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Abstract

Some combinatorial properties of partitioning points in R1 have recently been well studied.
We extend this study to points in Rd with the hope to bene5t clustering and optimal partition
problems in Rd.
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1. Introduction

Let P be a set of distinct points in Rd and let �= {�1; : : : ; �p} be an (unordered)
partition of P into p disjoint nonempty parts. Let Conv(�i) denote the convex hull of
�i. Then � is called a disjoint partition by Barnes et al. [3] if Conv(�i)∩Conv(�j) = ∅
for all i and j. This “disjointness” will be referred to as a partition property. There
are other partition properties studied in the literature [3–5] which will be brought up
in Section 2.

Let Q denote a partition property such as disjointness. If Q de5nes a small class of
partitions, then it is advantageous to prove the existence of an optimal partition (with
respect to some objective function) in the class Q, for then we need only to search
the class Q for an optimal partition.

A partition property Q is k-consistent if for any partition not satisfying Q, there
exists a set of k parts not satisfying Q among themselves. De5ne k-Q-sorting of a
partition � as the operation of rearranging k parts of � that do not satisfy Q (as a
partition of their union) into a new partition that satis5es Q. Often we can prove that
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Fig. 1. implications among diKerent levels of sortability.

any k parts can be k-Q-sorted without increasing the cost (assume the problem is
to minimize the cost of a partition). Is this suMcient to conclude the existence of a
Q-optimal partition? Surely, if we start with an optimal partition not in Q, we can keep
on performing k-Q-sorting while optimality is preserved. But there is no guarantee that
the iteration process will end with a Q-partition since a loop may be entered. When
the local k-Q-sorting does guarantee ending with a global Q-partition satisfying Q in a
5nite number of iterations, the property Q is called k-sortable by Hwang et al. [9]. To
prove k-sortability, it suMces to identify a partition statistics which decreases in every
k-Q-sorting.

The notion of k-sortability was further expanded by Chang et al. [7]. Note that for
a partition not in Q, there may be more than one set of k parts not in Q. So we have
a choice of which k parts to Q-sort. Furthermore, for a given set of k parts not in Q,
there may exist more than one Q-sorting. Q is called strongly k-sortable if choosing
any k parts not in Q, and any Q-sorting will eventually lead to a partition in Q. Q
is called part-speci6c k-sortable if there always exists a set of k parts such that any
Q-sorting will do. Q is called sort-speci6c k-sortable if for any choice of k parts not
in Q, there always exists a Q-sorting which works. Q is called weakly k-sortable if
there always exists a set of k parts not Q and a Q-sorting which works for that k parts.
Clearly, we have the implications among diKerent levels of sortability represented in
Fig. 1. Evidently, suMcient condition for the four sortability classes is the existence of
a statistics that decreases under the corresponding k-Q-sortings.

The size of the partition �= {�1; : : : ; �p} is p, and {|�1|; : : : ; |�p|} is the shape of the
partition �. Sortability is considered among three types of families of partitions: the size
family if the size is invariant, the shape family if the shape is invariant and the open
family if there is no constraint (meaning we can sort k parts into k ′ parts). It is
known [7] that if the level is strong or part-speci5c, then k-open sortable implies k-
size sortable implies k-shape sortable. If the level is sort-speci5c or weak, then the
reverse holds.

In general, we refer to the (l; k; t) sortability of a property Q where l refers to level
and t refers to type. The (l; k; t) sortability for a list of partition properties of points
in R1 is completely determined in [7]. However, the problem of partitions over Rd is
much harder. In this paper, we study some partition properties in Rd.

2. Partition properties in Rd

Throughout, let d and n be given positive integers. We let �= {�1; : : : ; �p} denote
a partition of n points in Rd into p parts.
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A 5nite set A⊆Rd is said to penetrate another 5nite set B⊆Rd if A∩Conv(B) �= ∅;
in this case we write A→B.

We study the following properties of partition �.

(i) Acyclic (AC): There do not exist k¿2 parts such that �1 → �2 → · · · → �k → �1.
(ii) Disjoint (D): For all i; j, Conv(�i)∩Conv(�j) = ∅.
(iii) Nonpenetrating (NP): For all i; j, �i 9 �j.
(iv) Noncrossing (NC): For all i; j, either Conv(�i)∩Conv(�j) = ∅ or �i ⊆Conv(�j)

and Conv(�i)
⋂
�j = ∅ or vice versa.

