2 Information
?ﬁ% Processing
Available at Letters
ELSEVIER WiamatCo PripersexS eiers 68 VA/B). £85ma9
POWERED BY SCIENCE C DIRECT® www.elsevier.com/locatefipl

A note on unscrambling address lines

Chang-Chun L@, Shi-Chun Tsat*?!

@ Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan
b Department of Computer Science and Info Engineering, National Chiao-Tung University, Hsinchu 30050, Taiwan

Received 6 March 2002; received in revised form 9 August 2002
Communicated by K. lwama

Abstract

A writer stores some data in memory accessible via address lines. If an adversary permutes the address lines after the write!

leaves the message, then how can a reader find the permutation? This is the sorsalbedbling address lines problem of

Broder et al. [SODA99, 1999, pp. 870-871]. By a divide-and-conquer approach, we give a very simple algorithm to recover

the permutation. Our method is much easier to understand than Broder et al.’s previous ad hoc solution.
00 2002 Elsevier Science B.V. All rights reserved.

Keywords: Divide-and-conquer; Permutation; Field programmable gate array (FPGA); Algorithms

1. Introduction address lines. Therefore, the reader would read the
wrong address. Then how can the reader find the
The unscrambling address lines problem [1] arose permutation? For example, for = 4 there are 16
in the context of FPGA hardware design. An FPGA is locations in the memory: if the address lines are set
a user programmable reconfigurable logic array first to xzx2x1xg = 1001, which indicates the 9th location
introduced in 1986 [2]. The basic logical element before the adversary permutes the address lines. If
of many FPGA is equivalent to a look-up table [3]. the adversary exchanges the first)(and third ()
There are three parties in the unscrambling addressjines, thenxsxaxi1xg becomes 0011—indicating the
lines problem: a reader, a writer and an adversary. The third location.
writer stores logical 0's and 1's in memory withbit Broder et al. [1] provide a solution and the method
address lines, which define 2ocations for storage. pas peen implemented and used in Compaq Systems
After writing is complete, the adversary permutes the Research Center [1]. Their method is ad hoc and

short enough to be illustrated in two pages, while it

" Corresponding author. is not clear enough to underline the key idea. We
E-mail addresses: u6321034@ncnu.edu.tw (C.-C. Lu), give a structural divide-and-conquer algorithm, which
sctsai@csie.nctu.edu.tw (S.-C. Tsai). is very easy to understand and still maintains the

1 i i i- .
‘ Thg work was done Wt_ule the authors We‘re atNat_|onaI Chi Nap same performance. The general mechanism of the
University and supported in part by the National Science Council

of Taiwan under contract NSC 89-2213-E-260-028. A preliminary SOIUti_On is that: fir§t, we leave some messages at
version of this paper was published in NCS 2001, Taiwan. certain addresses in the memory. Then we read the

0020-0190/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PI1l: S0020-0190(02)00392-7

186 C.-C. Lu, S-C. Tsai / Information Processing Letters 85 (2003) 185-189

memory at these addresses. According to the output (0 Let M (x) refer to the value stored at address

or 1) from the memory, we can divide address lines After the writer and adversary, the reader will get the
into two groups. Similarly, we can further divide each value M (7 (x)) instead ofM (x) when probing atx.
group into two. If the number of address linesnis Fori=0,...,n—1, lete; = x,_1---x1x0 denote the
after logn rounds we will divide address lines into address with;; =1 andx; = 0 forall j # i. We define

n groups and each group contains exactly one line. Sy, < {0,...,n — 1}, for all 0-1 stringw of length
By collecting the output from the memory in each at mostr, to be the subsets of the labels of address
round, we will know the permutation of each address lines. Note that the stringy also denotes a binary
line. Assume the number of address linenis= 2". representation of the set index. Initiall§, = {0, ...,
Then the memory locations can be represented with n — 1}, wheree is the empty string. We abuse the
n-dimensional 0-1 vectors. The writer assigns 0 or 1 notation a little bit by treating all the O-string$ @s

