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A neural network approach for structural identi�cation and
diagnosis of a building from seismic response data
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SUMMARY

This work presents a novel procedure for identifying the dynamic characteristics of a building and
diagnosing whether the building has been damaged by earthquakes, using a back-propagation neural
network approach. The dynamic characteristics are directly evaluated from the weighting matrices of
the neural network trained by observed acceleration responses and input base excitations. Whether the
building is damaged under a large earthquake is assessed by comparing the modal parameters and
responses for this large earthquake with those for a small earthquake that has not caused this building
any damage. The feasibility of the approach is demonstrated through processing the dynamic responses
of a �ve-storey steel frame, subjected to di�erent strengths of the Kobe earthquake, in shaking table
tests. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A structure may sustain damage either when subjected to severe loading like a strong earth-
quake or when its material deteriorates. Damage is traditionally assessed by visual inspection,
which is costly and ine�cient. Various innovative sensor technologies have recently been
developed and applied to monitor buildings and infrastructure. It is desirable to use the mea-
sured data to determine whether a structure is damaged and, further, the nature of any such
damage.
The damage of a structure is conventionally assessed from observed dynamic responses by

detecting changes in the modal parameters of the structure. The concept underlying such an
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approach is that damage to a structure reduces its natural frequencies, increases the modal
damping, and changes the modal shapes. Hearn and Testa [1] applied a perturbation method
to process measured dynamic responses of a steel frame in a laboratory, and found that
changes in natural frequencies and modal damping are good indices for damage. However,
from dynamic tests on bridges, Alampalli and Fu [2] and Salawu and Williams [3] concluded
that the change in natural frequencies is not su�ciently sensitive to detect local damage
in the structure. The results of Salawu and Williams [3] indicate that the modal assurance
criterion (MAC) and the co-ordinate modal assurance criterion (CMAC) are useful in detect-
ing local structural change. Using modal parameters, Koh et al. [4] proposed an improved-
condensation method to estimate the sti�ness matrix that corresponds to observed degrees
of freedom. Then, these authors detected local structural changes by quantifying changes in
sti�ness.
Over the last two decades, arti�cial neural networks (ANN) have gradually been established

as a powerful tool in pattern recognition, signal processing, control and complex mapping
problems, because of their excellent learning capacity and their high tolerance to partially
inaccurate data. Arti�cial neural networks have, recently, been further applied to assess damage
in structures. Wu et al. [5] used a back-propagation neural network (BPN) to elucidate damage
states in a three-storey frame by numerical simulation. The Fourier spectra of the acceleration
responses and the sti�ness of members were, respectively, used in the input and output layers
of the neural network. Elkordy et al. [6] used a back-propagation neural network with modal
shapes in the input layer, to detect the simulated damage of structures. Szewczyk and Hajela
[7] applied an improved counter-propagation neural network to evaluate a reduction in the
member sti�ness of a frame structure with nine bending elements, by using measured static
displacements under prescribed loads. Pandey and Barai [8] detected damage in a bridge
truss by applying ANN of multilayer perceptron architectures to numerically simulated data.
Using static displacements, natural frequencies and modal shapes, Zhao et al. [9] applied a
counter-propagation neural network to locate damage in beams and frames. Masri et al. [10]
established a method for detecting damage, based on non-linear system identi�cation, in which
measured displacement, velocity, acceleration responses and input forces were used to train a
back-propagation neural network.
As the �rst stage of structural damage assessment, this study employed a BPN to diagnose

whether a building is damaged by detecting changes in its modal parameters and the dynamic
responses in earthquakes. Such work has not yet been discussed in published literature. Only
the measured acceleration responses and input base excitations are used to train the neural
network. A procedure is also proposed for determining the dynamic characteristics (natural
frequencies, modal damping and modal shapes) of the system from trained neural networks.
Modal parameters are �rst employed to diagnose the global changes to the building in earth-
quakes. Moreover, the trained ANN, based on measured data from the building without any
damage in a small earthquake, is employed to predict the responses of the structure under
other earthquakes. The considerable di�erences between the predicted and measured responses
further indicate that damage occurred in the building. The dynamic responses of a �ve-storey
steel frame, subjected to various strengths of the Kobe earthquake in shaking table tests,
are processed to demonstrate the applicability of the proposed method. The steel frame was
shaken to yield in a large magnitude earthquake.
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Figure 1. A typical three-layer neural network.

