
Information Processing Letters 85 (2003) 185–189

www.elsevier.com/locate/ipl

A note on unscrambling address lines

Chang-Chun Lua, Shi-Chun Tsaib,∗,1

a Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan
b Department of Computer Science and Info Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan

Received 6 March 2002; received in revised form 9 August 2002

Communicated by K. Iwama

Abstract

A writer stores some data in memory accessible via address lines. If an adversary permutes the address lines after the writer
leaves the message, then how can a reader find the permutation? This is the so-calledunscrambling address lines problem of
Broder et al. [SODA’99, 1999, pp. 870–871]. By a divide-and-conquer approach, we give a very simple algorithm to recover
the permutation. Our method is much easier to understand than Broder et al.’s previous ad hoc solution.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Divide-and-conquer; Permutation; Field programmable gate array (FPGA); Algorithms

1. Introduction

The unscrambling address lines problem [1] arose
in the context of FPGA hardware design. An FPGA is
a user programmable reconfigurable logic array first
introduced in 1986 [2]. The basic logical element
of many FPGA is equivalent to a look-up table [3].
There are three parties in the unscrambling address
lines problem: a reader, a writer and an adversary. The
writer stores logical 0’s and 1’s in memory withn-bit
address lines, which define 2n locations for storage.
After writing is complete, the adversary permutes the

* Corresponding author.
E-mail addresses: u6321034@ncnu.edu.tw (C.-C. Lu),

sctsai@csie.nctu.edu.tw (S.-C. Tsai).
1 The work was done while the authors were at National Chi-Nan

University and supported in part by the National Science Council
of Taiwan under contract NSC 89-2213-E-260-028. A preliminary
version of this paper was published in NCS 2001, Taiwan.

address lines. Therefore, the reader would read the
wrong address. Then how can the reader find the
permutation? For example, forn = 4 there are 16
locations in the memory: if the address lines are set
to x3x2x1x0 = 1001, which indicates the 9th location
before the adversary permutes the address lines. If
the adversary exchanges the first (x1) and third (x3)
lines, thenx3x2x1x0 becomes 0011—indicating the
third location.

Broder et al. [1] provide a solution and the method
has been implemented and used in Compaq Systems
Research Center [1]. Their method is ad hoc and
short enough to be illustrated in two pages, while it
is not clear enough to underline the key idea. We
give a structural divide-and-conquer algorithm, which
is very easy to understand and still maintains the
same performance. The general mechanism of the
solution is that: first, we leave some messages at
certain addresses in the memory. Then we read the

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00392-7



186 C.-C. Lu, S.-C. Tsai / Information Processing Letters 85 (2003) 185–189

memory at these addresses. According to the output (0
or 1) from the memory, we can divide address lines
into two groups. Similarly, we can further divide each
group into two. If the number of address lines isn,
after logn rounds we will divide address lines into
n groups and each group contains exactly one line.
By collecting the output from the memory in each
round, we will know the permutation of each address
line. Assume the number of address line isn = 2r .
Then the memory locations can be represented with
n-dimensional 0–1 vectors. The writer assigns 0 or 1
to the locationsx = xn−1 · · ·x1x0 ∈ {0,1}n. We use
π to denote the permutation used by the adversary,
where the permutation is on the numbers from 0 to
n− 1. For example, letn= 4 (i.e., there are 4 address
lines) and letπ(0) = 1, π(1) = 2, π(2) = 3, π(3) =
0. Thenπ(x3x2x1x0) = x2x1x0x3, which means that
when reader tries to read the bit located atx3x2x1x0 it
will actually get the bit stored atx2x1x0x3.

We maintain the following invariant: after round
k, there are 2k groups, each group hasn/2k address
lines and if linei is in group(z mod 2k), then linei

will be in either group(z mod 2k+1) or group(z +
2k mod 2k+1) after the(k+1)th round. In each round,
groups are independent from each other. I.e., in each
round we do not need the information of the other
groups when splitting a group of lines. This feature
does not hold in Broder et al.’s ad hoc method. Our
algorithm makesn logn memory probes to determine
the permutation and the addresses used are different
from the method by Broder et al. [1].