to the locationsy = x,_1---x1xg € {0, 1}". We use zero. Note that is zero when treated as a number.
7 to denote the permutation used by the adversary, Let u be a 0-1 string of length < r and S, be a
where the permutation is on the numbers from 0 to subset of the address labels after roéndfter round

n — 1. For example, let = 4 (i.e., there are 4 address & + 1, S, will be evenly split intoSp, and Sy,. The

lines) and letr(0) =1, 7 (1) =2, 7(2) =3, n(3) = splitting depends on what we read from the written
0. Thenw (x3x2x1xg) = x2x1x0x3, Which means that bits at _the specific addresses. Formally, we defins
when reader tries to read the bit locatedatox1xg it recursively.

will actually get the bit stored atx1x0x3.
We maintain the following invariant: after round Definition 2.1. For any positive integer = 2", integer

k, there are 2 groups, each group hag2¢ address k < r and permutationr, defineS, = {0, ...,n — 1}.

lines and if linei is in group(z mod %), then linei For anyk-bit binary stringw,

will be in either group(z mod Z*1) or group(z + (s . 1

2 mod Z*1) after the(k + 1)th round. In each round, Sow = {i |1 € Su, (i) mod 2+ = w}

groups are independent from each other. l.e., in eachand

round we do not need the information of the other o _ g+l "

groups when splitting a group of lines. This feature 1w = {i i€ 8y, m(i) mod =w+2'},

does_not hold in Broder et al.'s ad hoc method._Our where we also treab as ak-bit binary number.

algorithm makes logn memory probes to determine

the permutation and the addresses used are d'ﬁerenli_elnmaz.z. Foranyi e S

w, Wehave (i) mod 2v =
from the method by Broder et al. [1].

w and |S,| = n/2"!, where |w| is the length or the
number of bit of w and let |¢] = 0.

2. Preliminary Proof. We prove by induction onjw|. For [w| =0
(e, w=¢ andS, ={0,...,n — 1}), it is clear that,
Let n be the number of address lines. For conve- for anyi € S, 7 (i) mod 1= 0. Suppose it is true
nience, letn = 2". Let = be the permutation that the up to |w| = k. By the definition ofSp, and Sy, it
adversary uses to rearrange the address lines. We tryis clear for the case ofw| + 1. Similarly, we have
to find the permutationr by probing at certain ad- [Sy|=n/2". O
dresses with specific settings. Let= x,,—1---x1x0

be ann-bit address for memory location amdx) = Now the problem turns out to be how to find
Xz(n—1) - XpLXz©). We use the convenient nota- out whetheri € So, or i € Sy, for eachi € S,, by

tion dg, which is 1 if the relationR is true; O oth- probing the value at certain memory locations. We
erwise. A key observation is: for any integgr if need to decide which addresses to set the values. These

jmod Z~1 =z thenj mod % =z or z + 2*~1. This addresses are independent of the permutation. For the
observation makes our algorithms more straightfor- reader, the addresses are decided adaptively round by
ward and is implicit in the work of Broder et al. round.

C.-C. Lu, S-C. Tsai / Information Processing Letters 85 (2003) 185-189

3. Main results

First we warm up with a trivial case, where we as-
sume that each memory cell can store up te 1 dif-
ferent symbols instead of 0 and 1 only. In this case,

the reader and writer only need to access once the ad-

dresseg;,i =0,...,n — 1. The writer setd (¢;) =i

and the reader can determine the permutation immedi-
ately after reading at;'s. In reality, we can only store

0 and 1 at each memory cell and thus we will need to
probe into more locations.

We will write to a location once and thus each
location cannot be rewritten. We illustrate the idea
by the following example in Table 1 with =8 and
7 = (0352674}, i.e.,7n(7)=0,7(6) =3, 7(5) =5,
7(4)=2,7(3)=6,7(2)=7,7(1) =4,7(0) = 1.

