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Abstract. In real applications, data provided to a learning system usually contain linguistic information which
greatly influences concept descriptions derived by conventional inductive learning methods. Design of learning
methods for working with vague data is thus very important. In this paper, we apply fuzzy set concepts to machine
learning to solve this problem. A fuzzy learning algorithm based on the AQR learning strategy is proposed to manage
linguistic information. The proposed learning algorithm generates fuzzy linguistic rules from “soft” instances.
Experiments on the Sports and the Iris Flower classification problems are presented to compare the accuracy of the
proposed algorithm with those of some other learning algorithms. Experimental results show that the rules derived
from our approach are simpler and yield higher accuracy than those from some other learning algorithms.
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1. Introduction Traditional inductive learning procedures are however

inapplicable to some real domains, since data in the real

Among machine learning approaches [1-5], induc-
tive learning from instances may be commonly used
in real-world application domains. Famous exam-
ples are decision-tree approaches [6—8] or AQR-based
approaches [9, 10]. Inductive learning is basically
a process of inferring concept descriptions that in-
clude positive instances and exclude negative instances.

world usually contain vagueness and ambiguity. Fuzzy
techniques can then be adopted to manage this kind of
domains [11, 12].

Vagueness and ambiguity most commonly result
from inappropriate or inadequate attributes being used
to describe objects, or when experts, teachers, or users
are not quite sure what classes given objects belong to.
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The boundaries of pieces of information used may not
be clear-cut, and each object may be expressed as a lin-
guistic “input-output” relationship. Each attribute that
describes an object could thus be defined as a fuzzy set.
As an example, the object dangerous dogs may be ex-
pressed as “Dog A has a large body and long hairs, and
it is dangerous with 0.8 degree of certainty”. “Large”,
“long”, and “dangerous” are fuzzy linguistic terms.
Since attributes and classifications used to describe
objects represent human perceptions and desires, they
are vague by nature. A crisp classification that distin-
guishes between positive and negative instances is often
artificial; instead, fuzzy or ambiguous classifications of
instances are commonly seen in the real world.

Vagueness in general greatly influences concept for-
mation by conventional inductive learning methods
[13]. It may make the learning process fail or derive
null concept description. The design of learning meth-
ods to work well with vague data is thus very impor-
tant. Some kinds of inductive learning problems aris-
ing from working with vague data are discussed in
[11, 12, 14-18]. Several successful learning strategies
based on ID3 have been proposed [19-21]; most of
these use tree-pruning and fuzzy logic techniques. As
for Version-Space-based learning strategies [22], Wang
et al. proposed a fuzzy version-space learning algo-
rithm to manage linguistic information [23]. Besides,
Sudkamp and Hammell proposed the methods of in-
terpolation, completion, and learning fuzzy rules for
fuzzy inference systems [12]. In this paper, we pro-
pose a fuzzy learning algorithm based on the AQR
learning strategy [9, 10] to induce a fuzzy rule set from
“soft” training instances. This learning approach can
overcome some inductive learning problems in vague
learning environments.

The remainder of this paper is organized as fol-
lows. Some related concepts and terms are reviewed
in Section 2. The AQR learning strategy is reviewed
in Section 3. The concepts of fuzzy inductive learning
are introduced in Section 4. A fuzzy inductive learn-
ing algorithm (FAQR) based on AQR is proposed in
Section 5. Experimental results on the Sports and on
the IRIS flower classification problems are reported in
Section 6. Finally, discussion and future work are given
in Section 7.

2. Review of Related Concepts and Terms

In this section, we briefly review concepts and terms
used in this paper.

2.1.  Fuzzy Set Concepts

A fuzzy set is an extension of a crisp set. Crisp sets
allow only full membership or no membership at all,
whereas fuzzy sets allow partial membership. In other
words, an element may belong to more than one set.
In a crisp set, the membership or non-membership of
an element x in set A is described by a characteristic
function u 4 (x), where

1 ifxeA

xX) = .
ualx) {o ifx ¢ A

Fuzzy set theory extends this concept by defining
partial membership, which can take values ranging
from O to 1:

us: X — [0, 1],

where X refers to the universal set defined for a specific
problem.

Assuming that A and B are two fuzzy sets with re-
spective membership functions of u4(x) and up(x),
then the following fuzzy operators can be defined.

(1) The intersection operator:

usnp(x) =ua(x) v up(x),

where 7:[0, 1]*[0, 1] — [0, 1] is a t-norm op-
erator satisfying the following conditions [24] for
eacha, b,c € [0, 1]:

(i) atl=a;

(i)atb=bra,

(ii)athb >ctdifa>c,b>d,
vyatbtc=atbtc)=(@tbh)Tec.

Some instances of a f-norm operator a t b are
min(a, b) and a * b.
(2) The union operator:

uaup(x) = ups(x)pup(x),

where p: [0, 1] [0, 1] — [0, 1] is an s-norm op-
erator satisfying the following conditions [25]: for
eacha, b,c € [0, 1]:

(i) ap0=a;

) apb=>bpa;

(i) apb>cpdifa>c,b>d,
(ivyapbpc=apbpc)=(apb)pec.



