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Abstract

We consider exact tests with several equicorrelation error structures and combination of

equicorrelation covariance structures in simple growth curve model having single or multiple

treatments and in one-way ANOVA model. Exact inferences using generalized p-values are

obtained. Tests for equal treatment effects under equal equicorrelation error term and for

unequal equicorrelation error terms are also developed. Two examples are given to illustrate

the importance of our results. According to our findings, we would be better off dropping the

assumption of equal variance when the heteroscedasticity is serious. Therefore, tests based on

generalized p-values without the assumption of equal variance are much more powerful than

tests with this assumption.
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1. Introduction

Approximate inferences have been extensively used in applied sciences involving
regression analysis. However, the estimation and testing procedures based on
inefficient ordinary least squares (OLS) estimates incur inefficient forecasts. On the
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other hand, the approximate inference always has the worse size and power problems
for the estimation of blockwise heteroscedasticity. If the effects of the variances are
sufficiently strong it may lead to an inappropriate standard regression technique. As
Krutchkoff [4] pointed out, transformations cannot adjust the heteroscedasticity
problem if the data are already normal. If one attempts to solve the problem by
performing weighted least squares regression with estimated variances, the required
size of the test can become much larger than the intended level. Therefore, exact and
size-guaranteed tests as well as intervals for models involving variance components
deserved further attention.
Models of treatments or regression coefficients for analyzing Gaussian repeated

measures have been studied intensively in the last three decades. More recently, tests
and confidence intervals obtained using generalized p-values have been shown, via
simulation, to possess great size and power performances (cf. [1–3,7,10,12]).
Consider repeated observations taken over time for each of the several subjects.
The exact test based on sufficient statistics for regression models with an intraclass
correlation structure is possible by using generalized p-values, although it is
unavailable by conventional methods. Chi and Weerahandi [2] and Weerahandi and
Berger [11] developed exact tests for simple growth curve models with usual
independent residual error structure by generalized p-values. It is very valuable to
examine the exact tests using generalized p-values on regression coefficients and
comparing a number of treatments for simple growth curve models with
equicorrelation error structure. This covariance structure could be useful for growth
curve data when the observations are a mixture of several populations [5]. However,
this area needs further investigation. In particular, these results could be important
for the extension to the situations in which the variance varies over time.
In this paper, we will show that such an exact inference is possible using

generalized p-values for a simple growth curve model with equicorrelation error
terms or any finite combination of equicorrelation covariance structures, which is
widely used in biomedical and pharmaceutical research areas for which only
approximate methods are available. Tests for equal treatment effects under unequal
equicorrelation error terms are also developed. Our approach is based on generalized
p-values. Section 2 presents the simple growth curve model of complete repeated
observations for a single treatment. A test for equality of one or several regression
coefficients to some prespecified values using generalized p-values is derived. Section
3 extends the model to the unbalanced multiple treatments. Two tests of equal
treatment effects using generalized p-values under the equal equicorrelation error
variance assumption as well as unequal equicorrelation error variances are
developed. Section 4 is devoted to one-way layout model. Two illustrative examples
are given in Section 5, and some conclusions are provided in Section 6.

2. Single treatment group in a simple growth curve model

We consider a single treatment group in a simple linear growth curve model. Let
Yjt denote the measurement on unit j at time t; aj be the random effects associated
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with unit j; X t be a set of covariates, b be the fixed effects of dimension K ; and ejt be

the error term with equicorrelation structure. Then, the model can be formulated as

Yjt ¼ X 0
tb þ aj þ ejt; j ¼ 1;y; J; t ¼ 1;y;T : ð2:1Þ

In matrix notations

Y j ¼ Xb þ aj1T þ ej; ð2:2Þ

where X ¼ ðX1;X2;y;XTÞ0 is the T � K design matrix whose first column is 1T so

that a fixed intercept is included and Y j ¼ ðYj1;Yj2;y;YjT Þ0; ejBNð0;ReÞ;
ajBNð0; s2aÞ vary independently and Re ¼ s2e ½ð1� rÞIT þ r1T1

0
T 	; with �1

T�1oro1

which is unknown.
Hence, the covariance matrix of Y j is

CovðY jÞ ¼R ¼ s2a1T1
0
T þ Re ¼ s2eð1� rÞIT þ ðrs2e þ s2aÞ1T1

0
T

¼

s2e þ s2a rs2e þ s2a ? rs2e þ s2a
rs2e þ s2a & & ^

^ & & rs2e þ s2a
rs2e þ s2a ? rs2e þ s2a s2e þ s2a

0
BBB@

1
CCCA: ð2:3Þ

An exact test for a simpler model with r ¼ 0 was developed using generalized p-
values by Weerahandi and Berger [11]. Furthermore, we will derive an exact test for
the more challenging model with any finite combination of equicorrelation

covariance structures with �1
T�1oro1 by using generalized p-values.

