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A novel approach for optimizing the optical performance of 
the broadband tap coupler 

CHIH-MING H s u ~ ,  CHAO-TON SUS* and DIRAC L I A O ~  

An integrated approach using neural networks, exponential desirability functions and 
genetic algorithms to optimize parameter design problems with multiple responses is 
presented. The proposed approach aims to identify the input parameter settings to 
maximize the overall minimal satisfaction level with respect to all the responses. The 
proposed approach is illustrated by optimizing the fused process parameters created 
during fused biconic taper coupler development to improve the performance and 
reliability of a 1% (1199) single-window broadband tap coupler. The proposed 
solution procedure was implemented on a Taiwanese manufacturer of fibreoptic 
passive components. The implementation results demonstrate the practicability of the 
method. Comparison analysis revealed that the proposed procedure outperformed the 
traditional Taguchi method in resolving multi-response parameter design problems. 

1. Introduction 

There are applications in fibreoptic systems where it is 
desirable to combine separate optical signals or divide 
the optical signal. Such multi- and demultiplexing 
tasks are handled by optical couplers. Various methods 
have been developed to fabricate the coupling elements. 
Among these, the fused biconic taper (FBT) method 
is the most popular coupler fabrication technology. 
The fibre-fusing structure and fabrication methods are 
shown in figure 1  a as hi ma 1995). The couplers are 
made in the FBT process by taking a group of fibres 
with the claddings exposed, applying tension and heat- 
ing the junction using a flame or electric discharge. 
The softened parts are formed into a tapered shape. 
In this tapered portion, the distance between the fibre 
cores becomes close and non-negligible coupling takes 
place between the cores. This procedure produces a very 
thin tapered region that must be processed extremely 
carefully. This region must be packaged to protect the 
components during shipping, handling and installation. 
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In a typical package (figure 2), the fused fibre section is 
suspended above a quartz substrate and positioned 
between two epoxy supports for mechanical stability. 
This assembly is then enclosed inside a metal tube and 
sealed. The FBT process is used because of its availabil- 
ity, relatively low cost, and inherent environmental 
stability and versatility. 

Optical performance in a coupler manufacturing 
process is usually influenced by several variables that 
include the machine parameters, raw materials, process 
and environmental conditions. From the cost or feasibil- 
ity perspective, some variables cannot be precisely con- 
trolled. Even when these variables are controllable, the 
optimal combination of parameter levels that maximizes 
product quality may be unknown. Off-line quality con- 
trol is a cost-effective means of reducing variation and 
enhancing product and process quality. The Taguchi 
method is a conventional approach to resolving this 
problem and allows engineers to determine a feasible 
combination of design parameter levels. While many 
Taguchi method applications emphasize single-response 
problems, multi-response problems are quite prevalent 
and important across various application areas. The 
Taguchi method can only obtain an optimal combina- 
tion of discrete factor levels. This study proposes 
an integrated approach based on neural networks, 
exponential desirability functions and genetic algo- 
rithms that aims to identify the input control factor 
settings and thus maximize the overall minimal level of 
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Figure 1. Fabrication of a fused biconic taper coupler. 
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Figure 2. Metal tube package for a fused biconic taper 
coupler. 

satisfaction with respect to all of the responses. Neural 
networks are used to explore the nonlinear multivariate 
relationship between the input control factors and 
output responses. The exponential desirability functions 
are used to unify the multiple responses. The genetic 
algorithms are applied to find the optimal combination 
of control factors with continuous values. The proposed 
approach is illustrated by discussing the recent advances 
in f ~ ~ s e d  parameter settings made in developing FBT 
couplers to improve the performance and reliability of 
the 1 % (1 199) single-window broadband tap coupler. 

Optimizing a multi-response problem using the stan- 
dard Taguchi method is difficult. Most conventional 
methods are incomplete in that one response variable 
is selected as the primary variable and optimized by 
adhering to the other constraints set by the criteria 
(Das 1999). Engineering judgment is a traditional 
means of resolving such complicated multi-response 
problems (Phadke 1989). The introduction of human 
judgment increases the uncertainty in the decision- 
making process. Logothetis and Haigh (1988) applied 
the multiple regression technique and linear program- 
ming approach to the optimization of a five-response 
process using the Taguchi method. Their method was 
limited when the t values of the regression coefficients 
were insignificant or when the coefficient of determina- 
tion was low. Pignatiello (1993) presented a quadratic 
loss function for multi-response problems and estab- 
lished a predictive regression model using controllable 
variables. The expected loss was minimized by following 
the descent direction and repeatedly establishing a new 
local experimentation region. However, it is difficult to 
determine the cost matrix using Pignatiello's method 
and additional experimental observations may be 
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A novel approach for optimizing the optical performance of the broadband tap coupler 217 