2. Preliminary

Let n be the number of address lines. For conve-
nience, letn = 2r . Let π be the permutation that the
adversary uses to rearrange the address lines. We try
to find the permutationπ by probing at certain ad-
dresses with specific settings. Letx = xn−1 · · ·x1x0

be ann-bit address for memory location andπ(x) =
xπ(n−1) · · ·xπ(1)xπ(0). We use the convenient nota-
tion δR, which is 1 if the relationR is true; 0 oth-
erwise. A key observation is: for any integerj , if
j mod 2k−1= z thenj mod 2k = z or z+ 2k−1. This
observation makes our algorithms more straightfor-
ward and is implicit in the work of Broder et al.

Let M(x) refer to the value stored at addressx.
After the writer and adversary, the reader will get the
valueM(π(x)) instead ofM(x) when probing atx.
For i = 0, . . . , n− 1, let ei = xn−1 · · ·x1x0 denote the
address withxi = 1 andxj = 0 for all j 	= i. We define
Sw ⊆ {0, . . . , n − 1}, for all 0–1 stringw of length
at mostr, to be the subsets of the labels of address
lines. Note that the stringw also denotes a binary
representation of the set index. Initially,Sε = {0, . . . ,

n − 1}, whereε is the empty string. We abuse the
notation a little bit by treating all the 0-strings 0∗ as
zero. Note thatε is zero when treated as a number.
Let u be a 0–1 string of lengthk < r and Su be a
subset of the address labels after roundk. After round
k + 1, Su will be evenly split intoS0u andS1u. The
splitting depends on what we read from the written
bits at the specific addresses. Formally, we defineSw ’s
recursively.

Definition 2.1. For any positive integern= 2r , integer
k < r and permutationπ , defineSε = {0, . . . , n− 1}.
For anyk-bit binary stringw,

S0w =
{
i | i ∈ Sw, π(i) mod 2k+1=w

}
and

S1w =
{
i | i ∈ Sw, π(i) mod 2k+1=w+ 2k

}
,

where we also treatw as ak-bit binary number.

Lemma 2.2. For any i ∈ Sw , we have π(i) mod 2|w| =
w and |Sw| = n/2|w|, where |w| is the length or the
number of bit of w and let |ε| = 0.

Proof. We prove by induction on|w|. For |w| = 0
(i.e., w = ε andSε = {0, . . . , n − 1}), it is clear that,
for any i ∈ Sε , π(i) mod 1= 0. Suppose it is true
up to |w| = k. By the definition ofS0w and S1w , it
is clear for the case of|w| + 1. Similarly, we have
|Sw| = n/2|w|. ✷

Now the problem turns out to be how to find
out whetheri ∈ S0w or i ∈ S1w for eachi ∈ Sw by
probing the value at certain memory locations. We
need to decide which addresses to set the values. These
addresses are independent of the permutation. For the
reader, the addresses are decided adaptively round by
round.



C.-C. Lu, S.-C. Tsai / Information Processing Letters 85 (2003) 185–189 187

3. Main results

First we warm up with a trivial case, where we as-
sume that each memory cell can store up ton− 1 dif-
ferent symbols instead of 0 and 1 only. In this case,
the reader and writer only need to access once the ad-
dressesei , i = 0, . . . , n− 1. The writer setsM(ei)= i

and the reader can determine the permutation immedi-
ately after reading atei ’s. In reality, we can only store
0 and 1 at each memory cell and thus we will need to
probe into more locations.

We will write to a location once and thus each
location cannot be rewritten. We illustrate the idea
by the following example in Table 1 withn = 8 and
π = (03526741), i.e., π(7)= 0, π(6)= 3, π(5)= 5,
π(4)= 2, π(3)= 6, π(2)= 7, π(1)= 4, π(0)= 1.