2. ARTIFICIAL NEURAL NETWORK

An ANN model is a system with inputs and outputs based on biological nerves. The system
can be composed of many computational elements that operate in parallel and are arranged
in patterns similar to biological neural nets. A neural network is typically characterized by
its computational elements, its network topology and the learning algorithm used. Among the
several di�erent types of ANN, the feedforward, multilayered, supervised neural network with
the error backpropagation algorithm—the BPN [11]—is by far the most frequently applied
neural network learning model, due to its simplicity.
The architecture of BP networks, depicted in Figure 1, includes an input layer, one or more

hidden layers, and an output layer. The nodes in each layer are connected to each node in the
adjacent layer. Notably, Hecht–Nielsen [12] proved that one hidden layer of neurons su�ces
to model any solution surface of practical interest. Hence, a network with only one hidden
layer is considered in this study. Before an ANN can be used, it must be trained from an
existing training set of pairs of input–output elements. The training of a supervised neural
network using a BP learning algorithm normally involves three stages. The �rst stage is the
data feed forward. The computed output of the ith node in output layer is de�ned as follows:

yi= g

(
Nh∑
j=1
(wijg

(
Ni∑
k=1

vjkxk + ��j

)
+ �wi)

)
; i=1; 2; : : : ; No (1)

where wij is the connective weight between nodes in the hidden layer and those in the output
layer; vjk is the connective weight between nodes in the input layer and those in the hidden
layer; �wi (or ��j) are bias terms that represent the threshold of the transfer function g, and
xk is the input of the kth node in the input layer. Terms Ni; Nh, and No are the number of
nodes in input, hidden, and output layers, respectively. The transfer function can be linear or
non-linear.
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The second stage is error BP through the network. During training, a system error func-
tion is used to monitor the performance of the network. This function is often de�ned as
follows:

E(W)=
1
2P

P∑
p=1
(Ỹp −Yp)(Ỹp −Yp)T (2)

where Ỹ=(ỹ1ỹ2 · · · ỹi · · · ỹNo); Y=(y1y2 · · ·yi · · · yNo); ỹi is the desired (or measured) value
of output node i, and W=(v11v12 · · · vjk · · · vNhNi��1��2 · · · ��Nhw11w12 · · ·wij · · · : wNoNh�w1�w2

· · · �wNo).
The �nal stage is the adjustment of the weights. The standard BP algorithm uses a gradient

descent approach with a constant step length (learning ratio) to train the network.

W(k+1) =W(k) + �W(k) (3)

�W(k) =−�
@E

@W(k) (4)

where � is the constant, general learning ratio in the range, [0; 1]. The superscript index (k),
indicates the kth learning iteration. BP supervised neural network learning models, however,
always take an extended period to learn. Moreover, the convergence of a BP neural network is
strongly depends upon the use of a learning rate (�). Herein, a more e�ective adaptive L-BFGS
learning algorithm, [13] based on the limited memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) [14] quasi Newton second-order method, with an inexact line search algorithm, is
employed. In the conventional BFGS method, the approximation, Hk+1, to the inverse Hessian
matrix of the error function, E, is updated by

Hk+1 = (I − �kskzTk )Hk(I − �kzksTk ) + �ksksTk
≡VTk HkVk + �ksksTk (5)

where

�k =1=zTk sk (6)

Vk = I − �kzksTk (7)

sk =W(k+1) −W(k) (8)

zk = gk+1 − gk (9)

and

gk =
@E

@W(k) (10)

Rather than forming the matrix Hk in the BFGS method, the vectors sk and yk �rst de�ne and
then implicitly and dynamically update the Hessian approximation using information from the
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preceding few iterations. Therefore, the �nal stage of adjusting weights in a supervised ANN
is modi�ed as follows:

W(k+1) =W(k) + �kdk (11)

The search direction is given by

dk =−Hkgk + �kdk−1 (12)

where

�k =
zT(k−1)H(k−1)g(k−1)
zT(k−1)d(k−1)

(13)

The step length, �k , is mathematically adapted during the learning process, according to
the inexact line search algorithm. This algorithm is used rather than a constant learning ratio
in the L-BFGS learning algorithm [13]. It is based on three sequential operations bracketing,
sectioning, and interpolation. The bracketing operation brackets the potential step length, �,
between two points, through a series of function evaluations. Sectioning then takes the two
points of the bracket, for example �1 and �2, as the initial points, reduces the step size
piecemeal, and determines the minimum between the points, to a desired degree of accuracy.
Finally, quadratic interpolation approach takes the three points, �1; �2, and (�1 +�2)=2, to �t a
parabola and thus determine the step length, �k . Accordingly, the step length, �k , must satisfy
the following conditions in each iteration [13]:

E(W(k) + �kdk)6E(W(k)) + ��k(∇E(W(k))Tdk) �∈ (0; 1) and �k¿0 (14)

∇E(W(k) + �kdk)Tdk¿�(∇E(W(k))Tdk �∈ (�; 1) and �k¿0 (15)

∇E(W(k) + �kdk)Td(k+1)¡0 (16)

Hence, the problem of trial and error selection of a learning ratio in the conventional BP
algorithm is avoided in the adaptive L-BFGS learning algorithm.

3. STRATEGY FOR DAMAGE DIAGNOSIS

The basic concept behind the proposed methodology is that a structural system behaves lin-
early in small earthquakes that may frequently occur in seismically active areas. The structural
system, however, may experience varying degrees of damage in large earthquakes, exhibit-
ing non-linear behaviour. Thus, training an ANN to represent faithfully the linear responses
of the undamaged system, using the responses observed in small earthquakes, yields notable
prediction errors for the non-linear responses. In real applications, damage in secondary struc-
tural components may also cause such a prediction error. However, modal parameters are
good indices for con�rming damage in primary structural components. Damage to secondary
structural components does not typically, signi�cantly change the modal parameters.
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Figure 2. Topology of a neural network for modelling responses of a structure in earthquakes.

3.1. Construction of an ANN for a linear dynamic system

Acceleration responses are normally measured in monitoring the responses of a structure in
an earthquake. Therefore, these measured data are used to train an ANN. Figure 2 illustrates
the proposed architecture of the ANN, where fl(t − i), with i=0; 1; 2; : : : ; n, represents input
base accelerations, corresponding to component l at (t − i) time step, while �xk(t − j), with
j=0; 1; 2; : : : ; m, represents the observed acceleration responses of the kth degree of freedom
relative to the base at the (t − j) time step. Herein, a non-linear transfer function is used
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and de�ned as,

g(y)=



1 when y¿1
y when − 16y61
−1 when y¡− 1

(17)

Notably, the values for nodes in the input layer are usually normalized to the range between
1 and −1 in training an ANN. Consequently, the argument of the transfer function is rarely
larger than 1 or less than −1.
Following the procedure given earlier for establishing a BPN and using the observed re-

sponses of the target structure in a small earthquake, enables the connective weights and
thresholds to be determined and an appropriate ANN to be established for the structural
system.

3.2. Estimation of modal parameters

Careful investigation of the ANN established in the previous section reveals that the network
yields a linear system if the transfer function is linear. The normalization of the values in
the input nodes is such that the responses in the output layer are approximately related to the
values of the input nodes by the following linear relationship.

{Y }=[W ][V ]{X }+ ([W ]{�v}+ {�w}) (18)

where

{Y }= (�x1(t); �x2(t); : : : ; �xk(t))T; {X }=( �XF)T
�X= (�x1(t − 1)�x2(t − 1) · · · �xk(t − 1)�x1(t − 2)�x2(t − 2) · · · �xk(t − 2) · · ·

�x1(t −m) �x2(t −m) · · · �xk(t −m))
F= (f1(t)f2(t) · · ·fl(t)f1(t − 1)f2(t − 1) · · ·fl(t − 1) · · ·f1(t − n)f2(t − n) · · ·fl(t − n))

The elements of [W ] and [V ] are wij and vij, respectively, and the elements of {�w} and
{�v} are �wi and �vi. Carefully expanding Equation (18) yields



�x1(t)
�x2(t)
...
�xk(t)



=

m∑
i=1
Ŵ(i)
1




�x1(t − i)
�x2(t − i)
...