required. Reddy et al. (1997) proposed an approach that 
applies goal programming and Taguchi's robust design 
methodology to optimize multiple responses simulta- 
neously. The proposed approach was illustrated by 
optimizing an injection-moulding process and yielded a 
satisfactory result. However, the optimal control factors 
settings were restricted to discrete values, i.e. the consid- 
ered experimental control factor levels. This method 
cannot guarantee that the global optimum will be 
reached. In practice, the optimal parameter settings 
might exist within a feasible range of control factors 
with continuous values. Tong et al. (1997) proposed a 
procedure to determine the multi-response signal-to- 
noise (MRSN) ratio by integrating the quality loss of 
each response. However, determining the weight ratios 
for responses is difficult and the optimal factor/level 
combination is likely to be dominated by the 'maximum 
quality loss' in the trial total. Cornell and Khuri (1987) 
explored multi-response problems using a response 
surface method. Superimposing the response contour 
plots and finding an optimal solution using visual 
inspection is a simple and intuitive approach to multi- 
response problems (Lind et al. 1960). However, this 
method is severely limited by the number of input 
variables and/or responses (Kim and Lin 2000). Using 
a dimensionality reduction strategy has thus become a 
popular means of simultaneously optimizing (compro- 
mising) multi-response problems. This method converts 
a multi-response problem into a single-response prob- 
lem with an aggregated measure. This has often been 
defined as a desirability function (Harrington 1965, 
Derringer and Suich 1980) or as an estimated distance 
from the ideal design point (Khuri and Conlon 1981). 
The desirability function approach attempts to trans- 
form a multi-response problem into a single-response 
problem through mathematical transformation 
(Laviolette et al. 1995). Kim and Lin (2000) developed 
a modelling approach based on maximizing exponential 
desirability functions for optimizing a multi-response 
system. This method does not require any assumption 
about the form or degree of estimated response models 
and is sufficiently robust to handle the potential inter- 
dependence between responses. 

3. Optimization methodologies 

The optimization methodologies including neural 
networks, desirability functions and genetic algorithms 
necessary for developing the proposed approach are 
briefly introduced below. 

3.1. Neural networks 

A neural network comprises a number of processing 
elements linked by weighted and directed connections. 

Common configurations of neural networks are fully 
interconnected. Each processing element receives input 
signals via weighted incoming connections and then 
fans out an output signal along connections to every 
other processing element. The output signal of an 
element depends on the specified threshold and transfer 
function. Numerous neural network models exist that 
simulate various aspects of intelligence. Learning can 
be categorized into supervised and unsupervised. For 
supervised learning, a set of training input data with a 
corresponding set of output data are trained to adjust 
the weights in a network, while for unsupervised learn- 
ing, a set of input vectors is proposed, but no target 
vectors are specified. To solve parameter design pro- 
blems with multiple responses, neural networks are 
applied to construct the functional relationship between 
control factors and output responses in an experiment. 
Consequently, supervised neural networks are applic- 
able for this purpose. Several well-known supervised 
learning neural network models, including back- 
propagation (BP), learning vector quantization and the 
counter propagation network, are available. Among 
these models, the BP neural model is most widely 
applied and can provide effective solutions to numerous 
industrial applications (Lippmann 1987, Funahashi 
1989, Dayhoff 1990). Consequently, the BP neural 
model is employed herein. A standard BP neural 
model consists of three or more layers, including an 
input layer, one or more hidden layers and an output 
layer. The theoretical results have revealed that a 
single hidden layer is sufficient to allow a BP neural 
model to approximate any continuous mapping 
from the input patterns to the output patterns to an 
arbitrary degree of freedom (Fausett 1994). A basic 
three-layered BP neural model is generally called a 
p-q-r neural model, where the parameters p, q and r 
are the total number of neurons in the input, hidden 
and output layers, respectively. The values of p and r 
are precisely determined according to the dimensions 
of the input and output vectors in a problem, respec- 
tively. However, the appropriate number of neurons in 
the hidden layer (q) is generally set through trial 
and error. A BP network training involves three 
stages: the feedforward of the input training pattern, 
the calculation and backpropagation of the associated 
error, and weight adjustment. Once network perfor- 
mance is satisfactory, the relationships between input 
and output patterns are determined and the weights 
are then used to recognize new input patterns. The 
two parameters with the greatest effect on the training 
performance of a BP neural network are learning 
rate and momentum. For the detailed algorithm of the 
BP neural network and the guidelines for selecting 
appropriate training parameters, see Fausett (1994) 
and Hagan et al. (1 995). 
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218 Chih-Ming Hsu et al. 

3.2. Desirability functions 

Suppose there are r responses y = Oil, y2, . . . , yr), 
determined by a set of input variables x = (xl, x2, . . . , x,). 
A general multi-response problem can be defined as 

~j =jj(xl ,x2, .  . . , xp)  +&j, for j = 1, 2,. . . , r ,  (1) 