(v) Cone disjoint (CD): For all i; j, Cone(�i)
⋂

Cone(�j) = ∅ (where for a subset
A⊆Rd, Cone(A) is the (convex) cone spanned by A with the vertex at the
origin).

(vi) Sphere noncrossing (SN ): For any two parts �i and �j there exists a sphere
S ⊂ Rd such that one part is within S and the other outside of S.

(vii) Monopoly (M): At most one part has more than one point.

It is noted that points in R1 are linearly ordered and partition properties in R1 are
usually studied with respect to the partitioned indices. When d¿1, we must consider
partitions of the vector themselves.

The one-dimensional partition property “nestedness” can be extended to Rd by the
following characterization:

A partition is nested if it is noncrossing and for any two parts, the convex hull of
one of them is contained in the convex hull of the other. However, nested partition are
not very interesting in Rd for d¿1 since a point set can have no nested partition for
any partition shape, for example, this is the case for the vertices of any polytope (but
in R1, there exists a nested partition for any shape). Therefore, we will not consider
nested partitions.

We note that over R1, D and NP reduce to consecutiveness (see [7,9]). Also, R1

has exactly two cones—the nonnegative reals and the nonpositive reals, hence CD is
relevant only if p62. Finally, over R1, NC, AC and SN coincide.

A hyperplane H is said to separate two sets A and B if A and B are on diKerent
sides of H and neither intersects H . Evidently, D is equivalent to the assertion that
every pair of part of � can be separated by a hyperplane.

Theorem 2.1. The relations between the above seven properties are characterized in
Fig. 2.

Fig. 2. Relation among 7 properties in Rd.
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Fig. 3. Solving for rj .

Fig. 4. SN ; NC.

Proof. Most implications and nonimplications are pretty straightforward. We only show
some not so obvious ones.

(i) D⇒SN. Suppose two parts A and B satisfy D. Then there exists a hyperplane
H separating A and B. Let l be a point in H and L a half-line perpendicular to H and
containing l. Then for any point xj on the same side of H as L, there exists a unique
point cj on L such that ‖cj− xj‖= ‖cj− l‖≡ rj (cj can be obtained by solving for rj in
r2
j −(rj−h)2 =d2, where solution is rj = (d2 +h2)=2h, see Fig. 3). Let j∗ = arg max rj,
r∗ = rj∗ and c∗ = cj∗ . The sphere with center c∗ and radius r∗ separates A from B.

(ii) SN; NC. See Fig. 4.
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Fig. 5. NC; SN.

(iii) NC; SN. See Fig. 5 in which only four marked points are in part A, others
are in part B.

3. Enumeration of partitions over Rd

Let the maximal number of p-partitions over a set of n vectors in Rd satisfying

property Q be denoted ]Q(d; p). Hwang et al. [8] showed that ]D(d; p) = O(nd(p2 ));
thus, D is polynomially bounded in n for 5xed d and p. Recently, Aviran et al. [2]
improved the upper bound to O(nd−1) for p= 2 and to O(np) for d= 2. Alon and

Onn [1] con5rmed that O(nd(p2 )) is best for p¿3 and d¿3.

Theorem 3.1. ]CD(d; p) = O(n(d−1)(p2 )).

Proof. The proof is similar to the disjoint case [8]. First consider p= 2. Then any
choice of d− 1 vectors plus the origin determines a hyperplane which partition the n
vectors into two parts (points on the hyperplane are treated as in the disjoint case).
Therefore there are O(nd−1) 2-partitions. For general p, we have to perform the
2-partition for all (p2 ) choices of pairs of parts. Hence Theorem 3.1.

For d= 2, we give a better upper bound (except for p= 2).

Theorem 3.2. ]CD(2; p)6( np) for p¿2.

Proof. Ordered the n vectors according to their angles in the polar representation.
Let i16i26 · · ·6in denote their indices. We observe that each CD p-partition is de-
termined by indices j1¡ · · ·¡jp where �t = {ijt+1; : : : ; ijt+1} with jp+1 ≡ j1 (but some
selection does not yield a CD partition when ijt+1 − ijt+1¿180◦ for some t). Since the
number of choices is bounded by ( np), Theorem 3.2 follows.
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Theorem 3.3. ]M (d; p) = ( n
p−1 ) for n¿p.