�xk(t − i)



+

n∑
j=0
Ŵ(j)
2




f1(t − j)
f2(t − j)

...
fl(t − j)



+ {C} (19)

where

[Ŵ1 Ŵ2] = [W ][V ]; {C}=[W ]{�v}+ {�w}; Ŵ1 = [Ŵ
(1)
1 Ŵ

(2)
1 · · · Ŵ(m)

1 ]

Ŵ2 = [Ŵ
(0)
2 Ŵ

(1)
2 · · · Ŵ(n)

2 ]
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Equation (19) is similar to the time-series model, ARX. The ARX model equates the
equations of motion of a structural system. The dynamic characteristics of the system can be
determined from the coe�cient matrices of AR [15]. Constructing the matrix

[G]=




0 I 0 0 0
0 0 I 0 0
...

...
...

...
...

0 0 0 0 I

Ŵ(m)
1 Ŵ(m−1)

1 · · · Ŵ(2)
1 Ŵ(1)

1




(20)

enables the modal parameters to be determined from the eigenvalues and eigenvectors of [G]
[16]. Let �k and { k} represent the kth eigenvalue and eigenvector of [G], respectively. The
eigenvalue, �k , is normally a complex number, equal to ak + ibk . The corresponding natural
frequency and modal damping of the structural system are given by

�̃k =
√

�2k + �2k (21)

	k =−�k=�̃k (22)

where �̃k is the pseudo-undamped circular natural frequency; 	k is the modal damping ratio;

�k =
1
�t
tan−1

(
bk

ak

)
(23)

�k =
1
2�t

ln(a2k + b2k) (24)

and 1
�t is the sampling rate of measurement.

The special composition of [G] in Equation (20) yields the following property of its eigen-
vectors:

{ k}=({ k}T1 ; �k{ k}T1 ; �2k{ k}T1 ; : : : ; �m−1
k { k}T1 )T (25)

where { k}1 is the complex modal shape of the system, corresponding to the natural fre-
quency, �̃k .
Notably, the formulation shown above is easily extended to cases with multiple hidden

layers, by modifying only the de�nitions for Ŵ(i)
1 , Ŵ

(j)
2 and {C} in Equation (19).

Various ANNS with the architecture given in Figure 2, can be established, from the mea-
sured responses of a structure in earthquakes with various magnitudes. The modal parameters
for the structure in di�erent earthquakes can be determined from the established ANNs, by the
above approach. Considerable changes in modal parameters, corresponding to di�erent ANNs,
indicate signi�cant changes in the properties of the structure in di�erent earthquakes.
An index commonly used to evaluate the correlation of modal shapes obtained from di�erent

ANNs, is based on the modal assurance criterion (MAC) [17] de�ned as

MAC(�iR ;�iC)=
|�TiR�∗

iC|2
�TiR�∗

iR�TiC�∗
iC

(26)
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where * denotes the complex conjugate, �iR and �iC represent the ith complex mode shapes
for the reference state and the current state to which it is to be compared, respectively.
Apparently, two corresponding modes are highly correlated if the MAC value is close to one,
and uncorrelated if it is near zero.
As shown in the following section, the MAC value is not very sensitive to the changes in

modal shapes for the cases considered here. Thus, an index proposed by Trifunac [18] for
modal shapes in a proportional damping system, is adopted here. The index is de�ned as

e=
(
(�iR − a�iC)T(�iR − a�iC)∗

�TiR�∗
iR

)1=2
(27)

where the complex constant, a, is obtained by minimizing (�iR−a�iC)T(�iR−a�iC)∗. Equation
(27) reveals that e is close to zero when the two modal shapes are highly correlated.

