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Abstract

This paper addresses parallel execution of chain code generation on a linear array

architecture. The contours in the proposed algorithm are viewed as a set of edges (or

contour segments) that can be traced by a top-down contour tracing method to generate

the chain codes for the outer and inner object contours. A parallel algorithm that

contains the chain code generating rules and operations needed is also described, and

the algorithm is mapped onto a one-dimensional systolic array containing d1
2
ðN þ 1Þe

processing elements (PEs) to devise this architecture. The architecture extracts the

contours of objects and quickly generates the corresponding chain codes after the image

data in all rows are inputted in a linear fashion. The total processing time for generating

the chain codes in an N � N image is Oð3NÞ. By doing so, the real-time requirement is
fulfilled and its execution time is independent of the image content. In addition, a

partition method is developed to process an image when the parallel architecture has a

fixed number of PEs; say two or more. The total execution time for an N � N image by

employing a fixed number of PEs is NðN þ 1Þ=M þ 2ðM � 1Þ, when M is the fixed

number of PEs.
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1. Introduction

A prominent shape feature of an object in a binary image is its object

contour. The object contour is useful in object analysis [1], pattern recognition
[2], image restoration [3,4], and object features computation [5–7] such as the

perimeter, area, and corner. The chain codes concisely represent the object

contour, and several algorithms have been documented to generate the chain

code [8–12].

The generation process of the object contour chain codes is a non-local

operation since the object contour in the image can be an arbitrary shape.

Consequently, most procedures for the chain code generation are sequential

methods that trace the contour clockwise or counterclockwise, starting at an
initial point and returning to the same point. However, a parallel method for

chain code generation is necessary since these existing sequential algorithm

usually do not meet the real-time requirement. Several parallel techniques for

generating chain code have been developed in previous research. Schmidt [13],

Cederburg [14], Chakravarty [15], and Zingaretti [16] employed a window

operator to detect the contour codes in a raster scan fashion and store it into

some data structure such as a linked list or a graph. The time complexity of

these algorithm are generally OðN 2Þ, where N � N denotes the image size.
Other methods derive the chain code from some other data structures such as

run-length coding [16], pyramid [10], and quadtree [6], which also require a

long processing time.

This paper presents a parallel architecture, which is an extension of the work

in [2], to generate the chain code in real time. The parallel architecture requires

N þ 1 processing elements (PEs) for an N � N image, while the algorithm re-

quires an execution time of 3N cycles regardless of the image content.

The rest of this paper is organized as follows. Section 2 introduces some
definitions and contains the proposed chain code generation algorithm. The

linking of chain codes belonging to the same object contour (inner and outer) is

specified in Sections 3 and 4. The complexity and performance of the algorithm

are analyzed in Section 5. A partition method is introduced in Section 6 to

process a large size image when the architecture has a fixed number of PEs,

while concluding remarks are provided in Section 7.

2. Chain code generation algorithm

2.1. Contour structure

An object of a region type can be represented by a set of the closed contours

in a binary image, including an outer contour surrounding the object and,
perhaps, some inner contours contained by the object [2]. A contour point is
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denoted as a black (in the case of an outer contour) or white (in the case of an

inner contour) pixel along the object boundary. A contour point can be clas-

sified into three types: transition pixels, contour starting point, and contour

ending point. A black (or white) transition pixel is a pixel in the binary image
where a transition from white to black (or black to white) occurs during a data

row scan. An outer contour starting point (OCSP) is a black transition pixel

whose neighbors in the upper, upper left and upper right are all white pixels. In

contrast, an inner contour starting point (ICSP) is a white transition pixel whose

neighbors in the upper, upper left and upper right are all black pixels. An outer

or inner contour starting point can be viewed as a splitting point of two pieces

of subcontours. A contour ending point is a merging point of two subcontours.

For example, Fig. 1 illustrates the binary pattern of character ‘‘A’’ and its
corresponding outer and inner contours. The solid lines represent the outer

contour segments and the dash lines are the inner contour segments. The

contour starting points of OCSP and ICSP are denoted as ‘‘�’’ and ‘‘}’’,

respectively and the ending points are marked as a square ‘‘�’’.

2.2. Contour tracing

The contour tracing method is implemented in three steps: (1) the contour

tracing is initiated by detecting a starting point, (2) the tracing is continued

through the transition pixels, and (3) the tracing ends at an ending point. These

steps will be presented as follows:

1. Assuming that the system fetches the row data from right to left for more

convenient to detect object characteristic. By definition, the existence of a

starting point at coordinate (i; j) depends on the black/white information
of pixels at coordinates (i� 1; j� 1), (i� 1; j), and (i� 1; jþ 1). Therefore,
these preceding neighboring pixels must be made ready for use by the cur-

rent pixel by shifting (i.e., skewed) the input data flow of the preceding

row two cycles ahead of the current row.