where f ,  is the response function between the jth 
response and the input variables, and Ej  is the error 
term. Usually, the exact form off ,  cannot be known 
but can be estimated over a limited experimental 
region by using model building techniques, such as 
regression and neural networks. Resolving such compli- 
cated problems by superimposing the response 
contour plots and finding an optimal solution by 
visual inspection is simple and intuitive (Lind et al. 
1960). However, this approach is rendered impractical 
owing to the number of input variables and/or responses 
(Kim and Lin 2000). Integrating all the different 
responses simplifies the solution of multi-response 
problems to a single objective optimization problem. 
The desirability function approach transforms an 
estimated response (e.g. the jth estimated response jj) 
to a scale-free value 4 (0 5 4 5 l), called desirability. 
At large values, 4 increases as the desirability of the 
corresponding response increases. Harrington (1 965) 
used a geometric mean to transfer 4 s  into an overall 
desirability D (0 5 D 5 1) and found the input variable 
setting x* that could maximize D. Derringer and Suich 
(1980) extended Harrington's approach by suggesting a 
more systematic transformation scheme of desirability. 
Derringer (1994) suggested a new form of D using the 
weighted geometric mean. However, the value of D 
does not support a clear interpretation, except that it 
should be maximized. Kim and Lin (2000) proposed 
an alternative formulation to the conventional desirabil- 
ity function approach for the multi-response problems 
based on maximizing the desirability function. To 
achieve an overall optimization for all the responses, a 
'minimum' operator was employed to aggregate the 
responses. A multi-response problem can be stated as: 

max h 
X 

subject to 

where h is the overall satisfaction with all responses of 
a product/process and S2 is the experimental region. 
Notably, this is a 'maximin' optimization problem 
in nature. The exponential desirability function is 

suggested as follows (Kim and Lin 2000): 

where t is a constant ( - a  < t < oo), called an exponen- 
tial constant. Notably, the function is convex, linear and 
concave when t < 0, = 0 and > 0, respectively. Using a 
convex desirability function (i.e. t < 0) implies that the 
deviation in the estimated response from its target 
value is more critical than when using a linear or 
concave desirability function (i.e. t 2 0), to maintain 
the same degree of satisfaction. 'z' denotes a standard- 
ized parameter representing the distance between 
the estimated response and its target in units of the 
maximum allowable deviation. For example, for the 
nominal-the-best (NTB), smaller-the-better (STB) and 
larger-the-better (LTB) type responses, the parameter z 
can be defined, respectively, as: 

where T, is the target value for the jth response. The 
bounds on a response 0);"'" and yTaX) should be specified 
in advance according to the specification limits of the 
product or process, the regulations or standards of the 
organization, the physical range of the response or 
the subjective judgment of the decision makers. 
The function d(z) given in equation (5) has been 
proven to provide a reasonable and flexible representa- 
tion of human perception (Kirkwood and Sarin 1980, 
Moskowitz and Kim 1993) and is convenient to handle 
analytically (Kim and Lin 2000). 

The desirability function approach is one of the most 
frequently used multi-response optimization techniques 
(Derringer 1994) and has several methodological advan- 
tages over other existing methods (Kim and Lin 2000): 

'Maximin' approach is robust to the potential depen- 
dence between responses. 

This approach balances all the responses better than 
conventional methods. 

Objective function value h allows a good physical 
interpretation. 

Implementing this approach requires little mathema- 
tical or statistical knowledge. 
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A novel approach for optimizing the optical performance of the broadband tap coupler 2 19 

3.3. Genetic algorithms (GAS) 

Charles Darwin first introduced the concept of 
natural and biological evolution in his On the Origin 
of Species (1876) which, subsequently, inspired a class 
of algorithms known as genetic algorithms (GAS). 
GAS are robust adaptive optimization techniques that 
allow an efficient probabilistic search in a high dimen- 
sional space (Goldberg 1989). To apply genetic evolu- 
tionary concepts to a specific problem, two issues must 
be addressed: the encoding of a potential solution and 
the fitness function (objective function) to be optimized. 
A solution's genetic representation is a vector composed 
of several components (genes), called a chromosome. 
The initial population of chromosomes is generated 
according to some principles or else randomly selected. 
The evaluation is performed to measure the quality 
(fitness) of potential solutions. Optimization is achieved 
by (I) selecting pairs of chromosomes with probabilities 
proportionate to their fitness and (2) matching them to 
create new offspring. Besides matching (crossover), 
small mutation occurs in new offspring. The replace- 
ment of bad solutions with new ones is based on some 
fixed strategies. The chromosomes evolve through 
successive iterations, called generations. The evaluation, 
optimization and replacement of solutions are repeated 
until the stopping criteria are satisfied. Let P(s) and 
C(s) be parents and offspring in current generation s; 
the general structure of GAS is described as follows 
(Gen and Cheng 1997): 

Procedure Genetic Algorithins 
begin 

s t 0; 
initialize P(s); 
evaluate P(s); 
while (not termination condition) do 

recombine P(s) to yield C(s); 
evaluate C(s); 
select P(s+l) from P(s) and C(s); 
s t s+l; 

end 
end. 

There are three major advantages when applying 
GAS to optimization problems (Gen and Cheng 1997). 
First, they do not have many mathematical require- 
ments for the optimization problems and can handle 
any kind of objective functions and any kind of con- 
straints defined in discrete, continuous or mixed search 
spaces. Second, the ergodicity of evolution operators 
makes GAS very effective at performing global search 
(in probability) and finding global optima. Third, GAS 
provide great flexibility of hybridizing with domain- 
dependent heuristics to enable an efficient implementa- 
tion for a specific problem. Goldberg (1989) compared 

GAS with conventional search techniques including 
calculus-based, enumeration and random methods. He 
found that GAS can be highly efficient in solving combi- 
natorial, unimodal and multimodal problems. These 
results indicate that GAS are robust, even in a complex 
solution space, and concurrently show efficiency and 
efficacy. They have been successfully applied to difficult 
problems. For instance, adequate results have been 
obtained through GAS from various NP-complete 
problems (Ochi 1998, Easwaran et al. 1999, Lu et al. 
1999). For detailed discussions of the foundation of 
GAS, see Goldberg (1989), Gen and Cheng (1997) and 
Man et al. (1999). 