Proof. Each choice of p − 1 points induces a distinct M p-partition with each point
in the chosen set corresponding to a singleton part.

Theorem 3.4. ]SN(d; p) = O((n+ 1)d(p2 )).

Proof. Suppose � is an SN p-partition of the set of n distinct d vectors P= {a1; : : : ; an}.
Then for every distinct i; j∈{1; : : : ; p} there is a vector cij and scalar rij such that the
sphere Sij = {x∈Rd: (cij)Tx= rij} separates �i and �j. Consider such i, j, cij, rij and
Sij, and without loss of generality assume that

�i ⊆{x∈Rd: ‖cij − x‖¡rij} and �j ⊆{x∈Rd: ‖cij − x‖¿rij};
that is, for x∈ �i and y∈ �j,

‖cij‖2 − 2(cij)Tx + ‖x‖2¡(rij)2¡‖cij‖2 − 2(cij)Ty + ‖y‖2:

For such x and y we then have that

(∗) (−2(cij)T; 1)
(

x
‖x‖2

)
¡(−2(cij)T; 1)

(
y

‖y‖2

)
:

Let !ij be the average of the maximum over x∈ �i of the left-hand side of (∗) and the
minimum over y∈ �j of the right-hand side of (∗). Then

(−2(cij)T; 1)
(

x
‖x‖2

)
¡!ij¡(−2(cij)T; 1)

(
y

‖y‖2

)

for every x∈ �i and y∈ �j.
Every partition � over P de5nes a partition S� over SP= {( x

‖x‖2 ): x∈P} with S�j
= {( x

‖x‖2 )∈ SP: x∈ �j} for j= 1; : : : ; p, and the correspondence �→ S� is clearly one-
to-one and onto. Further, the above paragraph shows that if � is SN then S� is D, hence

the ]SN(d; p) is bounded by ]D(d; p) with n→ n + 1, as the letter is O((n + 1)d(p2 ))
(see [8]), our proof is complete.

Theorem 3.5. The number of NC 2-partitions in R2 with shape (�!n�; �(1− !)n�) for
some constant ! is exponential in n.

Proof. Consider the n − 3 points on a circle enclosed with a triangle abc in Fig. 6.
Then the partition (�1; �2) where �1 consists of any !n points on the circle satis5es
NC, and there are ( n−3

�!n�) of them. Note that the convex hull of points on a circle does
not cover other points on the circle.

Theorem 3.6. The number of NP 2-partitions in R2 with shape (�!n�; �(1− !)n�) for
some constant ! is exponential in n.
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Fig. 6. Exponentially many NC partitions.

Proof. Consider n points on a circle. Then any 2-partition with shape (�!n�; �(1−!)n�)
is NP.

Corollary 3.7. The number of NP and NC shape partitions in Rd for some shape is
exponential for d¿2. Consequently, the number of p-partitions in Rd is exponential
for all p¿2 and d¿2.

Since NC⇒AC, we conclude that the number of AC p-partitions in Rd is also
exponential.

4. Consistency

We next study the consistency issue.
Clearly, Q is k-consistent implies Q is k ′-consistent for all k ′¿k. The minimum

value of k such that Q is k-consistent is referred to as the minimum consistency index
of Q.

Theorem 4.1. The minimum consistency index is 2 for D, M , NP, SN , NC, CD, and
∞ for AC.

Proof. The de5nitions of D, NP, SN, NC, CD use binary relations, hence they are
2-consistent. The proof for M is trivial.

Liu (private comm.) gave an example with d= 2 depicted in Fig. 7 which shows
that AC is not 2-consistent. By extending the above example to a (k + 1)-cycle of
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Fig. 7. A→B→C→A.

parts where each part penetrates the next part but no other, we can show that AC is
not k-consistent for any 5nite k.

5. Sortability

We quote two results from [7].

Lemma 5.1. If Q is not k-consistent, then Q is not (weak, k, open) sortable.

Lemma 5.2. Let Q′ and Q be two partition properties such that Q′ ⇒Q. Then Q′ is
(sort-speci6c, k, t) sortable and Q is k-consistent together imply Q is (sort-speci6c,
k, t) sortable.