As we defined aboveS, = {0,1,2,3,4,5,6, 7}.
After the first round, we divids, into So = {7, 4, 3, 1}
and S1 = {6,5, 2, 0}. This is done by reading/ (¢;),
wherei is added toSp if M(e;) = 0; S1 otherwise.

In other words, the address lines indexed Sayare
permuted to even lines and to odd lines if indexed by
S1. The address lines labeled ISy can be permuted

to 0 or 2(mod 4 and lines inS1 can be permuted

to 1 or 3(mod 4. Thus the further splittings ofg

and 1 are independent. To splfip we can mask the
address lines if1 as 1 and for the lines ifip we allow
only one line with 1. In the second round, writer and
reader seemingly use different addresses for writing
and reading. But the permutation makes the reader

read exactly the locations that have been set values by

the writer.

After round 2, we haveSgg = {7,1} and S1g =
{4, 3} from Sp, andSp1 = {5, 0} andS11 = {6, 2} from
S1. Similarly, we obtainSgoo = {7}, S100= {1}, So10=
{4}, S110 = {3}, Soo1 = {0}, S101 = {5}, So11 = {6},
S111 = {2}. From the above singletons, we recover the
permutation. Note that each location is written exactly
once.

More specifically, letS,, be a subset of the ad-
dress lines. Then by Lemma 2.2, dlle S,, have
7 (i) mod 2*! = w. Now we need to figure out which
addresses to write and to read in order to sfjitinto
Sow andSyy,. Letu,_1---utug andr,_1 - - - rirg indi-

187

Definition 3.1. First defineR, = W, ={e; | i =0,
...,n—1}. Givenw andsS,,, define

sz{rn—l"'rlr0|rj=1forj¢Sw§ erzl};
J€Sw

Wy = Jup—1---uguo|u; =1, for j mod 2wl £y

and > I/tjzl}.

j mod 2vl=w

Both ZjeSw rj = 1 and Zj mod 2wl—y ¥j = 1in
the definition make sure that exactly one bit is 1 and
the others are 0. Note th#it,, has nothing to do with
the permutationt. Our writer will set values at the
addresses i,, and reader will probe the addresses
in R, then splitS,, into So,, andSy,, with the returned
values.

Lemma 3.2. Given =, w, S,, and n, if r € R, then
w(r) € Wy.

Proof. Letr =r,_1---r1ro € Ry. Thenz(r) = a,_1
-~ -aiap, Whereay gy = r;. With w, we havej € §,, iff
7(j) mod 2¥! = w. So

2 2

j mod 2%I=yw j mod 2vl=yw

2

7(j") mod 2*l=w

aj = rﬂ—l(j)

}”j/,
sincej’ = 7 ~1(j)

Z rj/=l.

j/ESUJ

For j ¢ S,, we havex(j) mod 2*! £ w and so
apjy=1,sincer; =1.Thusz(r) e Wy,. O

The above lemma is crucial for our approach. Once
the addresses are decided, for eachW,, the writer
sets the corresponding location with 1, if there ig a
such that mod 2¥! = w, u; = 1 andj mod 2¥I+1 =
w + 2I*!; 0 otherwise. Thus for eache S,, the reader
accesses the addresss R,,, wherer; = 0 for all
ie(Sy—{jhandr, =1fori ¢ (S, — {j}). Then

cate the addresses for writer and reader, respectively,it will return the value atr (r) € W, andj will be put

whereu;’s andr;’s can be 0 or 1. We are interested in
the following sets of addresses:

in Sy, if the value is 1; otherwise put ifip,,. We list
the algorithms in Fig. 1.

