strasser W (1996) Texram: a smart
memory for texturing. IEEE Comput Graph Appl
16(3):32–41

30. Thurnhofer S, Mitra SK (1996) Edge-enhanced image
zooming. Opt Eng 35(7):1862–1870

31. Ting HC, Hang HM (1997) Edge preserving interpolation
of digital images using fuzzy inference. J Vis Commun Im-
age Represent 8(4):338–355

32. Williams L (1983) Pyramidal parametrics. SIGGRAPH
Comput Graph 17(3):1–11

33. Xue K, Winans A, Walowit E (1992) An edge-restricted
spatial interpolation algorithm. J Electron Imaging
1(2):152–161

34. You YL, Kaveh M (1996) Pyramidal image compres-
sion using anisotropic and error-corrected interpolation. In:
Hayes MH (ed) Proceedings ICASSP 1996. IEEE Signal
Processing Society Press, Piscataway, pp 1946–1949

35. Yu X, Morse BS, Sederberg TW (2001) Image recon-
struction using data-dependent triangulation. IEEE Comput
Graph Appl 21(3):62–68

Photographs of the authors and their biographies are given on
the next page.



22 Y.-C. Lee, C.-W. Jen: Edge-preserving texture filtering for real-time rendering

YUAN-CHUNG LEE re-
ceived the B.S. degree in elec-
tronics engineering from Na-
tional Chiao Tung University in
1997, and the Ph.D. degree from
National Chiao Tung Univer-
sity in 2002. His research inter-
ests include real-time rendering,
graphics architecture, video pro-
cessing, VLSI system, and digi-
tal IC design.

CHEIN-WEI JEN received
the B.S. degree from National
Chiao Tung University, Hsinchu,
Taiwan, in 1970, the M.S. degree
from Stanford University, Stan-
ford, CA, in 1977, and the Ph.D.
degree from National Chiao
Tung University in 1983. He is
currently with the Department
of Electronics Engineering and
the Institute of Electronics, Na-
tional Chiao Tung University, as
a Professor. During 1985–1986,
he was with the University of
Southern California at Los An-

geles as a Visiting Researcher. His current research interests
include VLSI design, digital signal processing, processor archi-
tecture, and design automation. Dr. Jen is a member of the IEEE
and of Phi Tau Phi.