By Theorem 4.1 and Lemma 5.1, we know AC is not k-sortable for any l, k, t.
Points in Rd can be linearly ordered. For example, let (t1; : : : ; td) be a permutation

of (1; : : : ; d). Then we can order the points lexicographically in the order of the co-
ordinates xt1 ; : : : ; xtd . A consecutive sorting of points in this linear order will be called
a dimension sorting. It is easily veri5ed that a dimension sorting always induces a
disjoint partition. This linear ordering allows us to inherit the sortability of consecu-
tiveness in R1. However, since the dimension sorting does not account for most of
disjoint partition, we treat any result using the dimension sorting as sort-speci5c.

Theorem 5.3. D is (sort-speci6c, k, shape) sortable for all k¿2.

Proof. As the above paragraph mentioned, k-dimension-sortings ∀k¿2 can reach the
goal.

By Lemma 5.2, we have

Corollary 5.4. NP, SN and NC are (sort-speci6c, k, shape) sortable for all k¿2.
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Fig. 8. D and CD are not (strong, 2, shape) sortable.

Note that if a property is not (l; k; t) sortable in Rk , then it is not so in Rk′ where
k ′¿k. So in the following discussion, all counterexamples given in R2 work also in
Rd for general d.

Theorem 5.5. D is not (strong, 2, shape) sortable.

Proof. See Fig. 8 where partitions of 12 points in R2 are considered. The coordi-
nates of points 1; : : : ; 12 are (5; 5), (7; 1), (7;−1), (5;−5), (1;−7), (−1;−7), (−5;−5),
(−7;−1), (−7; 1), (−5; 5), (−1; 7), (1; 7), respectively.

In the following, we talk about sortability of CD. Note that for 5ve points spread
evenly on a circle, no CD-partition exists for the shape (4; 1). This phenomenon can
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be generalized to d dimension. Thus when we discuss the shape k-sortability of CD,
we assume that the shape is such that if k parts do not satisfy CD, then a CD-k-sorting
always exists.

Theorem 5.6. CD is not (strong, 2, shape) sortable.

Proof. Note that in Fig. 8, the two nondisjoint parts in each resorting case do not
satisfy CD either, and the D-sortings are also CD-sortings since those 12 points lie
on a circle with radius equals to 5

√
2 and the coordinates of center is (0; 0), the two

disjoint parts after sorting can be separated by some diameter of the circle which can
also be regarded as two rays with angle 180◦ among them. Hence each D-sorting in
Fig. 8 is an CD-sorting. Consequently, Fig. 8 is also a counterexample against the
(strong, 2, shape) sortability of CD.

Note that the boundary lines of a cone are rays. So if several points lie on the
same ray which is a boundary line, then they must all belong to the same part. But
sometimes this is impossible for shape-partitions. To avoid complication, we assume
that no two points lie on the same ray.

Theorem 5.7. CD is (sort-speci6c, k, shape) sortable for all k¿2.

Proof. The argument is similar to that of D. The only diKerence is several preprocess-
ing steps are needed.

First, we transform the rectangular coordinates of every point to its polar coordinates.
Then, we project all points to the surface of a sphere.

After these two steps, we can then order these points lexicographically by their polar
coordinates so that a consecutive sorting can induce a cone disjoint partition.

Theorem 5.8. CD is not (part-speci6c, k, shape) sortable for all k¿3.

Proof. Consider a shape-partition problem for 5ve points lie on a circle with p= 4
and shape (2; 1; 1; 1). The class CD of partition not satisfying CD can be characterized
by the feature that the two elements of part 1 are not consecutive. Take an arbitrary
partition in CD, say, partition (a) in Fig. 9. There are two 3-parts, parts (1; 2; 4) and
parts (1; 3; 4), not satisfying CD. When we sort parts (1; 2; 4) of partition (a), we may
obtain partition (b); and when we sort parts (1; 3; 4), we may obtain partition (c).
Both partition (b) and (c) are in CD. Therefore no part-speci5c sorting can get us out
of CD.

To extend this example to general k, another k−3 parts each of which contains only
one point in it are added between the arc (1; 3) in Fig. 9(a), arc (4; 1) in Fig. 9(b) and
arc (1; 4) in Fig. 9(c). Then, similar to the k = 3 case, sort part (1; 2; 4; 5; : : : ; k + 1)
in (a) we may obtain partition (b); while sort part (1; 3; 4; 5; : : : ; k + 1) we may obtain
partition (c).