Some instances of an s-norm operator a p b are
max(a,b)anda + b —a * b.
(3) The «-cut operator:

Ag(x) ={x € X |ua(x) > o},

where A, is an a-cut of a fuzzy set A. A, contains
all the elements in the universal set X that have a
membership grade in A greater than or equal to the
specified value of .

These fuzzy operators will be used in our learning
algorithm to derive fuzzy if-then rules.

2.2.  Inductive Learning

An instance space is a set of instances that can be
legally described by a given instance language. In-
stance spaces can be divided into two classes: attribute-
based instance spaces and structured instance spaces
[26]. In an attribute-based instance space, each in-
stance can be represented by one or several attributes.
Attribute-based instance spaces are of primary concern
here.

The entire instance space is partitioned into sev-
eral classes, each with its own class name. Instances
belonging to the same class possess certain common
properties. A concept is then a classification rule used
to describe a certain class. For example, the concept of
prime number is , “x is prime if x is an integer, and x
is divisible only by x and 1.”

A hypothesis space is a set of hypotheses that can
be legally described by a concept description language
(generalization language). Five kinds of expressions
[25] are often used in representing hypotheses: pure
conjunctive form, pure disjunctive form, internal dis-
junctive form, DNF and CNF. In this paper, the pro-
posed learning strategy is mainly concerned with DNF
(disjunctive normal form) expressed as follows:

CiorCyor ... orC,,
where C; is a pure conjunctive expression.

Formally the concepts derived by our method could
be represented in the following grammar:

If <cover> then predict <class>, where

<cover> = <complex;> or ... or <complex, >,
<complex>=<selector;> and ... and <selector,>,
<selector>=<attribute relationship value>.
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A selector relates a variable to a value. For example,
“color =red”, “height = tall”, and “weight >60kg” are
all selectors. A conjunction of selectors forms a com-
plex. A cover is a disjunction of complexes describing
all positive instances and no negative instances of the
concept.

Conventional inductive learning is aimed at finding
a concept description R that correctly describes all in-
stances in the training set. If E is a training set divided
into two subsets: P (the set of positive instances) and
N (the set of negative instances), then conventional in-
ductive learning attempts to find a concept description
R such that the following conditions are met:

Vet e P= ¢t C R, and Ve e N=e ¢R,

where et represents a positive instance and e~ rep-
resents a negative one, C and ¢ are relationship de-
scriptors that mean “covered by” and “not covered by”,
respectively.

Generally, conventional inductive learning meth-
ods only work well in ideal domains that contain no
vague data. In order to handle linguistic information,
these conventional inductive learning methods must be
generalized.

3. Review of the AQR Learning Strategy

AQR is an inductive learning system [9] that uses the
basic AQ algorithm [10] to generate a set of classifi-
cation rules. When building classification rules, AQR
performs a heuristic search through hypothesis space to
determine the descriptions that account for all positive
instances and no negative instances. AQR processes
the training instances in stages; each stage generating
a single rule, and then removing the instances it cov-
ers from the training set. This step is repeated until
enough rules have been found to cover all instances
in the chosen class. The AQR algorithm is described
below:

AQR algorithm:

Let POS be a set of positive instances.
Let NEG be a set of negative instances.

STEP 1. Let COVER be the empty cover.

STEP 2. While COVER does not cover all instances
in POS, process the following steps. Otherwise, stop
the procedure and return COVER.
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STEP 3. Select a SEED, i.e., a positive instance not
covered by COVER.

STEP 4. Call procedure GENSTAR to generate the set
STAR, which is a set of complexes that covers SEED
but that covers no instances in ENG.

STEP 5. Let BEST be the best complex in STAR
according to user-defined criteria.

STEP 6. Add BEST as an extra disjunct to COVER.

GENSTAR procedure:

STEP 1. Let STAR be the set containing the empty
complex.

STEP 2. While any complex in STAR covers some neg-
ative instances in NEG, process the following steps;
otherwise, stop the procedure and return STAR.

STEP 3. Select a negative instance E,., covered by a
complex in STAR.

STEP 4. Specialize complexes in STAR to exclude Ejeq
by the following substeps:

(a) Let EXTENSION be all selectors that cover
SEED, but not Ejeg;

(b) Let STAR be the set {x N y|x € STAR,y €
EXTENSION};

(c) Remove all complexes in STAR subsumed by
other complexes.

STEP 5. Remove the worst complexes from STAR
until the size of STAR < maxstar (a user-defined
maximum).

Unfortunately, the AQR learning strategy only works
well in ideal domains where no vague data are
present. When such data are present, AQR cannot
work well. However, the effective use of learning
systems in real-world applications depends substan-
tially upon their ability to handle linguistic infor-
mation. In this paper, we thus apply the concept of
fuzzy sets to the AQR learning strategy to solve this
problem.