In testing the fixed treatment effects H0 : bkpbn

k; where b
n

k is a pre-specified value

and k ¼ 1;y;K ; let f2 ¼ s2eð1� rÞ þ Tðrs2e þ s2aÞ; then

R�1 ¼ ½s2eð1� rÞ	�1 IT � f2 � s2eð1� rÞ
Tf2

1T 10
T

� �
ð2:4Þ

is a function of s2eð1� rÞ and f2: The residual sum of squares

SSE ¼
XT

t¼1

XJ

j¼1
ðYjt � X 0

t
#bÞ2 ¼ S2

e;r þ S2
r;a;

where S2
e;r ¼

PT
t¼1
PJ

j¼1½Yjt � X 0
t
#b � ð %Yj: � %Y::Þ	2 and S2

r;a ¼ T
PJ

j¼1ð %Yj: � %Y::Þ2 are

distributed as

W1 ¼
S2

e;r

s2eð1� rÞBw2JðT�1Þ�Kþ1 and W2 ¼
S2
r;a

f2
Bw2J�1

with #b ¼ ðX 0R�1XÞ�1X 0R�1 %Y ¼ ðX 0XÞ�1X 0 %YBNðb; ðX
0R�1XÞ�1

J
Þ; %Y ¼ 1

J

PJ
j¼1 Y j ;

%Yj: ¼ 1
T

PT
t¼1 Yjt; and %Y:: ¼ 1

J

PJ
j¼1 %Yj::

It is noted that #b is also the maximum likelihood estimator (MLE) and the
generalized least squares estimator (GLSE) [6].
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Define

Sk ¼ Sðs2eð1� rÞ;f2Þ ¼ ðX 0R�1XÞ�1kk

J

 !1
2

; k ¼ 1;y;K : ð2:5Þ

Since (2.4) depends on s2eð1� rÞ and f2; but not on r by itself, the generalized

p-value for testing H0 : bkpbn

k can be deduced in a similar manner from the r ¼ 0

case with S2
e replaced by S2

e;r and S2
e;t replaced by S2

r;a: The generalized p-value can be

expressed as

p ¼P
#bk � bk

Sðs2eð1� rÞ;f2Þ
X

bk � bn

k

S s2eð1� rÞ
s2e;r

S2
e;r
;f2

s2r;a

S2
r;a

 !
8>>>><
>>>>:

9>>>>=
>>>>;

¼ 1� EB Ftu

bk � bn

k

S
s2e;r
B
;

s2r;a
1�B

� � ffiffiffi
u

p
2
64

3
75

8><
>:

9>=
>;; ð2:6Þ

where bk; s2e;r; s2r;a are the observed values of #bk;S2
e;r;S2

r;a; respectively, ZBNð0; 1Þ;
B ¼ W1

W
BBetaðJðT�1Þ�Kþ1

2
; J�1

2
Þ;W ¼ W1 þ W2Bw2JT�K ; and Ftu is the cumulative

distribution function (cdf) of the t-distribution with u ¼ JT � K degrees of freedom.
Generalized confidence intervals for the parameters can be deduced from (2.6)

as well. For example, the generalized 100g% confidence interval of bk that is

symmetric (and shortest) about the point estimate bk is ½bk � cð1þgÞ=2ðs2e;r; s2r;aÞ;
bk þ cð1þgÞ=2ðs2e;r; s2r;aÞ	; with cð1þgÞ=2 ¼ cð1þgÞ=2ðs2e;r; s2r;aÞ satisfying the equation

1þ g
2

¼P
#bk � bk

Sðs2eð1� rÞ;f2Þ
p

cð1þgÞ=2

S
s2e;r
B
;

s2r;a
1�B

� �
8><
>:

9>=
>;

¼EB Ftu

cð1þgÞ=2

S
s2e;r
B
;

s2r;a
1�B

� � ffiffiffi
u

p
2
64

3
75

8><
>:

9>=
>; ð2:7Þ

Note that the model can be extended to any finite combination of equicorrelation
covariance structures. Let

Y j ¼ X b þ aj þ ej; ð2:8Þ

where ajBNð0;RaÞ and ejBNð0;ReÞ vary independently, Ra ¼ s2a½ð1� r1ÞIT þ
r11T1

0
T 	 and Re ¼ s2e ½ð1� r2ÞIT þ r21T1

0
T 	: Then, CovðY jÞ ¼ R ¼ ½ð1� r1Þs2a þ ð1�

r2Þs2e 	IT þ ðr1s2a þ r2s
2
eÞ1T1

0
T and R�1 ¼ 1

f2
2

½IT � f2
1�f2

2

Tf2
1

1T1
0
T 	 where f2

1 ¼ Tðr1s2a þ
r2s

2
eÞ þ f2

2; f
2
2 ¼ ð1� r1Þs2a þ ð1� r2Þs2e with �1

T�1or1o1 and �1
T�1or2o1: With f2
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replaced by f2
1 and s2eð1� rÞ by f2

2 in ð2:4Þ; we can obtain the same equation as (2.6)
to express the generalized p-value for the extended model (2.8).
It is noted that the generalized F -test for testing the hypothesis of the form

H0 : b ¼ bn; where bn is pre-specified, can be carried out in a similar manner. Define

S̃ðs2eð1� rÞ;f2Þ ¼ ðX 0R�1XÞ�1

J
;

the generalized p-values appropriate for testing the null hypothesis is given by

p ¼ 1� EB FK ;JT�K

JT � K

K
ðb � bnÞ0 S̃

s2e;r

B
;

s2r;a

1� B

 !" #�1
ðb � bnÞ

8<
:

9=
;

2
4

3
5

8<
:

9=
;;

where b is the observed vector of #b and the expectation is with respect to the beta
random variable defined by (2.6).