4. Proposed approach 

Before starting process design, the quality characteris- 
tics (responses), major control factors, noise factors and 
the exponential constant for each response must be 
identified by consulting manufacturing engineers. The 
proposed approach comprises five stages. At the first 
stage, the experimental design is applied to assign con- 
trol factors and noise factors to the orthogonal arrays. 
An experiment is conducted according to the experimen- 
tal layout and the experimental results are collected. 
In the second stage, training and testing data sets are 
randomly selected from the experimental results. A BP 
neural network model is trained to map the relationship 
between the input control factors and output responses. 
The main control factor effects and their interactions 
upon the output responses can be modelled through 
the well-trained BP neural model. Next, at stage 3, 
the exponential desirability functions are employed to 
transform the multiple responses into a single response. 
The greater the degree of satisfaction (A), the better the 
product is based on the quality characteristics being 
considered. At stage 4, GAS are applied (through the 
well-trained BP neural model and exponential desirabil- 
ity functions) to obtain the optimal degree of satisfac- 
tion (A), i.e. the optimal parameter combination of 
control factors in the fused biconic taper process. At 
the final stage, a confirmation experiment is conducted 
to verify the feasibility and effectiveness of the acquired 
parameter settings of control factors. If the result 
is unsatisfactory, the proposed approach should be 
applied once again, starting from the preparation 
stage. Notably, the searched parameter setting is not 
limited to discrete values and the proposed approach 
can obtain the optimum more efficiently than previous 
methods at stage 4. Hereto, the optimization of param- 
eter design problems in the manufacturing of the 1% 
(1199) single-window broadband tap coupler can be 
resolved successfully. Figure 3 shows the proposed 
approach. 
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I .Determine the desired responses and 
identify major control factors and their 
levels. 

. 
Stage 1 

1 .Arrange control factors and noise factors 
in the orthogonal arrays. 

2.Conduct the exper~ment and collect data. 1 
I Stage 2 7 
1 .Randomly select training and testing data 

sets from the experimental results. 
2.Train a BP neural network to map the 

relationship between input control factors 
and output responses. 

Stage 3 
Apply the exponential desirability functions 
to transform the multiple responses into a 
single response. 

I 

Stage 4 
I 

I Apply genetic algorithms to obtain the .-- optimal parameter settings of control 
factors. 

p- .- 
Stage 5 

I conduct the confirmation experiment. I 

Figure 3. Proposed approach. 

5. Case study 

5.1. The problem 

A manufacturer of fibreoptic passive components, 
located in the Science-Based Industrial Park of 
Taiwan, is engaged in the development, manufacturing 
and sale of passive components for the optical fibre 
telecommunications industry. In the past, this manufac- 
turer experienced serious loss owing to the low yield 
in the fused biconic taper (FBT) process used to 
fabricate single-window broadband tap couplers. At 
present, the FBT process cannot be fully automated in 
mass production. In the FBT manufacturing process, 
numerous production factors, e.g. machine instability, 
environmental influences, product diversity and human 
limitations, affect the performance and reliability 
of these couplers. Moreover, a complex causal relation- 
ship exists between these production factors and the 
quality characteristics of the couplers. Traditionally, 
experienced engineers sought the optimal feasible 
combination of parameter levels (even though they 
could not be verified as the optimal levels) in the FBT 

Table 1. Specifications of 1% (1199) single-window broadband 
tap couplers, the exponential constants and yjm'" and yTaX 

CR EL IL-A IL-B PDL-A PDL-B 
("/d (dB) (dB) (dB) (dB) (dB) 

Grade Premium 99f0.2 50.20 521.50 50.20 50.30 50.30 
A 99f0.2 50.40 522.00 50.30 50.35 50.35 
B 99f0.2 50.60 523.00 50.60 (0.40 (0.40 

Exponential 
constant 2.5 2 -1 1.5 1 3 

min 98.8 0.00 18.00 0.00 0.00 0.00 
y/,ax 
yj 99.2 0.60 23.00 0.60 0.40 0.40 

process through trial and error. Hence, this manu- 
facturer has experienced a great loss due to the low 
yield rate in the FBT process. Consequently, finding 
the optimal combination of process parameters that 
could produce couplers with satisfactory quality charac- 
teristics is greatly desired. However, several critical 
coupler optical characteristics must be optimized simul- 
taneously. Optimizing such a multi-response parameter 
design problem using the traditional Taguchi method 
is difficult. We applied here the proposed procedure to 
optimize the parameters in the fused process and thereby 
to improve the performance and reliability of the 1% 
(1199) single-window broadband tap coupler. 