4. Fuzzy Inductive Learning

Since data in real-world applications usually contain
linguistic information, conventional inductive learning
procedures may be inapplicable to some real domains.
Fuzzy concepts can then be applied to such conven-
tional inductive learning approaches. The fuzzy induc-
tive learning task is thus to find a concept description

R such that the following conditions are met:

Veey P=éC,R, and Veéey N = ég,R,
where R is a fuzzy concept description, V is a linguis-
tic quantifier of type “almost all”, “most”, etc. [13], P
denotes a fuzzy positive class and N denotes a fuzzy
negative class, C, and ¢, are fuzzy relationship de-
scriptors that mean “a-covered by” and “«-not covered
by” respectively,and & €5 P and & €5 N represent that
é B-belongs to P and N respectively. When the degree
of instance é covered by R is greater than or equal
to a predefined significance level a, R is then said to
a-cover instance é. Each instance € can then be
considered a soft instance. Soft instances differ from
conventional instances in that they have class mem-
bership values. The membership value u 5(€) specifies
the degree to which instance é belongs to the posi-
tive class P, and the membership value u 5 (&) specifies
the degree to which instance é belongs to the negative
class N. When the value of u(é) is greater than or
equal to a predefined significance level 8, instance € is
then said to B-belong to the class P (e, upe) > B,
represented as & &g P). The set of “soft” positive
instances fB-belonging to the class P is thus denoted
as Pg. Similarly, the set of “soft” negative instances
B-belonging to the class N is denoted as Ng. Fuzzy
inductive learning thus attempts to find a concept de-
scription, R, that a-covers almost all “soft” positive in-
stances in P g and almost no “soft” negative instances
in N B-

A “soft” training instance is represented here by se-
lectors with a class membership value. Each selector
is represented as [A r v], where A is an attribute, r is
a crisp or fuzzy relationship, and v is a crisp or fuzzy
value. An example of a ““soft” training instance is shown
below.

é : [height = 190 cm] and [weight = 80 kg],
he is a basketball player, with class membership
value Mbaskerball,player(é) = 08’

where both [height = 190 cm] and [weight = 80 kg] are
crisp selectors, and U paskerbati_piayer(€) is a class member-
ship value that specifies the degree to which ¢é belongs
to the class basketball_player.

The selectors used to describe derived concepts may,
however, be different from those used to describe train-
ing instances, since some derived concept selectors
may be expressed in fuzzy terms. For example, a fuzzy



concept may be represented as :

IF [height = ‘tall’] and [weight = ‘heavy’] THEN
he is a baseketball_player, with membership
value u = 0.8,

where [height = ‘tall] and [weight = ‘heavy’] are fuzzy
selectors, and u represents the strength of the rule.

Selectors used in instance space must therefore be
transformed into representations in hypothesis space
for fuzzy matching. Let uz, (é) represent the degree of
matching between selector §; in the hypothesis space
and the corresponding selector in instance é. The value
of u; (é) ranges between 0 and 1, and is used to repre-
sent the degree to which instance ¢ is covered by 5;; 0
indicates complete exclusion and 1 indicates complete
inclusion. When the value of u3 (é) is greater than or
equal to a predefined significant level «, selector §; is
said to a-cover instance é.

Assume that we have an instance é and a complex
C; =5, A§;, A--- A§j,. The degree of instance &
covered by complex C ; is evaluated as:

uz;(€) = us; (€) Nus, (€) A -+ Nug, (€),
or more generally,
ug; (&) = uz; (€) T us, (&) T+ T uz, (€),

where t is a r-norm operator.

The value of uz,(€) is thus used to represent the fuzzy
degree of instance & covered by complex C ;. When the
value of uz,(€) is greater than~0r equal to a predefined
significance level o, complex C; is then said to a-cover
instance é.

The concept description R indicates the disjunction
of complexes, say, C1, C», ..., C,, and is denoted as
R =C,vC,---vC,.Thedegree of instance & covered
by the concept description R is thus evaluated as:

up(@) = uz (@) Vug(@) V- - Vuzg(@),
or more generally,
up(e) = ug (&) pus(@)p - puz(é),
where p is an s-norm operator.
When the value of u(é) is greater than or equal

to a predefined significance level o, R is then said
to a-cover instance €. The concept of fuzzy matching

Fuzzy Inductive Learning Strategies 183

is used in our proposed learning algorithm to handle
vagueness.

5. The Fuzzy AQR Learning Strategy

In this section, we propose a fuzzy AQR learning al-
gorithm that can induce linguistic concept descriptions
from a set of “soft” training instances. The member-
ship values of classes and attributes for soft training
instances are assumed known in advance. Several ap-
proaches for getting appropriate membership functions
were proposed in the past, and can be adopted here.
Membership functions may be subjectively assigned
by domain experts or derived through a delphi negotia-
tion process [27]. They may also be formed by equally
dividing the value domains into several fuzzy regions.
Fuzzy clustering techniques may also be used to get
the membership functions from the example distribu-
tion [28-31]. Since this paper focuses on learning fuzzy
rules from soft training examples, the acquisition of
membership values will not further be discussed here.