3.3. Prediction error in responses from the established ANN

The ANN established for a linear structural system is expected to be able to predict accurately
the current responses, from previously measured responses and inputs, if the structural system
remains linear and the modal properties do not signi�cantly change. However, when the
structural system is damaged or has deteriorated, it will exhibit non-linear behaviour resulting
in a large error in the responses of this damaged structure, predicted by the ANN trained for
the healthy, linear structure. The indexes proposed by Masri et al. can be used to quantify
this error. [10] However, for simplicity, only the mean absolute error (MAE) between the
output predicted by the trained ANN, and the measured acceleration responses is computed
for each degree of freedom, and is de�ned as

MAE(i)=
1
T

T∑
t=1

|yim(t)− yip(t)| (28)

where i represents the ith degree of freedom, and yim and yip are the normalized measurements
and the predicted responses for the ith degree of freedom, respectively. Notably, throughout
this paper, the measurements for various base excitations were independently normalized such
that the maximum responses were normalized to 0.9.

4. APPLICATION TO A FRAME IN SHAKING TABLE TESTS

Shaking table tests are often performed in a laboratory to examine the behaviour of structures
in earthquakes. The National Center for Research in Earthquake Engineering in Taiwan un-
dertook a series of shaking table tests on a 3 m long, 2 m wide, and 6:5 m high steel frame
[19] (Figure 3) to generate a set of earthquake response data for this benchmark model of
a �ve-storey steel structure. Lead blocks were piled on each �oor such that the mass of each
�oor was approximately 3664 kg. The frames were subjected to the base excitation of the
Kobe earthquake, weakened by various levels. The displacement, velocity and acceleration
response histories of each �oor were recorded during the shaking table tests. Additionally,
some strain gauges were also installed in one of the columns and near the �rst �oor. The
sampling rate of the raw data was 1000 Hz. These raw data were reproduced with a 200 Hz
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Figure 3. A photo and simple sketch of a �ve-storey steel frame.

sampling rate by taking one data point out of every �ve raw data points to save computational
time and to match to the typical sampling rate for real applications.
Notably, it was reported [19] that the frame responded linearly when it subjected to 8,

10, 20, 40, and 52% of the strength of the Kobe earthquake. Measured strains and visual
inspection revealed that 60% of the strength of the Kobe earthquake input caused the steel
columns near the �rst �oor to yield. In the following, only the responses and inputs in the
long span direction are discussed.
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Figure 4. Response histories for 8% Kobe earthquake input.
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Figure 5. Comparison between the measured (solid line) and predicted (dash line) responses
for 8% Kobe earthquake input.

4.1. Examination of the frame at 8% of the strength of the Kobe earthquake

Figure 4 depicts time histories of the acceleration responses of each �oor, when the steel
frame was subjected to 8% of the strength of the Kobe earthquake. The steel frame responded
linearly at this level. The large responses between 4.5 and 12:5 s were used to train an ANN
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Table I. Comparison of the identi�ed modal parameters for 8% Kobe earthquake input.

Method Mode Frequency (Hz) Damping (%) MAC e (%)

Present 1 1.40 1.56 1.00 0.38
2 4.53 0.17 1.00 0.15
3 8.23 0.17 1.00 0.31
4 12.39 0.13 1.00 0.47
5 15.99 0.11 1.00 0.47

Subspace 1 1.40 1.30 = =
2 4.53 0.16 = =
3 8.23 0.19 = =
4 12.39 0.13 = =
5 15.99 0.10 = =

Note: =: no data available.

and thus, to some extent, reduce the noise e�ect. The architecture of the ANN is as shown in
Figure 2, with k=5, l=1, m= n=30 and ten nodes in the hidden layer. This architecture was
used throughout this paper. The acceleration responses of each �oor relative to the base were
used to train an ANN. Figure 5 shows the excellent correspondence between the observed
responses and the computed responses from the trained ANN for the 1st, 3rd, and 5th �oors.
It is noted that the computed responses in Figure 5 were obtained from the trained ANN by
using the observed data as input of the ANN.
Table I lists the identi�ed modal parameters obtained from the trained ANN, which ex-

cellently agree with those obtained by Huang and Lin [20] who used a subspace technique
to process the same response data. This consistency con�rms the correctness of the proposed
procedure of determining the modal parameters from an ANN.