Corollary 5.9. CD is not (strong, k, shape) sortable for all k¿3.



F.K. Hwang et al. / Discrete Mathematics 263 (2003) 129–142 139

Fig. 9. Cycling among partition not satisfying CD.

Theorem 5.10. M is (strong, k, open) sortable for all k¿2.

Proof. Set s(�) to be the number of parts containing more than one element. It is
easily seen that s(�) is decreased in an M -sorting.

Since D and NP reduce to consecutiveness in R1; NC and SN coincide in R1, then
by known results in R1 [7], we have:
D and NP are not (strong, k, shape) sortable for all k¿3.
NC and SN are not (strong, k, shape) sortable for all k¿2.
Furthermore, since AC is not consistent, it is not (weak, k, open) sortable for all

k¿2.
We present the sortability results of Q by the following tables where the set of k

such that (l; k; t) is sortable is given in the (l; t) cell, while Sk denotes the set of k
not sortable. For example, k¿2 means k-sortable for all k¿2, while Sk¿2 means not
k-sortable for all k¿2.

For D:

Strong Sort-speci5c

Open Size Shape Shape Size Open

Sk¿2 Sk¿2 Sk¿2 k¿2 k¿2 k¿2
? ? ? k¿2 k¿2 k¿2

Part-speci5c Weak

For NC:

Strong Sort-speci5c

Open Size Shape Shape Size Open

Sk¿2 Sk¿2 Sk¿2 k¿2 k¿2 k¿2
? ? ? k¿2 k¿2 k¿2

Part-speci5c Weak
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For NP:

Strong Sort-speci5c

Open Size Shape Shape Size Open

2? Sk¿3 2? Sk¿3 2? Sk¿3 k¿2 k¿2 k¿2
? ? ? k¿2 k¿2 k¿2

Part-speci5c Weak

For SN :

Strong Sort-speci5c

Open Size Shape Shape Size Open

Sk¿2 Sk¿2 Sk¿2 k¿2 k¿2 k¿2
? ? ? k¿2 k¿2 k¿2

Part-speci5c Weak

For CD:

Strong Sort-speci5c

Open Size Shape Shape Size Open

Sk¿2 Sk¿2 Sk¿2 k¿2 k¿2 k¿2

2? Sk¿3 2? Sk¿3 2? Sk¿3 k¿2 k¿2 k¿2
Part-speci5c Weak

For M :

Strong Sort-speci5c

Open Size Shape Shape Size Open

k¿2 k¿2 k¿2 k¿2 k¿2 k¿2
k¿2 k¿2 k¿2 k¿2 k¿2 k¿2

Part-speci5c Weak

For AC:

Strong Sort-speci5c

Open Size Shape Shape Size Open

Sk¿2 Sk¿2 Sk¿2 Sk¿2 Sk¿2 Sk¿2
Sk¿2 Sk¿2 Sk¿2 Sk¿2 Sk¿2 Sk¿2

Part-speci5c Weak
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Fig. 10. Invariant diameters in sorting 6 points.

6. An example

Capoyleas et al. [6] considered the problem of partitioning points in Rd into two
parts �1 and �2 to minimize some monotone function of the diameters (or radius) of
�1 and �2. To be de5nite, let it be the maximum of the two diameters.

Let the diagonal sorting for disjointness mean the following:

(i) If Conv(�1)⊂Conv(�2), then Conv(�′1) is a single (arbitrary) vertex of Conv(�2),
and Conv(�′2) consists of all other points.

(ii) If Conv(�1)∩Conv(�2) is a line or a point, then �′1 = �1\Conv(�2) and �′2 = {p:
p∈Conv(�2)}.

(iii) If P= Conv(�1)∩Conv(�2) is a polygon, then �′1 and �′2 are separated by an
(arbitrary) diagonal of P.

Note that a diagonal sorting does not guarantee a decrease of the maximum diameter.
In Fig. 10, the maximum diameter remains the same after the sorting:

Nevertheless, Capoyleas, Rote and Woeginger proved that disjointness is (diagonal
sorting, 2, size)-sortable (not stated in these terms) by setting s(�) to be the sum
of perimeters of Conv(�1) and Conv(�2). Therefore there exists a disjoint optimal
partition.
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