In the proposed method, the concept descriptions no
longer necessarily include/exclude all positive/negative
instances presented, since linguistic information exists
in the “soft” training set £. Two fuzzy measurement
functions, meiuge(R) and u g (R), are used to eval-
uate the “goodness” of a derived concept R. The fuzzy
measurement function, e (R), used to evaluate the
degree of including “soft” positive instances by the
concept description R is defined as follows:

Yo, (30 T uz(@)
Zéeﬂf’ uﬁ(é) .

uinclude(ié) =

Similarly, uinclude(é ), used to evaluate the degree of
including “soft” positive instances by complex C, is
defined as follows:

ee, (@) T ue(@)
D ee,p Up(0)

u include(é) =

The fuzzy measurement function, uexcae(R), used
to evaluate the degree of excluding “soft” negative
instances by the concept description R, is defined as
follows:

D ie,w (@) T (1 —up())
Dee,i U (@) '

uexclude(R) =
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Correspondingly, Uerende(C), used to evaluate the de-
gree of excluding “soft” negative instances by complex
C, is defined as follows:

D, (@ T (1 —ue(@)
2sepn Un (@

Uexclude (C) =

A complex C with a higher Wincivde(C) member-
ship value possesses more truthful inclusion of “soff”
positive training instances, and a complex C with a
higher Uereinde(C) possesses more truthful exclusion of
“soft” negative training instances. A complex that in-
cludes much positive information may also possibly
include much negative information. Correspondingly,
a complex that excludes much negative information
may also possibly exclude much positive information.
Clearly these kinds of complexes are not sure to be
better than complexes that include both a little fuzzy
positive and a little fuzzy negative information. Which
complex C is suitable thus depends on both u;,cj,q.(C)
and Uerciude(C). g,y (C) is then used to make this
determination, which is defined as follows:

Ugs - (é) = uinclude(é) P uexclude(é)’

where p is a union operator or an addition operator.
Note that if the maximum operator is used for the union
operator, the cost for using the union operator is con-
stant. It only needs the time of finding the maximum of
two real numbers. Similarly, if the minimum operator
is used for the t operator, the cost for using the inter-
section operator is constant. The costs for uincludg(é )
and U gyepuge(C)are then proportional to the numbers of
positive and negative soft examples.

Similarly, g, ¢ (R) is used to evaluate the perfor-
mance of the derived concept description R, which is
defined as follows:

u\?ﬂfy’(R) = uinclude(R) Y uexclude(R)~

The fuzzy AQR learning strategy consists of two
main phases: generation and testing. The generation
phase generates and collects possible fuzzy complexes
into a large set; the testing phase then evaluates each
element in this set according to the value of uy.y-. The
best fuzzy complex as an extra disjunct is then added
to the set of concept descriptions. This procedure is
repeated until all “soft” positive instances in P g have
been a-covered by the set of concept descriptions. The
fuzzy AQR learning algorithm is stated below.

INPUT:

A set of “soft” positive and negative training
instances.

OUTPUT:

A fuzzy concept description R that a-covers almost
all “soft” positive instances in Pg and almost no
“soft” negative instances in Ng.

Fuzzy AQR Learning Algorithm:

STEP 1. Let R be an empty set.

STEP 2. While R does not a-coverall “‘soft” positive
instances in 13,3 (ie.,3¢é € 13,3, égZaR), process
the following steps. Otherwise, stop the procedure
and return R.

STEP 3. Select a SEED that is a “soft” positive in-
stance not a-covered by R and having the highest
u ;5(€) among all soft positive instances.

STEP 4. Call procedure GenComplex to generate
C,.;, which is a set of complexes that «-cover
SEED and a-cover no “soft” negative instances
in Ny (ie,V C; €Cyy, Ve € Ny, SEED C,C; &
eg,Co. i

STEPS5. Select the complex Cy,,, that has the highest
Uiy value inC.

STEP 6. Add Cp.as an extra disjunct to R (i.e.,
R = RV Cjey), and then GO TO STEP 2.

GenComplex Procedure:

STEP 1. LetCy,, be a set of single-selector complexes
that a-cover SEED.

STEP 2. While at least one complex inCy,; a-covers
a “soft” negative instance in Nﬁ (.e., 3 C'j € Coors
3¢ e Ng, éC,C)), process the following steps;
otherwise, stop the procedure and return Coor

STEP 3. Select a C; with the smallest value
uexclude(éj) in Csel-

STEP 4. Select a soft negative instance € with the
highest u (&) among those a-covered by C ;.

STEP 5. Specialize all complexes in Cyer tO a-not
cover negative instance ¢ using the following sub-
steps:

(a) LetS be the set of selectors that «-cover SEED,
but not é.

(b) Let Cy be the set {C; A Si|C; € old Cye,
Sk (S S’}

(c) Remove all complexes in C,er subsumed by
other complexes (i.e., if ¢ ; subsumes ¢ ; and
Ugry~(C;) = Ug+y—(C > then drop C'j fromCy,,).



STEP 6. Remove the worst complexes fromC,,, until
the size of Cy,; < 6 (a user-defined threshold).

The fuzzy AQR learning algorithm performs a
heuristic search of hypothesis space to determine the
fuzzy concept descriptions that a-cover all “soft” pos-
itive instances and no “soft” negative instances. It in-
duces rules in stages; each stage generates a complex.
When the learning process terminates, the complexes
are output to form a set of rules. If the concept descrip-
tion R is a disjunction of complexes Cy, C, ..., Cy,
then R is represented in the form of rules as
follows:

Rule 1: IF €, then the positive class with membership
value u\;w—(él );

Rule 2: IF C,, then the positive class with membership
value ug. g~ (€»);

Rule k: IF Cy, then the positive class with the member-
ship value ug.4-(Cp).
Below, an example is used to clarify the learning
process.