The personnel managing quality and reliability 
engineering helped identify six crucial quality character- 
istics (responses). These characteristics were selected to 
enhance quality performance. They include (see Goff 
1999 for definitions): 

1. CR (%): coupling ratio (nominal-the-best). 

2. EL (dB): excess loss (smaller-the-better). 

3. IL-A (dB): insertion loss at 1 % tap port (smaller-the- 
better). 

4. IL-B (dB): insertion loss at 99% through port (smal- 
ler-the-better). 

5. PDL-A (dB): polarization dependent loss (at 1 % tap 
port) (smaller-the-better). 

6. PDL-B (dB): polarization dependent loss (at 99% 
through port) (smaller-the-better). 

Table 1 lists the specifications of different grades of 
1 % (1199) single-window broadband tap couplers. 

5.2. Experimental design and data collection 

Both strength and insertion loss of the fused coupler 
are improved by controlling the fusion time and initial 
thickness of partially etched optical fibre cladding. 
Coupled power is precisely controlled by the fusion 
time, pre-fusion conditions before melting, effective 
coupling length and effective pressure between the fibres. 
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A novel approach for optimizing the optical performance of the broadband tap coupler 22 1 

Meanwhile, multiple variables influence the perfor- 
mance of the tap coupler. Discussion with the 
product engineer revealed that the optical performance 
of the tap coupler in the fused process may depend on 
several process-related control factors. These critical 
process control factors and their levels are listed in 
table 2. 

Six control factors at three levels require 36 = 729 
trials for a full factorial experiment, which is a time- 
consuming process. The main effects of the control 
factors can be estimated by conducting 18 experimental 
trials arranged according to a Taguchi ~ ~ ~ ( 2 ~  x 37) 
orthogonal array (Phadke et al. 1983). 

Table 2. Critical process control factors and their experimental 
levels 

Level 

Control factor Code 1 2 3 

Drawing speed A DS1 DS2 DS3 
Pre-drawing length B PRLl 
Hydrogen (H2) mass flow C HMFl  
Torch height D TH1 
Pre-heating time E PHTl 
Hydrogen (H2) pressure F HPI 

Two noise factors, the shift and an operator's skill, 
were considered to be significant in the FBT process. 
While each noise factor has two levels, four replications 
in each trial run should be implemented to cover the 
noise space adequately. Owing to time and cost 
limitations, two combinations of the above noise factors 
were selected to illustrate the extreme cases of the effect 
the noise factors have on the manufacturing process 
performance of tap couplers. The two combinations of 
noise factors are defined as follows: 

N1 : day shift + veteran 
N2: night shift + freshman. 

Physical layout experiments were randomized to mini- 
mize systematic bias, and each experimental trial was 
carried out under conditions N1 and N2. Table 3 lists 
the collected data. 

A coupler contains numerous optical specifications. 
None of the specifications will be rejected provided the 
critical point is within the specification limits for the 
entire bandwidth of the wavelength. The critical points 
are also located at the band limits (1550 f 40 nm) for 
IL and PDL. Figure 4 reveals that optical performance 
can be optimized by analysing only the worst case. 
Notably, the four responses CR, EL, IL-A and IL-B 
were collected at three wavelength levels: 1510, 1550 

Level 2 is the existing level. and 1590nm. Table 3 lists the data for the worst 
Designated letter is so that the proprietary of the company which made case under the three wavelength conditions for further 
contribution to this work is not revealed. analysis. 

Table 3. Collected experimental data 

Response 

Control factor CR EL IL-A IL-B PDL-A PDL-B 

Trial A B C D E F N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 Nl N2 

1 1 1 1 I 1 1 98.644 98.775 0.053 0.047 19.715 20.239 0.104 0.090 0.180 0.170 0.010 0.010 
2 2 2 2 2 2 2 98.733 98.791 0.011 0.021 20.464 20.271 0.050 0.061 0.240 0.230 0.030 0.020 
3 3 3 3 3 3 3 98.798 98.728 0.060 0.084 20.287 20.201 0.103 0.139 0.310 0.280 0.020 0.020 
4 1 1 2 2 3 3 98.689 98.830 0.049 0.034 20.005 20.379 0.097 0.085 0.180 0.190 0.020 0.010 
5 2 2 3 3 1 1 98.748 98.783 0.025 0.097 20.367 20.458 0.079 0.151 0.200 0.270 0.020 0.010 
6 3 3 1 1 2 2 98.747 98.817 0.059 0.017 20.211 20.584 0.101 0.054 0.490 0.410 0.030 0.020 
7 1 2 1 3 2 3 98.797 98.831 0.025 0.160 20.326 20.440 0.066 0.211 0.200 0.220 0.030 0.020 
8 2 3 2 1 3 1 98.617 98.709 0.134 0.024 19.960 20.208 0.194 0.067 0.340 0.280 0.020 0.010 
9 3 1 3 2 1 2 98.738 98.783 0.045 0.056 20.135 19.964 0.100 0.109 0.270 0.250 0.020 0.010 
10 1 3 3 2 2 1 98.612 98.720 0.039 0.109 19.951 20.515 0.100 0.158 0.170 0.170 0.100 0.020 
11 2 1 1 3 3 2 98.954 98.768 0.075 0.100 20.302 20.205 0.145 0.146 0.210 0.240 0.010 0.010 
12 3 2 2 1 1 3 98.779 98.759 0.038 0.022 20.227 20.173 0.091 0.071 0.360 0.390 0.030 0.020 
13 1 2 3 1 3 2 98.720 98.632 0.068 0.075 20.350 19.735 0.117 0.056 0.210 0.220 0.020 0.010 
14 2 3 1 2 1 3 98.791 98.811 0.070 0.086 20.048 20.389 0.130 0.138 0.320 0.290 0.020 0.030 
15 3 1 2 3 2 1 98.662 98.793 0.190 0.083 19.772 20.094 0.248 0.136 0.290 0.280 0.030 0.030 
16 1 3 2 3 1 2 99.105 98.731 0.051 0.058 20.410 20.060 0.095 0.113 0.170 0.180 0.020 0.030 
17 2 1 3 1 2 3 98.682 98.758 0.060 0.059 19.687 20.245 0.114 0.101 0.210 0.240 0.010 0.020 
18 3 2 1 2 3 1 98.775 98.613 0.061 0.390 20.314 20.128 0.106 0.443 0.300 0.280 0.030 0.020 
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- Polarization Dependent Loss - Insertion Loss 