3. Multiple treatments group in the simple growth curve models

We next consider the test for the fixed treatment effects H0 : b1 ¼ ? ¼ bI in the
following model. Let Yijt denote the measurement at the tth time point on the jth

subject for the ith treatment, aij be the random effects, bi be the fixed effects of

dimension K ; and eijt be the error term. Then, the model can be formulated as

Yijt ¼ X 0
itbi þ aij þ eijt; i ¼ 1;y; I ; j ¼ 1;y; ni; t ¼ 1;y;T : ð3:1Þ

In matrix notations

Y ij ¼ X ibi þ aij1T þ eij ; ð3:2Þ

where Y ij ¼ ðYij1;Yij2;y;YijT Þ0; X i ¼ ðX i1;X i2;y;X iT Þ0; eijBNð0; ReiÞ; aijB
Nð0; s2aÞ vary independently, and Rei ¼ s2i ½ð1� rÞIT þ r1T1

0
T 	:

The covariance matrix of Y ij is

CovðY ijÞ ¼Ri ¼ s2a1T1
0
T þ Rei

¼ s2i ð1� rÞIT þ ðrs2i þ s2aÞ1T1
0
T ; i ¼ 1;y; I ð3:3Þ

and

R�1
i ¼ ½s2i ð1� rÞ	�1 IT � f2

i � s2i ð1� rÞ
Tf2

i

1T1
0
T

" #
; ð3:4Þ

with f2
i ¼ s2i ð1� rÞ þ Tðrs2i þ s2aÞ:

The test was considered by Chi and Weerahandi [2] by generalized p-values with
r ¼ 0; X i ¼ X ; ni ¼ n for i ¼ 1;y; I : We will extend the test to the unbalanced
data and unequal design matrices for both equal equicorrelation error term and
heteroscedastic error variances.
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3.1. Equal equicorrelation error term

In this case, s21 ¼ ? ¼ s2I ¼ s2e ; then

CovðY ijÞ ¼ R ¼ s2a1T1
0
T þ Re ¼ s2eð1� rÞIT þ ðrs2e þ s2aÞ1T1

0
T ; i ¼ 1;y; I

ð3:5Þ
and

R�1 ¼ ½s2eð1� rÞ	�1 IT � f2 � s2eð1� rÞ
Tf2

1T1
0
T

� �
; ð3:6Þ

with f2 ¼ s2eð1� rÞ þ Tðrs2e þ s2aÞ:
The residual sum of squares is

SSE ¼
XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#biÞ2 ¼ S2

e;r þ S2
r;a;

where S2
e;r ¼

PI
i¼1
Pni

j¼1
PT

t¼1½Yijt � X 0
it
#bi � ð %Yij: � %Yi::Þ	2 and S2

r;a ¼
T
PI

i¼1
Pni

j¼1ð %Yij: � %Yi::Þ2 are distributed as

V ¼
S2

e;r

s2eð1� rÞBw2u1 and U ¼
S2
r;a

f2
Bw2u2 ; ð3:7Þ

with u1 ¼ T
PI

i¼1 ni � IK �
PI

i¼1 ni þ I ; u2 ¼
PI

i¼1 ni � I : A proof of Eq. (3.7) is

given in the appendix. The proof of the independence of U and V is also provided.
Furthermore,

#bi ¼ðX 0
iR

�1X iÞ�1X 0
iR

�1 %Y i:

¼ðX 0
iX iÞ�1X 0

i
%Y i:BN bi;

ðX 0
iR

�1X iÞ�1

ni

 !
; ð3:8Þ

where %Y i: ¼ 1
ni

Pni

j¼1 Y ij ; %Y ij: ¼ 1
T

PT
t¼1 Yijt; and %Yi:: ¼ 1

ni

Pni

j¼1 %Yij:; i ¼ 1;y; I : Letting

S�1=2 denote a positive definite square root matrix of S�1 and pre-multiplying both
sides of Eq. (3.2), we can rewrite the model as

*Y ij ¼ *X ibi þ eij ;

where eijBNð0; ITÞ: Let S̃2
12ðs2eð1� rÞ;f2Þ be the standardized residual sum of squares

under null hypothesis and S̃2
1;2ðs2eð1� rÞ;f2Þ ¼ S̃2

1ðs2eð1� rÞ;2 Þ þ?þ S̃2
I ðs2e

ð1� rÞ;f2Þ be the standardized residual sum of squares under the alternative based

on the standardized model, then S̃2
12ðs2eð1� rÞ;f2ÞBw2

Tð
PI

i¼1 niÞ�K
and S̃2

1;2ðs2e

ð1� rÞ;f2ÞBw2
Tð
PI

i¼1 niÞ�IK
: The potential extreme region defined by the inequality

S̃2
12ðs2eð1� rÞ;f2ÞXs̃212

s2e;r

S2
e;r=s2eð1� rÞ;

s2r;a

S2
r;a=f

2

 !( )
ð3:9Þ
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is a well-defined subset of the sample space, where s2e;r; s2r;a are the observed values of

S2
e;r;S2

r;a; respectively, and the observed sample point falls on the boundary of the

extreme region. Therefore, the generalized p-value for testing H0 : b1 ¼ ? ¼ bI can be
calculated as

p ¼Pr
S̃2
12ðs2eð1� rÞ;f2Þ

U þ V
Xs̃212

s2e;r

V=ðU þ VÞ;
s2r;a

U=ðU þ VÞ

 !( )

¼ 1� EB Fr1;r2

r2

r1
s̃212

s2e;r

B
;

s2r;a

1� B

 !
� 1

( )" #( )
; ð3:10Þ

where Fr1;r2 is the cdf of the F distribution with degrees of freedom r1 ¼ ðI � 1ÞK and

r2 ¼ T
PI

i¼1 ni � IK: The expectation is with respect to the beta random variable

B ¼ V

U þ V
BBeta

u1
2
;
u2
2

� �
;

where u1 ¼ T
PI

i¼1 ni � IK �
PI

i¼1 ni þ I ; u2 ¼
PI

i¼1 ni � I :