Example 6. This is a simple domain in which the
fuzzy concept of dangerous dogs is to be derived. Each
instance is described by three fuzzy attributes with
membership values for two classes. Each dog is de-
scribed by its color (e.g., black, brown), its size (e.g.,
small, medium, large), its coat (e.g., short, long), and
its class (e.g., dangerous, non-dangerous).

Assume the four linguistic training instances in
Table 1 are given for training.

Assume that the size of complexes maintained inCy,;
issetat5 (A—s), and parameters « and 8 are respectively
set at 0.5 and 0.5. The concept for dangerous dogs is
learned by the proposed algorithm as follows:
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Step 1: Initialize R as an empty set.
Step 2: Since R does not a-cover all “soft” positive
instances in P s, the following steps are executed.
Step 3: Since &) is not covered by R and has the high-
est Udangerous Value (=0.80) among the soft positive
examples, €, is thus selected as the SEED.

Step 4: Call procedure GenComplex to generate com-
plexes C,.; that a-cover & and a-cover no “soft”
negative instances as follows:

a. Find the single-selector complexes that a-cover
1. Since the selectors “size =large”, “color =
black”, and “coat =long” a-cover &, Cyy =

“size = large”, “color = black”, “coat =long”}.

b. Since complex “coat=1long” in Cyor a-cOVers
“soft” negative instances é4 and €3, and complex
“color =Dblack” a-covers é,, the following steps
are executed.

c. Assume the minimum operator is used as the
T operator. The U yeq. value for the complex

“coat =long” is calculates as:

Uexclude(“‘coat = long”)
_ Min(0.6, 1 — 0.8) + Min(0.9, 1 — 1.0)
B 0.6 +0.9

=0.133.

The u gyeiuqe value for the complex “color = black”
is calculates as:

Uexciude(“color = black”)
_ Min(0.6, 1 — 0.1) + Min(0.9, 1 — 0.9)
B 0.6 +0.9

=0.467.

Since complex “coat =long’ has a smaller u ,xcj,qe
value than “color =black” has, “coat =long” is
then chosen for later processing.

d. Among the soft negative instances a-covered by
“coat =long”, instance é4 has the highest uy
value (=0.9). &, is then chosen.

Table 1. Four training instances in the dangerous dog domain.
Size Color Coat Class
Case  Small Medium  Large Black Brown  Short Long  Dangerous  Non-dangerous
é 0.1 0.2 0.9 0.8 0.2 0.1 0.9 0.8 0.2
& 0.0 0.0 1.0 0.0 1.0 0.9 0.2 0.7 0.3
é3 0.2 0.8 0.3 0.1 0.9 0.2 0.8 0.4 0.6
é4 0.9 0.1 0.0 0.9 0.1 0.0 1.0 0.1 0.9
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e. Specialize all complexes in Cer t0 ct-n0t cover the
negative instance é4 using the following steps:

e.l. Among the three selectors ‘“size =large”,
“color =black”, and “coat =long” which «a-
cover €\, only “size = large” does not a-cover
é,. S is then {“size = large”}.

e2. NewCyy = {C; A S| Cj €0ldCyr , Sk €
S} = {“size =large”}.

e.3. Since there is only one complex in Cer, NO
subsumption relationships exist. No complex
is thus removed.

f. Since only one complex exists in C,.; and 0 is set
at 5, no complex is removed from Cj,,.

Step 5: Complex “size =large” is the best one in Cy,
since only one complex existinCs,. The u 1,4, value
for complex “size = large” is calculates as:

uinc/ude(“SiZE = large”)
_ Min(0.8,0.9) + Min(0.7, 1.0) _
B 0.8 +0.7 -

1.0.

The ueyciuge value for complex “size =large” is cal-
culates as:

Uexciude(“Size = large”)
_ Min(0.6, 1 —0.3) + Min(0.9, 1 — 0.0)
a 0.6+0.9

=1.0.

Assume the maximum operator is used for the p
operation. ug,y- (“size =large”) is then calculated
as :

ug.g-(“size = large”) = Max(1, 1) = 1.

Note that in addition to the maximum operator,
the addition operator can also be used for the p
operation.
Step 6: Add complex “size =large” as an extra dis-
junctto R. Since R is originally empty, the new R is
“size =large”}.

Since R = {“size = large”} has a-covered all “soft”
positive instances, the procedure is thus terminated.
The concept R for dangerous dogs can be expressed in
the form of rules as:

IF the size of dogs is large, THEN dogs are dangerous,
Ugrg- = 1.

6. Experiments

Two application domains were used to demonstrate
the effectiveness of the proposed fuzzy AQR learn-
ing algorithm (FAQR). One decided what sport to play
according to Sunday’s weather, using the instances de-
scribed in [21]. The other one classified Fisher’s Iris
data, which contain 150 instances. The fuzzy AQR
learning algorithm was implemented in C language on
a SUN SPARC/20 workstation and run 100 times on
average since a fixed number of training examples are
randomly chosen from the whole set of instances. The
accuracy of the proposed method was compared with
those of other learning algorithms on the same applica-
tion domains. These experiments are described below.