As we defined aboveSε = {0,1,2,3,4,5,6,7}.
After the first round, we divideSε into S0= {7,4,3,1}
andS1 = {6,5,2,0}. This is done by readingM(ei),
where i is added toS0 if M(ei) = 0; S1 otherwise.
In other words, the address lines indexed byS0 are
permuted to even lines and to odd lines if indexed by
S1. The address lines labeled byS0 can be permuted
to 0 or 2 (mod 4) and lines inS1 can be permuted
to 1 or 3 (mod 4). Thus the further splittings ofS0

andS1 are independent. To splitS0 we can mask the
address lines inS1 as 1 and for the lines inS0 we allow
only one line with 1. In the second round, writer and
reader seemingly use different addresses for writing
and reading. But the permutation makes the reader
read exactly the locations that have been set values by
the writer.

After round 2, we haveS00 = {7,1} and S10 =
{4,3} from S0, andS01= {5,0} andS11= {6,2} from
S1. Similarly, we obtainS000= {7}, S100= {1}, S010=
{4}, S110= {3}, S001= {0}, S101= {5}, S011= {6},
S111= {2}. From the above singletons, we recover the
permutation. Note that each location is written exactly
once.

More specifically, letSw be a subset of the ad-
dress lines. Then by Lemma 2.2, alli ∈ Sw have
π(i) mod 2|w| =w. Now we need to figure out which
addresses to write and to read in order to splitSw into
S0w andS1w. Let un−1 · · ·u1u0 andrn−1 · · · r1r0 indi-
cate the addresses for writer and reader, respectively,
whereui ’s andri ’s can be 0 or 1. We are interested in
the following sets of addresses:

Definition 3.1. First defineRε = Wε = {ei | i = 0,

. . . , n− 1}. Givenw andSw, define

Rw =
{
rn−1 · · · r1r0 | rj = 1 for j /∈ Sw;

∑
j∈Sw

rj = 1

}
;

Ww =
{
un−1 · · ·u1u0 | uj = 1, for j mod 2|w| 	=w

and
∑

j mod 2|w|=w

uj = 1

}
.

Both
∑

j∈Sw
rj = 1 and

∑
j mod 2|w|=w uj = 1 in

the definition make sure that exactly one bit is 1 and
the others are 0. Note thatWw has nothing to do with
the permutationπ . Our writer will set values at the
addresses inWw and reader will probe the addresses
in Rw then splitSw into S0w andS1w with the returned
values.

Lemma 3.2. Given π,w,Sw and n, if r ∈ Rw , then
π(r) ∈Ww .

Proof. Let r = rn−1 · · · r1r0 ∈ Rw. Thenπ(r)= an−1
· · ·a1a0, whereaπ(i) = ri . With w, we havej ∈ Sw iff
π(j) mod 2|w| =w. So∑
j mod 2|w|=w

aj =
∑

j mod 2|w|=w

rπ−1(j)

=
∑

π(j ′) mod 2|w|=w

rj ′ ,

sincej ′ = π−1(j)

=
∑

j ′∈Sw

rj ′ = 1.

For j /∈ Sw , we haveπ(j) mod 2|w| 	= w and so
aπ(j) = 1, sincerj = 1. Thusπ(r) ∈Ww . ✷

The above lemma is crucial for our approach. Once
the addresses are decided, for eachu ∈Ww the writer
sets the corresponding location with 1, if there is aj

such thatj mod 2|w| =w,uj = 1 andj mod 2|w|+1=
w+2|w|; 0 otherwise. Thus for eachj ∈ Sw the reader
accesses the addressr ∈ Rw , where ri = 0 for all
i ∈ (Sw − {j }) and ri = 1 for i /∈ (Sw − {j }). Then
it will return the value atπ(r) ∈Ww andj will be put
in S1w if the value is 1; otherwise put inS0w. We list
the algorithms in Fig. 1.