3.2. Heteroscedastic error variances

In the case of the heteroscedastic error variances, we have

CovðY ijÞ ¼ Ri ¼ s2a1T1
0
T þ Rei

¼ s2i ð1� rÞIT þ ðrs2i þ s2aÞ1T1
0
T ; i ¼ 1;y; I ð3:11Þ

and

R�1
i ¼ ½s2i ð1� rÞ	�1 IT � f2

i � s2i ð1� rÞ
Tf2

i

1T1
0
T

" #
; ð3:12Þ

with f2
i ¼ s2i ð1� rÞ þ Tðrs2i þ s2aÞ: The residual sum of squares is

SSE ¼
XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#biÞ2 ¼

XI

i¼1
S2

i þ
XI

i¼1
L2

i ;

where S2
i ¼

Pni

j¼1
PT

t¼1½Yijt � X 0
it
#bi � ð %Yij: � %Yi::Þ	2 and L2

i ¼ T
Pni

j¼1ð %Yij: � %Yi::Þ2;
i ¼ 1;y; I are distributed as Vi ¼ S2

i

s2
i
ð1�rÞBw2Tni�K�niþ1 and Ui ¼ L2

i

f2
i

Bw2ni�1: It is easy

to see that

U ¼
XI

i¼1
UiBw2u and H ¼

XI

i¼1
ðUi þ ViÞBw2o;

where

u ¼
XI

i¼1
ni � I ; o ¼ T

XI

i¼1
ni � IK : ð3:13Þ

S.-H. Lin, J.C. Lee / Journal of Multivariate Analysis 84 (2003) 351–368 357



Furthermore,

#bi ¼ ðX 0
iX iÞ�1X 0

i
%Y i:BN bi;

ðX 0
iR

�1
i X iÞ�1

ni

 !
; ð3:14Þ

with %Y i: ¼ 1
ni

Pni

j¼1 Y ij ; %Yij: ¼ 1
T

PT
t¼1 Yijt; and %Yi:: ¼ 1

ni

Pni

j¼1 %Yij: i ¼ 1;y; I :

Let S̃2
12ðs21ð1� rÞ;y; s2I ð1� rÞ;f2

1;y;f2
I Þ be the standardized residual sum

of squares under null hypothesis and S̃2
1;2ðs21ð1� rÞ;y;s2I ð1� rÞ;f2

1;y;f2
I Þ ¼

S̃2
1ðs21ð1� rÞ;f2

1Þ þ?þ S̃2
I ðs2I ð1� rÞ;f2

I Þ be the standardized residual sum of

squares under the alternative. The potential extreme region for testing
H0 : b1 ¼ ? ¼ bI is

S̃2
12ðs21ð1� rÞ;y; s2I ð1� rÞ;f2

1;y;f2
I Þ

!
Xs̃212

s21
S2
1=s

2
1ð1� rÞ;y;

s2I
S2

I =s
2
I ð1� rÞ;

l21
L2
1=f

2
1

;y;
l2I

L2
I=f

2
I

 !)
: ð3:15Þ

The observed sample point ðs21;y; s2I ; l
2
1;y; l2I Þ falls on the boundary of this set. The

generalized p-value for testing H0 : b1 ¼ ? ¼ bI can be expressed as

p ¼Pr
S̃2
12ðs21ð1� rÞ;y; s2I ð1� rÞ;f2

1;y;f2
I Þ

H

"

X s̃212
s21

V1=H
;y;

s2I
VI=H

;
l21

U1=H
;y;

l2I
UI=H

# $%

¼Pr
S̃2
12 � S̃2

1;2

S̃2
1;2

Xs̃212
s21

V1=H
;y;

s2I
VI=H

;
l21

U1=H
;y;

l2I
UI=H

# $
� 1

( )

¼ 1� EB1;y;B2I�1 Fu1;u2
u2
u1

s̃212
s21

B1B2?B2I�1
;y;

s2I
ð1� BI�1ÞBI?B2I�1

;

#"�"
l21

ð1� BI ÞBIþ1?B2I�1
;y;

l2I
ð1� B2I�1Þ

$
� 1

%�%
; ð3:16Þ

where s21;y; s2I ; l
2
1;y; l2I are the observed values of S2

1 ;y;S2
I ;L

2
1;y;L2

I ; Wt ¼

Vt; tpI

Ut�I ; t4I

"
; qt ¼

Tnt � nt � K þ 1; tpI

nt�I � 1; t4I

"
; WtBw2qt

; t ¼ 1;y; 2I ; Fu1;u2 is the

cdf of the F distribution with degrees of freedom u1 ¼ ðI � 1ÞK and u2 ¼
T
PI

i¼1 ni � IK; and the expectation is taken with respect to the independent beta

random variables

Bt ¼
Pt

i¼1 WiPtþ1
i¼1 Wi

BBeta

Pt
i¼1 qi

2
;
qtþ1
2

# $
; t ¼ 1;y; 2I � 1:

Moreover, the model can be extended to the following:

Y ij ¼ X ibi þ aij þ eij;
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where aijBNð0;RaÞ and eijBNð0;ReiÞ vary independently with Ra ¼ s2a½ð1� r1ÞIT þ
r11T1

0
T 	; Rei ¼ s2i ½ð1� r2ÞIT þ r21T1

0
T 	; and �1

T�1or1o1; �1
T�1or2o1: Let f2

1i ¼
Tðr1s2a þ r2s

2
i Þ þ f2

2i; f
2
2i ¼ ð1� r1Þs2a þ ð1� r2Þs2i and f2

1 ¼ Tðr1s2a þ r2s
2
eÞ þ f2

2;

f2
2 ¼ ð1� r1Þs2a þ ð1� r2Þs2e ; then

CovðY ijÞ ¼ Ri ¼ ½ð1� r1Þs2a þ ð1� r2Þs2i 	IT þ ðr1s2a þ r2s
2
i Þ1T1

0
T ;

and R�1
i ¼ 1

f2
2i

½IT � f2
1i�f2

2i

Tf2
1i

1T1
0
T 	 under unequal covariances.