6.1. The Sport Domain

This is a simple domain for deciding what sport
to play according to Sunday’s weather. A small set
of training instances, each with fuzzy membership
values, is shown in Table 2 [21]. Each instance is de-
scribed by four fuzzy attributes (Outlook, Temperature,
Humidity, Wind) and one fuzzy classification (Sport).
Each attribute has the values shown below.

Outlook = {Sunny, Cloudy, Rain},
Humidity = {Humid, Normal},
Temperature = {Cool, Mild, Hot},
Wind = {Windy, Not_Windy}.

Classifications include the following sports:
Sports = {Swimming, Volleyball, Weight_Lifting}.

Due to its simplicity, the sport classification problem
is easily used to test and interpret the performance of the
proposed approach. In this experiment, two induction
methods were run on this problem: our proposed ap-
proach, and Yuan and Shaw’s approach [21]. Yuan and
Shaw’s approach constructs a fuzzy decision tree based
on a measurement of ambiguity. The rules generated by
Yuan and Shaw’s approach for this problem domain are
shown below:

Rule a: IF Temperature is Mild, Wind is Not-windy,
THEN Volleyball (u = 0.78);

Rule b: IF Temperature is Hot, Outlook is Cloudy,
THEN Swimming (u = 0.72);
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Table 2. A set of training instances in the sport domain.
Outlook Temperature Humidity Wind Sports

Case Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not-windy Volleyball Swimming W-lifting

1 0.9 0.1 00 1.0 00 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2

2 0.8 0.2 00 06 04 0.0 0.0 1.0 0.0 1.0 1.0 0.7 0.0

3 0.0 0.7 03 08 02 0.0 0.1 0.9 0.2 0.8 0.3 0.6 0.1

4 0.2 0.7 01 03 07 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0

5 0.0 0.1 09 07 03 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0

6 0.0 0.7 03 00 03 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8

7 0.0 0.3 07 00 00 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0

8 0.0 1.0 00 00 02 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3

9 1.0 0.0 00 1.0 00 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0
10 0.9 0.1 00 00 03 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7
11 0.7 0.3 00 1.0 00 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0
12 0.2 0.6 02 00 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1
13 0.9 0.1 00 02 08 0.0 0.1 0.9 1.0 0.0 0.0 0.0 1.0
14 0.0 0.9 01 00 09 0.1 0.1 0.9 0.7 0.3 0.0 0.0 1.0
15 0.0 0.0 1.0 00 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0
16 1.0 0.0 00 05 05 0.0 0.0 1.0 0.0 1.0 0.8 0.6 0.0

Rule c: IF Temperature is Hot, Outlook is Sunny, THEN
Swimming (u = 0.85);

Rule d: IF Temperature is Hot, Outlook is Rain, THEN
Weight-lifting (u = 0.73);

Rule e: IF Temperature is Cool, THEN Weight-lifting
(u =0.88);

Rule f: IF Temperature is Mild, Wind is Windy, THEN
Weight-lifting (u = 0.81).

Each derived classification rule was associated with
a class membership value u. The classification for a
given object was obtained using the following steps:

1. For each rule, calculate the membership of the
condition part matching the object based on its
attributes. The conclusion membership (the classi-
fication to a class) is then set equal to the condition
membership.

2. When two or more rules classify an object into
the same class with different degrees of member-
ship, take the maximum as the class membership
value.

3. Anobject may be classified into several classes with
different degrees of membership. When classifica-
tion to only one class is required, select the class
with the highest membership value.

The classification accuracy of the training data
is shown in Table 3 [21]. Among the 16 training
cases, 13 cases (except Cases 2, 8, 16) were correctly
classified. The classification accuracy was 81%.

Next, the sport classification problem was run using
our proposed fuzzy inductive learning algorithm with
the three parameters «, § and 6 being respectively 0.5,
0.6 and 100. The set of fuzzy rules induced by our
proposed approach is shown below.

Rule 1: IF Temperature is Hot, THEN Swimming (u =
0.95).

Rule 2: IF Wind is Not-windy, THEN Volleyball (u =
0.95).

Rule 3: IF Outlook is Rain, THEN Weight-lifting (u =
0.95).

Rule 4: IF Temperature is Cool, THEN Weight-lifting
(u =0.93).

Rule 5: IF Wind is Windy, THEN Weight-lifting (u =
0.68).

The classification accuracy for the training data ac-
cording to the five classification rules derived is shown
in Table 4. The classification accuracy was 94%.

The accuracy of rules derived from FAQR is higher
than that derived using Yuan and Shaw’s fuzzy decision
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Table 3. Accuracy of Yuan and Shaw’s approach on the sport classification domain.

Classification known in training data Classification derived from learned rules

Case  Volleyball Swimming  W-lifting  Volleyball ~Swimming  W-lifting  Results

1 0.0 0.8 0.2 0.0 0.9 0.0 r
2 1.0 0.7 0.0 0.4 0.6 0.0 w
3 0.3 0.6 0.1 0.2 0.7 0.3 r
4 0.9 0.1 0.0 0.7 0.3 0.3 r
5 0.0 0.0 1.0 0.3 0.1 0.7 r
6 0.2 0.0 0.8 0.3 0.0 0.7 r
7 0.0 0.0 1.0 0.0 0.0 1.0 r
8 0.7 0.0 0.3 0.2 0.0 0.8 w
9 0.2 0.8 0.0 0.0 1.0 0.0 r
10 0.0 0.3 0.7 0.1 0.0 0.7 r
11 0.4 0.7 0.0 0.0 0.7 0.0 r
12 0.7 0.2 0.1 0.7 0.0 0.3 r
13 0.0 0.0 1.0 0.0 0.2 0.8 r
14 0.0 0.0 1.0 0.3 0.0 0.7 r
15 0.0 0.0 1.0 0.0 0.0 1.0 r
16 0.8 0.6 0.0 0.5 0.5 0.0 a

w: Wrong classification; a: Ambiguity; r: Right classification.