p z q 7 4  p i i q  
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I PDL Max I 

Wavelength (nm) 

Figure 4. Worst-case analysis of wavelength bandwidth. 

Table 4. Candidate BP neural models 

Structure Training RMSE Testing RMSE 

RMSE, root mean squared error (NeuralWare 2000). 

5.3. Model building of neural networks 

Based on a random selection of training and test data 
sets from the experimental results, a BP neural network 
model was constructed to model the functional relation- 
ship between the input control factors and output 
responses. A smaller learning rate and a larger momen- 
tum are recommended for finding the global minimum 
weights (Fausett 1994). The learning rate and momen- 
tum were set at 0.25 and 0.8, respectively, through 
trial and error. The candidate neural models were 
obtained using the Neuralworks Professional II/Plus 
(NeuralWare 2000) software for 6000 epochs (table 4). 
To achieve a balance between the training data set and 
generalized capabilities to the test data set, a neural 
model that provides relatively fewer training and testing 
RMSEs is wanted. Hence, the 6-7-6 neural model 
was selected to predict the output responses under 
all possible control factor parameter combinations. 
Figure 5 displays the development of training and test- 
ing root mean squared errors (RMSEs), along with 
learning iterations. Through the well-trained BP neural 
model, the output responses under all possible para- 
meter combinations of control factors can be accurately 
predicted. 

5.4. Optimization through GAS 

Among the six quality characteristics of interest, 
response CR b l )  has the corresponding target value 

0.25 

0.20 

0.15 
RMSE 

0.10 

0.05 

0.00 
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 

Iteration 

Figure 5. Development of training and testing RMSEs along 
with learning iterations for the selected 6-7-6 neural model. 

and its specification limits, while responses EL b2),  
IL-A b3), IL-B b4), PDL-A b 5 )  and PDL-B b 6 )  have 
upper specification limits. The exponential desirability 
functions were applied to solve the multi-response 
problem. Hence, we want- to maximize 

where d:s are calculated according to equations (5-8). 
Among the six quality responses, the insertion loss at 
the 1% tap port (IL-A) is considered the most difficult 
to attain in the premium-graded coupler specification. 
The personnel managing quality and reliability engineer- 
ing agreed on employing concave exponential functions 
for CR, EL, IL-B, PDL-A and PDL-B, and a convex 
exponential function for IL-A with the exponential con- 
stants, as shown in table 1. Hence, multiple responses 
can be transformed into a single response. The function 
h was set as the fitness function in the GA as further 
explored in the optimization stage (Stage 4). 

The six control factors in the broadband tap coupler 
manufacturing process were normalized to values 
between 0 and 1 and expressed using a real-valued 
string, i.e. chromosome. An initial population consisting 
of 20 chromosomes was randomly generated. The 
offspring were produced through predetermined essen- 
tial GA operators, including crossover and mutation. 
The crossover mechanism for real-valued strings is 
defined as 

offspring - - parent 
1 I + (1 - a)xgarent 

offspring - parent 
X2 - 1 - a )  + axparent 2 7 

where xYaRnt and xParent are matched chromosomes 
(parents) in the current generation, x ; ~ ~ ~ ~ ~ ~ ~ ~  and Xoffspring 

2 
are offspring, i.e. the candidate solutions in the next 
generation, and a is a random real number (0 5 a 5 1). 
And the mutation mechanism is randomly selected from 
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equations (12) and (1 3): 

where x~~~~~~~~ is the original chromosome, xmutated is the 
mutated chromosome, U and L are the upper and lower 
bounds of the allowable ranges for the input control 
factors, s,,, is the maximum number of generations 
for which the GAS implement, s is the current genera- 
tion in the GA, and r is a predefined disturbing 
coefficient (r 1 O), e.g. r = 2. 

The roulette approach was adopted as the selection 
function. After several pre-implementations, the GA 
procedure was repeated until the stop criterion, a 
change in the last 3000 trials of less than 1%, was satis- 
fied. The crossover and mutation rates were set at 0.6 
and 0.08, respectively. The optimal control factor setting 
might go beyond the experimental range. Hence, the 
upper and lower bounds for each control factor's allow- 
able range were set smaller than level 1 by 25% and 
larger than level 3 by 25%, respectively. The process 
engineers confirmed this as feasible. 