It is important to point out that replacing f2 by f2
1 and s2eð1� rÞ by f2

2 in (3.6) for

the equal equicorrelation covariance model, then we can get the same equation as
(3.10) to express the generalized p-value for testing H0 : b1 ¼ ? ¼ bI : Similarly,

replacing f2
i by f2

1i and s2i ð1� rÞ by f2
2i in (3.12) for the unequal equicorrela-

tion covariance model, then we can get the same equation as (3.16) for testing
H0 : b1 ¼ ? ¼ bI :

3.3. Multiple comparisons and generalized confidence region

In this subsection, we demonstrate multiple comparisons in the situation when the
hypothesis of equal treatment effect has been rejected at a certain nominal level.
Based on the Scheffe’s methods, the multiple comparisons as well as pre-planned
comparisons can be extended to the cases when the variances are unequal.

Consider the null hypothesis H0 :
PI

i¼1 cibi ¼ 0 for all ciAR such that
PI

i¼1 ci ¼ 0:

It is evident that

XI

i¼1
ci
#biBN

XI

i¼1
cibi;

XI

i¼1
c2i
ðX 0

iR
�1
i X iÞ�1

ni

 !
: ð3:17Þ

Define Siðs2i ð1� rÞ;f2
i Þ ¼

ðX 0
iR

�1
i X iÞ�1
ni

; i ¼ 1;y; I ; then the generalized p-value for

testing the null hypothesis can be obtained by

p ¼ 1� EB1;y;B2I�1 Fu1;u2
u2
u1

XI

i¼1
cibi

 !0 XI

i¼1
c2i Si

s2i
Ri

;
l2i

RIþi

# $" #�18<
:

2
4

8<
:

�
XI

i¼1
cibi

 !)#)
; ð3:18Þ

where s2i ; l
2
i ; bi are the observed values of S2

i ;L
2
i ;

#bi; respectively, Fu1;u2 is the cdf of

the F distribution with degrees of freedom u1 ¼ ðI � 1ÞK and u2 ¼ T
PI

i¼1 ni � IK ;

and the expectation is taken with respect to the random variables

R1 ¼ B1B2?B2I�1 and R2I ¼ 1� B2I�1;

Ri ¼ ð1� Bi�1ÞBi?B2I�1; i ¼ 2;y; 2I � 1; ð3:19Þ
where Bi; i ¼ 1;y; 2I � 1 are the independent beta random variables defined by
(3.16). It is noted that the solution to the problem of pre-planned comparisons can
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be deduced from (3.18) by simply replacing u1 by the appropriate degrees of freedom
(u1 ¼ K if just one comparison is planned).
Moreover, a set of simultaneous generalized confidence region with confidence

coefficient 1� a for the linear contrasts,
PI

i¼1 cibi with
PI

i¼1 ci ¼ 0; can be obtained

by solving the equation

1� a ¼EB1;y;B2I�1 Fu1;u2
u2
u1

XI

i¼1
cibi �

XI

i¼1
cibi

 !0"(

�
XI

i¼1
c2i Si

s2i
Ri

;
l2i

RIþi

# $" #�1 XI

i¼1
cibi �

XI

i¼1
cibi

 !9=
;; ð3:20Þ

where s2i ; l
2
i ; bi are the observed values of S2

i ;L
2
i ;

#bi; respectively, Fu1;u2ðaÞ is the

ð1� aÞth quantile of the F distribution with degrees of freedom u1 ¼ ðI � 1ÞK and

u2 ¼ T
PI

i¼1 ni � IK ; and Ri; i ¼ 1;y; 2I are defined in (3.19).

4. One-way ANOVA under heteroscedastic error variances

For the special case X ¼ 1T ; bi ¼ mi; i ¼ 1;y; I ; then the model Y ij ¼ X ibi þ
aij1T þ eij becomes

Y ij ¼ mi1T þ ai1T þ eij ¼
mi

^

mi

0
B@

1
CAþ

ai

^

ai

0
B@

1
CAþ

eij1

^

eij1

0
B@

1
CA;

i ¼ 1;y; I ; j ¼ 1;y; ni; t ¼ 1;y;T ; ð4:1Þ

where eijBNð0;ReiÞ; Rei ¼ s2i ½ð1� rÞIT þ r1T1
0
T 	; and CovðY ijÞ ¼ Ri with

R�1
i ¼ ½s2i ð1� rÞ	�1 IT � f2

i � s2i ð1� rÞ
Tf2

i

1T1
0
T

" #
ð4:2Þ

and f2
i ¼ s2i ð1� rÞ þ Tðrs2i þ s2aÞ: Since #mi ¼ %Yi::BNðmi;

f2
i

Tni
Þ; the test of the fixed

treatment effects H0 : m1 ¼ ? ¼ mI can be reduced to the one-way ANOVA under
the heteroscedastic error variance case. As discussed in [9], ANOVA under
heteroscedasticity (in which r ¼ 0 and ai ¼ 0; i ¼ 1;y; I) can be solved by the
generalized p-values. In this paper, the treatment of model (4.1) is an extension of the
one-way ANOVA under heteroscedastic error variances.