Table 4. Accuracy of our approach on the sport classification domain.

Classification known in training data Classification derived from learned rules

Case  Volleyball Swimming  W-lifting  Volleyball ~Swimming  W-lifting  Results

1 0.0 0.8 0.2 0.6 1.0 0.4 r
2 1.0 0.7 0.0 1.0 0.6 0.0 r
3 0.3 0.6 0.1 0.8 0.8 0.3 a
4 0.9 0.1 0.0 0.7 0.3 0.3 r
5 0.0 0.0 1.0 0.5 0.7 0.9 r
6 0.2 0.0 0.8 0.6 0.0 0.7 r
7 0.0 0.0 1.0 0.9 0.0 1.0 r
8 0.7 0.0 0.3 1.0 0.0 0.8 r
9 0.2 0.8 0.0 0.3 1.0 0.7 r
10 0.0 0.3 0.7 0.1 0.0 0.9 r
11 0.4 0.7 0.0 0.8 1.0 0.2 r
12 0.7 0.2 0.1 0.7 0.0 0.3 r
13 0.0 0.0 1.0 0.0 0.2 1.0 r
14 0.0 0.0 1.0 0.3 0.0 0.7 r
15 0.0 0.0 1.0 0.2 0.0 1.0 r
16 0.8 0.6 0.0 1.0 0.5 0.0 r

w: Wrong classification; a: Ambiguity; r: Right classification.



tree approach for the sport domain. Fewer and simpler
rules were derived using FAQR than were derived using
Yuan and Shaw’s approach since the latter is based on
decision trees. In decision-tree-based approaches, at-
tributes, instead of attribute values, are chosen to grow.
An attribute with many promising branches could then
be chosen even though it has some undesired branches.
Overspecialization is then usually seen in decision-tree
approaches. For example, the selector “Temperature is
Mild” in Rule a does not appear in Rule 2, the selec-
tor “Temperature is Hot” in Rule d does not appear in
Rule 3, and the selector “Temperature is Mild” in Rule
f does not appear in Rule 5.

Note that when an unknown example is classified
by more than two rules, its class is determined by the
one with the highest membership value. Thus, some
general rules, such as Rule 1 in the sport domain, are
not further specialized.

6.2. The IRIS Domain

The Iris problem is as follows: There are three species
of Iris flowers to be distinguished: Setosa, Versicolor,
and Verginica. There are 50 training instances for each
class. Each training instance is described by four at-
tributes: Sepal Length (S.L.), Sepal Width (S.W.), Petal
Length (P.L.), and Petal Width (P.W.). All four of
the attributes are numerical domains. The membership
functions for each attribute used in this experiment are
defined in Fig. 1.

Since the training set included only 150 instances, a
method called N-fold cross validation [32] was adopted

u(S.L.)
Short Medium  Long
>< >< S.L.
502 574 646 718
(a)
u(P.L.)
Short Medium  Long

X X

1.0 218 336 454 572 69
(©

Figure 1.
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for this small set of samples. All instances were ran-
domly divided into N subsets of as nearly equal size as
possible. Foreachn,n =1, ..., N,the n-th subset was
used as a test set, and the other subsets were combined
into a training set. In the experiments, the data were
partitioned into ten subsets, each with fifteen instances
composed of five positive training instances and ten
negative training instances. The fuzzy learning algo-
rithm then ran on training instances to derive promising
rules. Finally, the most promising rules derived were
then tested on the remaining data subset. Classification
rates were then averaged across all possible groups.
The set of rules derived using our approach was:

Rule 1: IF P.L.is Short, THEN Iris Setosa (u = 0.99).

Rule 2: IF P.L. is Medium and, THEN Iris Versicolor
(u = 0.89).

Rule 3: IF P.L. is Long, THEN Iris Virginica (u =
0.97).

Rule 4: IF P.W. is Wide, THEN Iris Virginica (u =
0.93).

The average classification accuracy was 100% for
Setosa, 98% for Versicolor, and 94% for Virginia. The
accuracy of some other learning algorithms on the Iris
Flower Classification Problem was examined in [33] by
Hirsh for reference. The methods studied were Hirsh’s
Incremental Version Space Merging [33], Aha and
Kibler’s noise-tolerant NT-growth [34], Dasarathy’s
pattern-recognition approach [35], and Quinlan’s C4
[8]. The accuracy of the generalized version-space
learning algorithm (GVS) on the Iris Flower Problem
was examined in [36] by Hong and Tseng. Table 5

u(S.w,)
Narrow Medium Wide
248 296 344 392
(b)
u(P.w.)
Narrow Medium Wide

XX .,

0.1 058 1.06 154 202 25

(d)

The given membership functions for each attribute in the IRIS domain.
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Table 5. Accuracy of six learning algorithms on the iris
flower problem.