The GA procedure was implemented for 20 runs using 
the above information. Table 5 summarizes the imple- 
mentation results. The five combinations of control 
factor parameter settings that produced larger values 
for the objective functions (A), the corresponding desir- 
ability functions (d(z))  and their parameter combina- 
tions are shown in table 6. Following consultation with 
engineers, the optimal feasible control factor levels 
were set as A =  1.1991 x DS1, B =  1.5516 x PRLl, C =  

Table 5. Implementation results of GAS 

Item Data 

Largest h in 20 runs 0.5436 
Smallest h in 20 runs 0.4674 
Average h 0.5166 
Standard deviation of h 0.0205 

0.9983 x HMF1, D = 1.0184 x THI, E = 0.9405 x PHTl 
and F = 0.9791 x HP1. 

5.5. Con$rmation experiment and implementation 

A confirmation experiment was carried out by proces- 
sing 30 pieces of 1% (1199) single-window broadband 
tap couplers at the optimal parameter control factor 
levels. Table 7 lists the confirmatory results. All 30 
trials conformed to the 1 % (1199) single-window broad- 
band tap coupler specification and were thus graded 
as 'Premium'. We are confident that the obtained 
optimal process control factor parameter combination 
can be applied directly to fused optical coupler mass 
production. 

The optimal process control factor levels were imple- 
mented into a fused process pilot run phased in over 15 
days. Evaluations of 300 couplers revealed that the aver- 
age defect rate was reduced to 1 % from a previous 15%. 
The additional insertion loss (IL) flatness performance 
capability was also improved. If the IL flatness is 
included in the specification, the original yield of 60% 
will be improved to 80%. The quoted price for devices 
with such a tight specification is at least 75% higher 
than that for common specification product. This 
study is applicable to the common specification and 
also the extra benefit in increased sales price for the 
high specification product. The demand for the product 
used in this experiment is expected to be 20 000 pieces a 
month. This study optimized the fused process param- 
eters and increased throughout by 20% by increasing 
the yield rate. Given these achievements, monthly 
savings are expected to reach US$22400, well above 
the cost of the experiment, at only around US$lO 000. 

5.6. Comparison 

Conventionally, process engineers apply the Taguchi 
method to resolve a parameter design problem. For 
comparison, the experimental results were also analysed 
using the standard Taguchi method. Table 8 summarizes 
the control factor level combinations that maximize 
product quality based on each quality characteristic 
considered. A conflict occurred when optimizing the 

Table 6. Five combinations of control factor parameter settings that produce larger values for the obiective function 

Control factor d(z)  

NO. A B C D E F CR EL IL-A IL-B PDL-A PDL-B h 

1 1.1991 xDS1 1.5516xPRL1 0.9983xHMF1 1.0184xTH1 0.9405xPHT1 0.9791 xHP1 0.6042 0.9241 0.5436 0.8578 0.551 5 0.9908 0.5436 
2 1. 1809xDS1 1.5320xPRL1 0.9989xHMF1 1.0186xTH1 0.9430xPHT1 0.9728 xHP1 0.5940 0.9232 0.5382 0.8559 0.5807 0.9903 0.5382 
3 1.1963xDS1 1.5247xPRL1 0.9986xHMF1 1.0185xTH1 0.9744xPHT1 0.9819xHP1 0.5879 0.9218 0.5378 0.8541 0.5557 0.9904 0.5378 
4 1.1944xDS1 1.5479xPRL1 0.9988xHMF1 1.0181 xTH1 0.9469xPHT1 1.0016xHP1 0.6153 0.9300 0.5336 0.8652 0.5451 0.9913 0.5336 
5 1.1544xDS1 1.5563xPRL1 0.9985xHMF1 1.0184xTH1 0.9739xPHT1 0.9821 xHP1 0.5810 0.9258 0.533 1 0.8585 0.6171 0.9905 0.5331 
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Table 7. Confirmatory results 

Response 

Tube no. CR (%) EL (dB) IL-A (dB) IL-B (dB) PDL-A (dB) PDL-B (dB) Grade 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
2 5 
26 
27 
2 8 
29 
3 0 
Mean 
SD 

Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 
Premium 

Table 8. Combinations of control factor levels that optimize 
each quality characteristic individually 

Control factor A B  C D E F  

Response 
CR DS2 PRL2 HMF3 THl PHTl HP3 
EL DS2 PRLl HMF2 THl PHTl HP2 
IL-A DS3 PRLl HMF3 TH1 PHT3 HPI 
IL-B DS1 PRL2 HMF2 THI  PHTl HP2 
PDL-A DS1 PRLl HMF3 TH3 PHTl HPl 
PDL-B DS2 PRLl HMFl THl PHT3 HP2 

Optimal parameter level DS1 PRLl HMF2 TH2 PHT3 HP2 

control factor level combination while simultaneously 
considering all six desired quality characteristics. 
Following consultation with the engineers, the optimal 
control factor parameter levels were set as A = DS1,  
B = PRLI, C = HMF2, D = TH2, E =  PHT3 and 

F =  HP2. The acquired parameter settings were also 
implemented into a fused process pilot run over 
19 days. Evaluations of 192 couplers revealed that the 
average defect rate fell to 4.17%, well below the 
previous rate. However, this was still higher than 
the defect rate yielded by the proposed procedure. 