4.1. The generalized F-test for one-way ANOVA

The residual sum of squares

L2
i ¼ T

Xni

j¼1
ð %Yij: � %Yi::Þ	2; i ¼ 1;y; I
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is distributed as

U i ¼
L2

i

f2
i

Bw2ni�1:

Now U ¼
PI

i¼1 U iBw2PI

i¼1 ni�I
and define the standardized between-group sum of

squares

S̃2
B ¼ S̃2

Bðf
2
1;y;f2

I Þ ¼
XI

i¼1

Tni

f2
i

%Y2
i:: �

ð
PI

i¼1
Tni

f2
i

%Yi::Þ2PI
i¼1ðTni

f2
i

Þ
; ð4:3Þ

where f2
i ¼ s2i ð1� rÞ þ Tðrs2i þ s2aÞ and s̃2B is the observed value of S̃2

B:
The potential extreme region for H0 : m1 ¼ ? ¼ mI is

S̃2
Bðf

2
1;y;f2

I ÞXs̃2B
l21

L2
1=f

2
1

;y;
l2I

L2
I=f

2
I

 !( )
: ð4:4Þ

The observed sample point ðl21;y; l2I Þ of ðL2
1;y;L2

I Þ falls on the boundary of this

set. The generalized p-value can be expressed as

p ¼Pr S̃2
Bðf

2
1;y;f2

I ÞXs̃2B
l21

L2
1=f

2
1

;y;
l2I

L2
I=f

2
I

 !( )

¼Pr
S̃2

Bðf
2
1;y;f2

I Þ
U

Xs̃2B
l21

U1=U
;y;

l2I
UI=U

# $" %

¼ 1� EB1;y;BI�1 Fu1;u2
u2
u1

s̃2B
l21

B1B2?BI�1
;y;

#"�"
l2k

ð1� Bk�1ÞBk?BI�1
;y;

l2I
ð1� BI�1Þ

$%�%
; ð4:5Þ

where Fu1;u2 is the cdf of the F distribution with degrees of freedom u1 ¼ I � 1 and

u2 ¼
PI

i¼1 ni � I : The expectation is taken with respect to the independent beta

random variables

Bt ¼
Pt

i¼1 UiPtþ1
i¼1 Ui

BBeta

Pt
i¼1 ni � t

2
;
ntþ1 � 1

2

# $
; k ¼ 1;y; I : ð4:6Þ

Note that the model can also be extended to the following: Y ij ¼ mi1T þ aij þ eij ;

with aijBNð0;RaÞ and eijBNð0;ReiÞ vary independently where Ra ¼ s2a½ð1� r1ÞIT þ
r11T1

0
T 	; Rei ¼ s2i ½ð1� r2ÞIT þ r21T1

0
T 	; with �1

T�1or1o1 and �1
T�1or2o1:

Let f2
1i ¼ Tðr1s2a þ r2s

2
i Þ þ f2

2i and f2
2i ¼ ð1� r1Þs2a þ ð1� r2Þs2i : Then, repla-

cing f2
i by f2

1i and s2i ð1� rÞ by f2
2i in (4.2), we can get the same result as (4.5) for

testing H0 : m1 ¼ ? ¼ mI :
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4.2. Behrens–Fisher problem

In case I ¼ 2; the test for H0 : m1 ¼ m2 can be treated as an extended Behrens–
Fisher problem.
The generalized p-value for testing H0 : m1 ¼ m2 is given by

p ¼ 1� EB F1;n1þn2�2 ðn1 þ n2 � 2Þs̃2B
l21
B
;

l22
ð1� BÞ

# $� �" %
; ð4:7Þ

where

s̃2B
l21
B
;

l22
ð1� BÞ

# $
¼ ð %Y1:: � %Y2::Þ2

l21=B

Tn1
þ l22=ð1� BÞ

Tn2

# $�1

; ð4:8Þ

F1;n1þn2�2 is the cdf of the F distribution with 1 and n1 þ n2 � 2 degrees of freedom

and the expectation is with respect to the beta random variable

B ¼ U1

U
BBeta

n1 � 1

2
;
n2 � 1

2

# $
:

Note that the test can be reduced to Tsui and Weerahandi [8] by generalized
p-values with r ¼ 0; and T ¼ 1:

5. Illustrative examples

Two numerical examples are given to illustrate the advantages of the proposed
tests when the assumption of equal variance is violated. In these examples, data are
generated from normal distributions under the assumed models (4.1) and (3.1),
respectively. In the first example, we consider the performance of the F -test with
respect to Type I error in the one-way ANOVA with unequal error variances. In the
second example, we consider performance of the F -test with respect to Type II error
in the growth curve model involving three treatment groups with heteroscedastic
error variances.