4.2. Examination of the frame in the Kobe earthquake with various reduction levels

The measured acceleration responses of the frame under the base excitations with various
reduction levels of the Kobe earthquake, enables the corresponding ANNs to be established
and the corresponding modal parameters to be determined. Table II summarizes the results,
in which the values, MAC and e, designate the correlation between the modal shapes for an
input of 20% Kobe earthquake and those for inputs with other reduction levels.
Table II reveals that the frequencies for each mode generally decrease as the excitation mag-

nitude increases, but the changes in frequency are quite small. Generally, the modal damping
values increase with excitation magnitude. The modal damping values for the 60% Kobe
earthquake are much greater than those for the 10% Kobe. Interestingly, only the damping
for the �rst mode exceeds 1% while the damping for the other modes is typically much less
than 1%. The MAC values in Table II indicate that the modal shapes for the 20% Kobe
earthquake are likely to correlate closely with those for other excitations. However, e values
clearly show that the modal shapes of the higher modes (3–5th) for the 60% Kobe earthquake
notably di�er from those for the 20% Kobe earthquake, since the corresponding e values ex-
ceed 10%. Apparently, the e values are more sensitive to the di�erences in modal shapes than
the MAC values. The damping and e values truly re�ect the fact of possible damage of the
frame under the 60% Kobe earthquake input.
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Table II. Identi�ed modal parameters for di�erent inputs.

Excitation Mode Frequency (Hz) Damping (%) MAC e (%)

1 1.40 1.65 1.00 1.00
2 4.53 0.18 1.00 0.59

10% Kobe 3 8.24 0.22 1.00 0.66
4 12.38 0.16 1.00 0.79
5 16.00 0.16 1.00 1.17

1 1.39 1.73 = =
2 4.53 0.25 = =

20% Kobe 3 8.23 0.28 = =
4 12.37 0.18 = =
5 15.97 0.15 = =

1 1.38 2.42 1.00 0.65
2 4.50 0.47 1.00 0.92

40% Kobe 3 8.18 0.19 1.00 2.26
4 12.36 0.21 1.00 6.58
5 15.93 0.07 1.00 4.54

1 1.37 2.89 1.00 0.42
2 4.49 0.69 1.00 1.13

52% Kobe 3 8.14 0.53 1.00 3.36
4 12.33 0.15 1.00 5.48
5 15.91 0.58 1.00 6.83

1 1.35 3.73 1.00 2.21
2 4.45 0.92 1.00 5.24

60% Kobe 3 8.07 0.84 0.99 11.52
4 12.24 0.83 0.98 13.42
5 15.88 0.26 0.98 13.13

Note: =: no data available.

4.3. Identifying modal parameters from windowed responses

Although using more data to train an ANN yields a more accurate network, it is interesting
to investigate the changes in modal parameters identi�ed from di�erent portions of response
records. The responses from t=4:5 to 12:5s were divided into nine segments, each of 4s, each
of which overlays 3:5s of the previous one. Table III presents the modal parameters, identi�ed
by ANNs trained with di�erent segments of data for the 20 and 60% Kobe earthquakes.
Notably, the e values for the �rst segment were computed with reference to the modal shapes
obtained using the responses between t=4:5 and 12:5s, while the e values for other segments
refer to the modal shapes for the �rst segment.
Table III shows that using di�erent segments of data leads to no signi�cant variation in

the identi�ed frequencies. These frequencies are substantially consistent with those in Table
II, obtained by using the entire response. The damping values do di�er somewhat with dif-
ferent segments of data, perhaps because the damping matrix in the equations of motion is
arti�cially de�ned, such that the damping coe�cients for a real structure may change as it
vibrates. Interestingly, the modal shapes obtained from di�erent segments for the 20% Kobe
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earthquake input show no signi�cant di�erences. However, considerable di�erences in higher
modal shapes are observed for di�erent segments in the 60% Kobe earthquake input, indicating
non-linear responses in this case.