At Stage 4 in our proposed approach, the well-trained 
BP neural model and the exponential desirability func- 
tions were fed into GAS to obtain the optimal control 
factor parameter combination for the fused biconic 
taper process. The optimal control factor values are no 
longer restricted to the solution points composed of 
the discrete experimental levels, i.e. 36 = 729 points in 
the solution space because the optimal control factor 
combination might exist at any feasible solution point 
with continuous control factor values. To verify the 
effect of the optimization process, the proposed 
approach was repeated, skipping Stage 4. Table 9 
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Table 9. Five combinations of control factors parameter settings that produce larger values for the objective function (without stage 4) 

Control factor 44 

NO. A B C D E F CR EL IL-A IL-B PDL-A PDL-B h 

Table 10. Comparison results for different optimization approaches 

Approach 

Optimal setting of control factor 
Defect 

A B C D E F rate (%) 

Taguchi method DS1 PRLl HMF2 TH2 PHT3 Hp2 4.17 
Proposed approach (without Stage 4) DS2 PRL3 HMF, TH2 PHTl Hp3 2.50 
Proposed approach (with Stage 4)  1.1991 xDS1  1.5516~ PRL, 0 . 9 9 8 3 ~  HMFl 1 .Ol84x TH,  0 . 9 4 0 5 ~  PHTl 0.9791 xHPl  1.00 

summarizes the five control factor parameter setting 
combinations that produced larger values for the 
objective functions (A), the corresponding desirability 
functions (d(z))  and their parameter combinations. 
Following consultation with the engineers, the optimal 
control factor levels were determined as A =  DS2, 
B =  PRL3, C=HMF2, D =  TH2, E =  PHTl and 
F =  HP3. A confirmation experiment was then 
conducted and yielded 30 pieces of 1 % (1199) single- 
window broadband tap couplers at the optimal control 
factor parameter levels. The confirmatory results indi- 
cated that all of the 30 trials conform to the 1% (1199) 
single-window broadband tap coupler specification. 
Moreover, 28 of 3 0  couplers were graded as 
'Premium7. The others were graded as 'A7. The optimal 
process control factor levels were implemented in a 
fused process pilot run phase in over 20 days. 
Evaluation of 200 couplers revealed that the average 
defect rate was reduced to 2.5%. This was still higher 
than the 1.0% defect rate obtained using the proposed 
procedure with Stage 4. Table 10 summarizes these 
comparison results. 

6. Significance of the work 
The Taguchi method has proven to be an effective 

approach to producing high-quality products at 
relatively low cost. Parameter design, based on the 
Taguchi method, can determine the best process param- 
eter settings, thereby making the functional process 
performance insensitive to various sources of variation. 
Much of the published literature on Taguchi parameter 
design method is concerned with the optimization of a 

single response or quality characteristic that is often 
the most critical to consumers. When optimizing 
multiple quality characteristics, the objective is to 
determine the best factor settings that will simulta- 
neously optimize all of the quality characteristics of 
interest. The usual recommendation for optimizing a 
process/product with multiple quality characteristics 
is left to engineering judgment and verified using 
experiments. However, the introduction of human 
judgment increases the uncertainty in the decision- 
making process. This study proposes an integrated 
approach based on neural networks, exponential 
desirability functions and GAS for optimizing a multi- 
response parameter design problem. The neural 
network is used to explore the nonlinear multivariate 
relationship between the input control factors and 
output responses. The exponential desirability func- 
tions are used to unify the multiple responses. By 
defining a desirability function as a fitness function, 
GAS can be performed to obtain the optimal control 
factor level combination. The proposed approach aims 
to identify the input control factor settings and thus max- 
imize the overall minimal level of satisfaction with respect 
to all of the responses. The optimal control factor values 
are no longer restricted to the solution points composed 
of discrete experimental levels. The optimal solution 
could exist at any feasible solution point with continuous 
control factor values. 

7. Conclusions 
This study proposed an integrated approach based on 

neural networks, exponential desirability functions and 
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GAS to optimize a parameter design problem with 
multiple responses. The neural networks were used to 
explore the nonlinear multivariate relationship between 
the input control factors and output responses. The 
exponential desirability functions were used to unify 
the multiple responses. The GAS were applied to find 
the optimal control factor combination with continuous 
values. The effectiveness of the proposed procedure was 
demonstrated using a case study undertaken to optimize 
fused process parameters. This process was used in the 
development of FBT couplers to enhance the perfor- 
mance and reliability of the 1% (1199) single-window 
broadband tap coupler. A fused process pilot run over 
15 days was implemented. Evaluation of 300 couplers 
revealed that the average defect rate was reduced to 
just 1.0 O/O from over 1 5 % previously. The implemen- 
tation results confirmed that the proposed procedure 
outperforms the conventional Taguchi method in 
resolving multi-response problems. Monthly savings 
from implementing the proposed procedure are expected 
to exceed US$22400. The expenditure for this experi- 
ment was below US$10 000. This study was also success- 
fully applied to develop the optimal fused parameters 
for other coupling ratio taper couplers, such as 2/98, 
3/97, 4/96,. . . , 50150. 
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