188 C.-C. Lu, S.-C. Tsai / Information Processing Letters 85 (2003) 185–189

Table 1
The values and addresses used

Example π = (76543210
03526741

)
(n= 8)

Writer Value Value Reader Set of

address set read address address line

Sε = {0,1,2,3,4,5,6,7}
00000001 0 1 00000001

00000010 1 0 00000010

00000100 0 1 00000100

00001000 1 0 00001000

00010000 0 0 00010000

00100000 1 1 00100000

01000000 0 1 01000000

10000000 1 0 10000000

S0= {1,3,4,7}
10101011 0 0 01100111

10101110 1 1 01101101

10111010 0 1 01110101

11101010 1 0 11100101

S1= {0,2,5,6}
01010111 0 0 10011011

01011101 1 1 10011110

01110101 0 0 10111010

11010101 1 1 11011010

S00= {1,7}
11101111 0 1 01111111 S000= {7}→ π(7)= 0

11111110 1 0 11111101 S100= {1}→ π(1)= 4

S10= {3,4}
10111111 0 1 11101111 S010= {4}→ π(4)= 2

11111011 1 0 11110111 S110= {3}→ π(3)= 6

S01= {0,5}
11011111 0 0 11011111 S001= {0}→ π(0)= 1

11111101 1 1 11111110 S101= {5}→ π(5)= 5

S11= {2,6}
01111111 0 1 10111111 S011= {6}→ π(6)= 3

11110111 1 0 11111011 S111= {2}→ π(2)= 7

It is worth mentioning that our method is highly
parallel in nature. Once anSw is available we can
further split it into two sets without any information

from the other sets. While the method by Broder et al.
needs information from another set to split a set. For
example, to split a setSw with their approach, it still



C.-C. Lu, S.-C. Tsai / Information Processing Letters 85 (2003) 185–189 189

Input: n is the number of address lines.
Output: Assign proper values to specific locations.

WRITER(n)
1. for i = 0 to n− 1 do M(ei )← δi mod 2=1;
2. for all binary stringw with |w| = 1 to logn do WriteHelper(w);

WRITEHELPER(w)
1. for i = 0 to n− 1 do ui← δi mod 2|w| 	=w ;

2. j←w;
3. for i = 0 to n

2|w| − 1 do
4. uj ← 1;
5. M(u)← δi mod 2=1;
6. uj ← 0;
7. j← j + 2|w| ;

Input: w: 0–1 string;Sw : eachj ∈ Sw hasj mod 2|w| =w.
Output: A permutation.

READER(w,Sw)
1. if Sw has only one elementthen print(“π(j)=w.”);
2. else
3. for i = 0 to n− 1 do ri← δi /∈Sw ;
4. for all j ∈ Sw do
5. rj ← 1;
6. if (M(r)== 1) then addj to S1w ;
7. else addj to S0w ;
8. rj ← 0;
9. Reader(0w,S0w );

10. Reader(1w,S1w );

Fig. 1. Writer and reader with write-once memory model.

needs the inputSw−1 in order to decide the addresses
for reader [1]. Thus, it takes two sets to split a set with
their approach.

It is clear that line 2 ofWriter dominates the algo-
rithm. Together withWriteHelper, the time complexity
is

O

( ∑
|w|�logn

n/2|w|
)
=O(n logn).

For Reader, line 3 can be handled in a step with
bit manipulation instruction or, as suggested by one
of the referees, by using a new variable storing the
value ofu used in the previous step. Hence, the time
complexityT (n), starting withSε can be written with
a recurrence relation:T (n)= 2T (n/2)+O(n), which
has the solutionT (n)=O(n logn). The correctness of
our algorithm can be proved formally by induction.
The recursive structure is very similar to Merge Sort
and Fast Fourier Transformation. There is no such
simple structure in the work by Broder et al. We
conclude with the following theorem.

Theorem 3.3. Writer and Readerprobe O(n logn)

locations and correctly return the permutation.

Based on the independence on splitting the sets
Sw ’s, we can parallelizeReader (i.e., by allowing
parallel memory access) and achieve O(logn) time
complexity.

Acknowledgements

We thank the anonymous referees for comments on
the paper.

References

[1] A. Broder, M. Mitzenmacher, L. Moll, Unscrambling address
lines, in: Proc. SODA’99, 1999, pp. 870–871.

[2] W.S. Carter, et al., A user programmable reconfigurable logic
array, in: Proceedings of the IEEE 1986 Custom Integrated
Circuits Conference, May 1986, pp. 235–238.

[3] The Programmable Logic Data Book 1998, Xilinx Inc., San
Jose, CA, 1998; Available on line via http://www.xilinx.
com/partinfo/databook.htm.