4.4. Prediction error of the trained ANN

The responses at a moderate reduction level (say, 20%) of the Kobe earthquake input were
selected to establish the ANN to predict the responses to other inputs. Figure 6 shows an
excellent agreement between the observed responses and the computed responses from the
trained ANN for the 1st, 3rd and 5th �oors subjected to the 20% Kobe earthquake input.
Figure 7 compares the measured and predicted responses for the 60% Kobe earthquake input.
Notably, the observed data were used as input of the trained ANN to obtain the computed
responses in Figures 6 and 7. Comparing Figures 6 and 7 reveals that the discrepancies
between prediction and measurement for the 60% Kobe earthquake input far exceed those
for the 20% Kobe earthquake input. Figure 7 shows that there are high frequency responses
between t=5:5 and 6:5 s, which lead to large prediction errors. It should be mentioned that
the responses in Figures 6 and 7 were normalized according to the maximum responses in
each �gure, respectively.
The MAE values of each �oor for various reduction levels of the Kobe earthquake are

divided by the MAE value for the 20% Kobe earthquake and presented in Figure 8. The
small changes in the modal parameters for the frame with di�erent inputs, discussed in the
earlier sections, cause the prediction errors to increase for the 10, 40 and 52% Kobe earthquake
inputs. The relative MAE values for the responses to the 60% Kobe earthquake input greatly
exceed the other relative MAE values, con�rming the reported non-linear responses to the
60% Kobe earthquake input [17]. Further investigation is required to determine whether the
larger relative MAE values for the �rst and second �oors in the 60% Kobe earthquake input
follow from the yielding of the columns near the �rst �oor.

5. CONCLUDING REMARKS

This work has presented a novel procedure for diagnosing a structure from its earthquake
acceleration responses, using an ANN model. The diagnosis is based on the fact that damage
to a structure induces non-linear structural responses to earthquakes and considerably changes
both the modal parameters of an equivalent linear system and the output errors predicted
by a neural network trained for the structure without any damage. The modal parameters
are directly estimated from the weighting matrices in the ANN model. The output prediction
errors for each measured degree of freedom of the structure are determined from the measured
responses to various earthquakes, and the corresponding prediction of the ANN model trained
by data for a small earthquake.
The proposed method of estimating the modal parameters has been veri�ed by excellent

agreement between the present results and those results obtained by a subspace method, for
a �ve-storey steel frame under base excitation in a shaking table test. The proposed diag-
nosis procedure has also been applied to the acceleration responses of the steel frame under
base excitations with di�erent reduction levels of the Kobe earthquake in shaking table tests.
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Figure 6. Comparison of the measured (solid line) and predicted (dash line) responses
for 20% Kobe earthquake input.
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Figure 7. Comparison of the measured (solid line) and predicted (dash line) responses
for 60% Kobe earthquake input.
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Figure 8. Relative mean absolute errors of predictions for the Kobe earthquake
inputs with various reduction levels.

The reported non-linear responses to the 60% Kobe earthquake input were found to change
signi�cantly modal shapes and damping values from those for the frame in the 20% Kobe
earthquake input. Considerable prediction errors were also found when the ANN model, trained
with responses to the 20% Kobe earthquake input, was used to predict the responses to the
60% Kobe earthquake input. However, no signi�cant changes were found in the modal param-
eters obtained from the responses for the 8, 10, 20, 40, and 52% Kobe earthquake inputs that
caused no damage to the frame. The prediction errors of the ANN, trained using the responses
to the 20% Kobe earthquake, for the responses to the 10, 40 and 52% Kobe earthquake in-
puts were much smaller than that for the 60% Kobe earthquake input responses. These results
show the applicability of the proposed procedure in diagnosing whether a structure is healthy.
Future work should apply the proposed approach to measurements in the �eld to show

(or even improve) its capacity to process possibly incomplete measurements, substantially
corrupted by noise. Moreover, the ability of the proposed approach to detect the location of
damage should also be further veri�ed or improved.
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