188 C.-C. Lu, S-C. Tsai / Information Processing Letters 85 (2003) 185-189

Table 1
The values and addresses used
Example 7 = (§$22074
(n=8)
Writer Value Value Reader Set of
address set read address address line
S =1{0,1,2,3,4,5,6,7}
00000001 0 1 00000001
00000010 1 0 00000010
00000100 0 1 00000100
00001000 1 0 00001000
00010000 0 0 00010000
00100000 1 1 00100000
01000000 0 1 01000000
10000000 1 0 10000000
So=11,34,7)
10101011 0 0 01100111
10101110 1 1 01101101
10111010 0 1 01110101
11101010 1 0 11100101
S1=1{0,2,5,6}
01010111 0 0 10011011
01011101 1 1 10011110
01110101 0 0 10111010
11010101 1 1 11011010
Soo={L.7}
11101111 1 01111111 Sooo= {7} = 7(7)=0
11111110 1 0 11111101 S100={1} > (1) =4
S10={3,4}
10111111 0 1 11101111 Sot0= {4} —> 7(4) =2
11111011 1 11110111 S110={3} = 7(3) =6
So1= {0, 5}
11011111 11011111 Soo1={0} > 7(0)=1
11111101 1 1 11111110 S101=1{5} = 7 (5) =5
$11={2, 6}
01111111 0 1 10111111 So11= {6} > 7(6) =3
11110111 1 11111011 Si1={2—>7@=7

It is worth mentioning that our method is highly from the other sets. While the method by Broder et al.
parallel in nature. Once af, is available we can needs information from another set to split a set. For
further split it into two sets without any information example, to split a sef,, with their approach, it still

C.-C. Lu, S-C. Tsai / Information Processing Letters 85 (2003) 185-189

Input: n is the number of address lines.
Output: Assign proper values to specific locations.

WRITER(n)
1.for i =0ton —1doM(e;) < 8; mod 2=1;
2.for all binary stringw with |w| = 1 to logn do WriteHelper();

WRITEHELPERw)

l.fori=0ton—1dou; <§; poq dwl gy
2.j«—w;
. n
3.forz_0toﬁ—1do
4. uj<—1;
5 M(u) <8 mod 2=1;
6. uj<—0;
7. e j+2vh

Input: w: 01 string;Sy,: eachj € Sy, hasj mod 2%l = w.
Output: A permutation.

READER(w, Sy)
1.if Sy has only one elemenhen print(“z (j) = w.”);
2.else
3. fori=0ton—1dor; < 3ig¢Sy;
for all j € Sy, do
T <~ 1;
if (M(r)==1) then add; to S1,;
elseadd; to Sp,,;
rj <~ 0,
Reader(®, Soy,);

4
5
6
7.
8
9

10. Reader(i, S1y);

Fig. 1. Writer and reader with write-once memory model.

needs the inpus§,,_1 in order to decide the addresses
for reader [1]. Thus, it takes two sets to split a set with
their approach.

It is clear that line 2 ofAfiter dominates the algo-
rithm. Together withAriteHelper, the time complexity
is
O(Z n/2lwl) = O(nlogn).

lw|<logn

189

For Reader, line 3 can be handled in a step with
bit manipulation instruction or, as suggested by one
of the referees, by using a new variable storing the
value ofu used in the previous step. Hence, the time
complexityT (n), starting withS, can be written with

a recurrence relatio: (n) = 2T (n/2) + O(n), which
has the solutiofT (n) = O(n logn). The correctness of
our algorithm can be proved formally by induction.
The recursive structure is very similar to Merge Sort
and Fast Fourier Transformation. There is no such
simple structure in the work by Broder et al. We
conclude with the following theorem.

Theorem 3.3. Writer and Readerprobe O(nlogn)
locations and correctly return the permutation.

Based on the independence on splitting the sets
Sw's, we can parallelizeReader (i.e., by allowing
parallel memory access) and achiev€d@n) time
complexity.

Acknowledgements

We thank the anonymous referees for comments on
the paper.

References

[1] A. Broder, M. Mitzenmacher, L. Moll, Unscrambling address
lines, in: Proc. SODA'99, 1999, pp. 870-871.

[2] W.S. Carter, et al., A user programmable reconfigurable logic
array, in: Proceedings of the IEEE 1986 Custom Integrated
Circuits Conference, May 1986, pp. 235-238.

[3] The Programmable Logic Data Book 1998, Xilinx Inc., San
Jose, CA, 1998; Available on line via http://www.xilinx.
com/partinfo/databook.htm.