Class Setosa  Viginica  Versicolor ~ Average

Algorithm
FAQR 100 96 94 96.67
GVS 100 94 94 96.00
IVSM 100 93.33 94.00 95.78
NTgrowth 100 93.50 91.13 94.87
Dasarathy 100 98 86 95.67
C4 100 91.07 90.61 93.89

compares the accuracy of our learning algorithm with
those of the others. It can easily be seen that the ac-
curacy of our method is as high as or higher than any
of the other learning methods. Our approach cannot,
however, be concluded to have the best performance
among these approaches since the experimental con-
ditions may be different. For example, our approach
adopted the N-fold cross validation method, but the
others could adopt different validation methods. More
tests have to be done in the future.

6.3. The CAI Domain

In the CAI domain, there exist many learning records
of students. These records can be used to assist teachers
in analyzing the learning performance of students and
refining the construction of teaching materials. In the
experiment, 500 learning records are used as the train-
ing instances, each of which contains five quiz grades
and a total grade, represented in numerical domains.
The first 10 learning records are shown in Table 6.

The numerical grades of each quiz are then mapped
to three performance levels, Good, Average and Not
Good. The range between the upper bound and the
lower bound of the grades of each quiz are equally
divided to form the membership functions as shown in
Fig. 2.

The set of fuzzy rules induced from the learning
records by our proposed approach is shown below.

Rule 1: IF Grade of Quiz 4 is Good, THEN Learning
Performance is Good.

Rule 2: IF Grade of Quiz 1 is Average and Grade of
Quiz 2 is Good and Grade of Quiz 3 is Good, THEN
Learning Performance is Average.

Rule 3: IF Grade of Quiz 1 is Not Good, THEN Learn-
ing Performance is Not Good.

Table 6. A partial set of training instances in the CAI
domain.

Student ID Ql Q2 Q3 Q4 Q5 Total

1 12 14 18 3 9 56/100
2 10 6 12 6 7 41/100
3 3 6 6 1 5 21/100
4 8 10 8 2 8  36/100
5 16 18 20 20 20 94/100
6 0 3 1 4 11/100
7 4 10  29/100
8 2 0 3 11/100
9 12 16 14 4 14  60/100
10 6 8 12 2 10 38/100

Upper bound 16 18 20 20 20 94
Lower bound 0 3 3 1 3 11

Rule 4: IF Grade of Quiz 5 is Good, THEN Learning
Performance is Good.

Rule 5: IF Grade of Quiz 2 is Not Good and Grade of
Quiz 3 is Not Good, THEN Learning Performance
is Not Good.

Rule 6: IF Grade of Quiz 4 isNot Good, THEN Learning
Performance is Not Good.

The above fuzzy rules can be shown to teachers
for analyzing the discriminating power of each quiz.
For example, Rules 1 and 6 may show that Quiz 4
has a high discriminating power for test, because if
students get good grades on Quiz 4, their learning
performance is good, and if their grades on Quiz 4
is not good, then their learning performance is not
good.

7. Discussion and Future Work

In this paper, we have proposed a fuzzy inductive learn-
ing algorithm based on the AQR learning strategy to
generate fuzzy if-then rules. This approach can solve
problems that conventional inductive learning meth-
ods have with fuzzy information, and find promis-
ing inference rules. Experimental results show that
our method yields high accuracy and concise induced
rules. The proposed method is thus a flexible and effi-
cient fuzzy inductive learning method for fuzzy if-then
rules.



u(Quiz 1)
Not Good ~ Average Good
T f \ f \ T Grade
0 32 64 96 128 16
(@
u(Quiz 3)
Not Good ~ Average Good
T T T T T T Grade
3 64 9.8 132 166 20
©
u(Quiz 5)
Not Good ~ Average Good
T T T T T T Grade
3 64 9.8 132 166 20

(O]

Figure 2. The membership functions for each quiz in the CAI domain.

Three parameters «, § and 6 are used in the pro-
posed algorithm. Their values will affect the cover-
age degree of examples, the execution time and the
complexity of rules. A trade-off exists among these
goals since they cannot be achieved at the same time.
As a guidance, larger values of o and S will cause
more certain fuzzy rules but less coverage of soft train-
ing examples. Larger 6 values will increase the search
breadth, and thus derive better rules with a higher pos-
sibility. The computational time will, however, accord-
ingly increase along with larger 6 values. Users can
thus tune these parameters according to their learning
goals.

Our method assumes that membership values of
classes and attributes for training examples are known
in advance. In [28-30], we proposed some fuzzy learn-
ing methods to automatically derive membership func-
tions. Designing an integration approach to simultane-
ously learn rules and membership functions based on
the proposed algorithm will then be focused in the fu-
ture. We hope the bottleneck of membership function
acquisition can thus be avoided.
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u(Quiz 2)
Not Good  Average Good
T T T T T T Grade
3 6 9 12 15 1
(®)
u(Quiz 4)
Not Good ~ Average Good
T T T T T T Grade
1 48 8.6 124 162 20
(d)
u(Total)
Not Good  Average Good
T T T T T T Grade
11 276 442 608 774 94
®
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