5.1. Example 1

First, the data are generated assuming model (4.1) Y ij ¼ mi1T þ ai1T þ eij with

i ¼ 1;y; 5; t ¼ 1; 2; sa ¼ 2; r ¼ 0:2: We will consider the performance of the
F -test with respect to Type I error in the one-way ANOVA with unequal error
variances; that is, we will consider the rejection probability when the null hypothesis
is actually true. The larger the p-value, the stronger the evidence to support the null
hypothesis. Since the test has the exact specified size when the variances are equal, its
performance should be studied when the variances are quite different. We shall
demonstrate the test with a set of simulated data from normal distributions. The
problem of comparing three means is considered. The mean of each distribution is
taken to be twenty so that the null hypothesis H0 : m1 ¼ m2 ¼ m3 ¼ 20 is true. Table 1
shows the results of a simulated experiment in which data are generated from normal
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distributions with mean 20 and various values of ni; si; fi; i ¼ 1;y; 5; as
indicated. Meanwhile, Table 1 provides the summary statistics, namely treatment

means %Xi:: and residual sum of squares l2i corresponding to each value of fi:
Three treatments out of five in Table 1 are compared at a time. When the classical

ANOVA F -test is used under the assumption of equal variance, the p-values are
denoted by pe: On the other hand, when (4.5) is used without the assumption of
equal variance, the p-values are denoted by pu: It is noted that pu are computed by
Monte Carlo integration with 5000 sets of beta random numbers. The results are
displayed in Table 2. The absolute error bounds, shown within parentheses, are

computed by 3� spffiffiffi
N

p where N is the number of replications and sp is the simulated

standard deviation. With probability 0.999, the estimated p-values are accurate up to
the error bound. It is noted that the classical F -test tends to reject the null hypothesis

if the f2 of the treatments are substantially different. Even in comparing treatments
B, C and D, this test suggests that we have strong evidence to reject the null
hypothesis although the data are generated with the hypothesis being true. It is
important to point out that pu is much bigger than the corresponding pe: Thus,
compared with the classical F -test, the procedure of generalized p-values provides a
more efficient way to detect the significance of mean differences.

Table 2

P-values with and without assumptions of equal variance for one-way ANOVA

Treatments compared pe pu

A, B, and C 0.4401 0.5699(0.003)

A, B, and D 0.0003 0.0952(0.004)

A, B, and E 0.2928 0.6246(0.003)

A, C, and D 0.0014 0.0980(0.005)

A, C, and E 0.5950 0.7150(0.003)

A, D, and E 0.0055 0.1055(0.005)

B, C, and D 0.0040 0.0920(0.004)

B, C, and E 0.4821 0.5365(0.003)

B, D, and E 0.0150 0.1186(0.005)

C, D, and E 0.0270 0.0960(0.005)

Table 1

Summary statistics of simulated data

Treatments ni si fi
%Xi:: l2i

A 12 1 2.28 19.5 6.01

B 10 2 2.97 19.72 10.15

C 8 3 3.85 19.10 39.15

D 6 4 4.82 22.43 77.22

E 4 4 4.82 18.79 37.04
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5.2. Example 2

The data are generated assuming the model Y ij ¼ X ibi þ aij1T þ eij with

i ¼ 1; 2; 3; n1 ¼ 10; n2 ¼ 8; n3 ¼ 6; T ¼ 3; r ¼ 0:2; and X 0
i ¼

1 1 1
3 4 5

# $
for

i ¼ 1; 2; 3: We will consider the performance of the F -test with respect to Type II
error in the growth curve model involving the fixed effects b1; b2; and b3 of the
three treatment groups and with heteroscedastic error variances; that is, we will
consider the rejection probability when the alternative hypothesis is true. The
smaller the p-valves, the stronger the evidence to reject the null hypothesis.
The p-valves for testing the fixed treatment effects, using formula (3.10), with the
assumption of equal variance are denoted by pe: The p-values, computed by Monte
Carlo integration based on 5000 sets of beta random numbers by using formula
(3.16) without the assumption of equal variance, are denoted by pu: The results are
displayed in Table 3. The absolute error bounds calculated as above are shown
within parentheses. The p-values suggest that when the heteroscedasticity is serious,
the test without the assumption of equal variance is much more powerful than the

test with the assumption of equal variance. Especially, when s2a does not dominate

the other variances and s21; s
2
2; s

2
3 are significantly different, then the p-values without

the assumption of equal variances are quite efficient to test the fixed treatment
effects.

6. Conclusions

In this paper, we consider several equicorrelation error structures and
combination of equicorrelation covariance structures in simple growth curve

Table 3

P-values with and without assumptions of equal variance for testing equality of fixed treatment effects

b1 b2 b3 s1 s2 s3 sa pe pu

ð10
1
Þ ð12

1
Þ ð14

1
Þ 1 2 3 3 0.08378(0.00178) 0.00340(0.00032)

ð10
1
Þ ð12

1
Þ ð14

1
Þ 1 2 3 2 0.28063(0.00301) 0.01255(0.00272)

ð10
1
Þ ð12

1
Þ ð14

1
Þ 1 2 3 1 0.31505(0.00191) 0.03415(0.00121)

ð101 Þ ð121 Þ ð141 Þ 2 3 4 1 0.10687(0.00255) 0.03124(0.00186)

ð10
1
Þ ð12

1
Þ ð14

1
Þ 2 3 4 2 0.07623(0.00269) 0.01367(0.00092)

ð10
1
Þ ð12

1
Þ ð14

1
Þ 2 3 4 4 0.06596(0.00075) 0.03330(0.00262)
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model with single or multiple treatments and in one-way ANOVA model,
which are widely used in many research areas. Unfortunately, so far
only approximate methods are available. We show that exact inferences based
on generalized p-values can be obtained. According to our findings, the as-
sumption of equal variance is not reasonable in many applications, and in such
situation, we would be better off dropping this assumption when the hetero-
scedasticity is serious.
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Appendix. Proof of Eq. (3.7)

We will provide the proof of (3.7) and show the independence of U and V in this

appendix. Consider the model in (3.1). Recall that #bi is the maximum likelihood

estimator (MLE) of bi with
#bi ¼ ðX 0

iR
�1X iÞ�1X 0

iR
�1 %Y i: ¼ ðX 0

iX iÞ�1X 0
i
%Y i:: In view of

the point estimates, we have the following decomposition:

Yijt � X 0
it
#bi ¼ ðYijt � X 0

it
#bi � ð %Yij: � %Yi::ÞÞ þ ð %Yij: � %Yi::Þ; ðA:1Þ

with the sum of cross product

XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#bi � ð %Yij: � %Yi::ÞÞð %Yij: � %Yi::Þ

¼
XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#biÞð %Yij: � %Yi::Þ �

XI

i¼1

Xni

j¼1

XT

t¼1
ð %Yij: � %Yi::Þ2

¼
XI

i¼1

Xni

j¼1
ðT %Yij: � 10T X i

#biÞð %Yij: � %Yi::Þ �
XI

i¼1

Xni

j¼1
Tð %Yij: � %Yi::Þ2

¼
XI

i¼1
ðT %Yi:: � 10T X i

#biÞ
Xni

j¼1
ð %Yij: � %Yi::Þ ¼ 0: ðA:2Þ

Hence, on summation of squared terms in (A.1) yields the orthogonal decomposition
of sums of squares,

SSE ¼
XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#biÞ2 ¼ S2

e;r þ S2
r;a; ðA:3Þ
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with S2
e;r ¼

PI
i¼1
Pni

j¼1
PT

t¼1½Yijt � X 0
it
#bi � ð %Yij: � %Yi::Þ	2 and S2

r;a ¼ T
PI

i¼1
Pni

j¼1

ð %Yij: � %Yi::Þ2:
Due to the orthogonality of vectors on which they are based, the sums of squares

on the right-hand side of (A.3) are independently distributed. The distribution of
each sum of squares can be derived by averaging (3.2) appropriately and using (3.5),
(3.6) and (3.8). For example, it follows from the fact that

%Yij: ¼
1

T
10T Y ijBN

1

T
10T X ibi;

1

T2
10TR1T

# $
; i ¼ 1;y; I ;

j ¼ 1; 2;y; ni; ðA:4Þ

with 1
T21

0
TR1T ¼ 1

T
f2 and f2 ¼ s2eð1� rÞ þ Tðrs2e þ s2aÞ;Pni

j¼1ð %Yij: � %Yi::Þ2

f2=T
Bw2ni�1: ðA:5Þ

Since the I populations are independent,

U ¼
S2
r;a

f2
¼

T
PI

i¼1
Pni

j¼1ð %Yij: � %Yi::Þ2

f2
Bw2PI

i¼1 ni�I
: ðA:6Þ

On the other hand,

Y ij � X i
#bi ¼ I � 1

ni

X iðX 0
iX iÞ�1X 0

i

� �
Y ij

�
Xni

l¼1; laj

1

ni

X iðX 0
iX iÞ�1X 0

iY ilBNð0;SnÞ; ðA:7Þ

where Rn ¼ CovðY ij � X i
#biÞ ¼ R � 1

ni
RP � 1

ni
PR þ 1

ni
P RP and P ¼ X iðX 0

iX iÞ�1X 0
i is

an idempotent matrix of rank K. The residual sum of square, SSE, can be also
expressed as

SSE ¼
XI

i¼1

Xni

j¼1

XT

t¼1
ðYijt � X 0

it
#biÞ2 ¼

XI

i¼1

Xni

j¼1
ðY ij � X i

#biÞ0ðY ij � X i
#biÞ; ðA:8Þ

and the expectation of SSE can be obtained by the following steps with the

properties of trðRPÞ ¼ trðPRÞ;P2 ¼ P and P0 ¼ P;

XI

i¼1

Xni

j¼1
tr½CovðY ij � X i

#biÞ	 ¼
XI

i¼1

Xni

j¼1
tr IT � 1

ni

P

# $
R

� �

¼
XI

i¼1

Xni

j¼1
tr IT � 1

ni

P

# $
½s2eð1� rÞIT þ ðrs2e þ s2aÞ1T1

0
T 	

" %
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¼
XI

i¼1

Xni

j¼1
ðs2eð1� rÞT þ ðrs2e þ s2aÞT
&

� 1

ni

s2eð1� rÞK � 1

ni

ðrs2e þ s2aÞT
�

¼
XI

i¼1
ni � I

 !
f2 þ s2eð1� rÞ T

XI

i¼1
ni � IK �

XI

i¼1
ni þ I

" #
; ðA:9Þ

where f2 ¼ s2eð1� rÞ þ Tðrs2e þ s2aÞ:
In (A.9) we have utilized the following equality:

10T X iðX 0
iX iÞ�1X 0

i1T ¼ T ; ðA:10Þ

by noting that X i ¼ ð1T ;ZÞ; 0 ¼ ½I � X iðX 0
iX iÞ�1X 0

i	X i ¼ ½I � X iðX 0
iX iÞ�1X 0

i	
ð1T ;ZÞ; and 1T � X iðX 0

iX iÞ�1X 0
i1T ¼ 0:

The expectation of S2
e;r; with S2

e;r ¼
PI

i¼1
Pni

j¼1
PT

t¼1½Yijt � X 0
it
#bi � ð %Y ij: � %Y i::Þ	2;

is s2eð1� rÞ½T
PI

i¼1 ni � IK �
PI

i¼1 ni þ I 	; which can be readily obtained by (A.9)

and hence we can get

V ¼
S2

e;r

s2eð1� rÞBw2
T
PI

i¼1 ni�IK�
PI

i¼1 niþI
: ðA:11Þ

This completes the proof of (3.7). &
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