2. The contour tracing is divided into two subcontours upon detection of a

starting point. Each subcontour segment will be traversed by passing down

an edge token, which specifies the traversal path of the transition pixels.

3. Two contour tracings will end when both meet at a common pixel that is not

a transition point. However, this merger will rupture if the above common
pixel is a transition pixel instead of an ending point.

2.3. Parallel tracing of contours

A parallel chain code generation algorithm is developed according to the

concept mentioned above. One PE is adopted for the pipeline operations

performed on the pixels in each row: the required number of PE is N, if the
image has N rows. An additional PE (i.e., the (N þ 1)th PE) is applied for two
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Fig. 1. (a) A binary pattern of the character ‘‘A’’. (b) The contour structure of the binary pattern.
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purposes: receiving the token output by the Nth PE, and detecting the ending

points of contours. First, the linear array consisting of N þ 1 PEs is devised to

process a binary image with N � N pixels, as demonstrated in Fig. 2. The image

buffer of the host computer initially stores the input binary image, while the
buffer stores the chain code as the process continues. PEi generally receives

data from PEi�1 and derives the chain code of Pði; jÞ in row i in every cycle. The

input image in the image buffer is skewed so that the clock cycle of PEi lags that

of PEi�1 by two cycles because the data flow is shifted one pixel per cycle. This

skewing is achieved by inputting the data in each row ði ¼ 0; 1; 2; . . . ;N � 1Þ
through a delay line with a length of 2� i. The space–time diagram of the

image of character ‘‘A’’ in Fig. 1 after a two-cycle alteration illustrated in

Fig. 3.
Each PE will execute one of the following three tasks or functions in each

cycle:

Case 1. PEi does not hold an edge token and has not received one from

PEi�1. The PEi determines whether the current pixel is a transition pixel and

Fig. 2. The linear array architecture.

Fig. 3. The skewed image of Fig. 1.
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determines whether the transition pixel is an outer or inner contour starting

point. PEi will generate a right token and a left token if a starting point is

detected. Each token contains the contour type and the starting point location

information. The right token is passed down to PEiþ1 and the left token is kept
in the current PEi and the contour tracing starts in the next cycle. The point in

PE0 at the cycle 5 is an OCSP, while the point in PE4 at cycle 12 is an ICSP as

depicted in Fig. 4.

Case 2. PEi contains (or receives) a token. The token is held in PEi if the

current pixel is black (white) and the contour type is outer-left (inner-left) or

inner-right (outer-right). Otherwise, the token is passed down to PEiþ1 in the

next cycle. This situation is exemplified in Fig. 4, where the arrows indicate the

motion of the edge tokens.
Case 3. PEi contains a token and receives another token from PEi�1. The

situation corresponds to the case in which two tokens do not belong to the

same contour if the current pixel is a transition pixel. PEi should swap the two

tokens and forward the old token it is holding to PEiþ1. Thus, PEi will hold the

token it has just received from PEi�1. An ending point is detected and two

tokens in the PEi will be deleted and the contour tracings ended if the current

pixel is not a transition pixel. The point in PE12 at cycle 27 (Fig. 4) is an ending

point where an outer contour token and an inner contour token meet and are
deleted after merging.

2.4. Code generation rules

The chain code must be generated to represent the contour shape during the

contour tracing. Each chain code reflects a specific spatial connection between

the two transition pixels in the non-skewed image. The spatial connections also

exist in the skewed image. The connection relations in eight possibilities after
analysis are summarized in Table 1.

Fig. 4. Edge token transmitted during the contour tracing for the given pattern.
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Table 1

The generation rules of a chain code in PEi

Generated

chain code

The edge token in the

time–space diagram

Condition description

0
Outer contour

1. PEiðtÞ is a white pixel.
2. PEiðtÞ received an OR (outer-right) edge

token from PEiðt � 1Þ.
3. PEiðt � 1Þ received an OR edge token

from PEiðt � 2Þ.

Inner contour

1. PEiðtÞ is a white pixel.
2. PEiðtÞ received an IL (inner-left) edge
token from PEiðt � 1Þ.
3. PEiðt � 1Þ did not receive an IL edge
token from PEi�1ðt � 2Þ.

1

Outer contour

1. PEiðtÞ is a black pixel.
2. PEiðtÞ received an OR edge token from

PEiðt � 1Þ.
3. PEiðt � 1Þ received an OR edge token

from PEiðt � 2Þ.

Inner contour

1. PEiðtÞ is a white pixel.
2. PEiðtÞ received an IL edge token from
PEiðt � 1Þ.
3. PEiðt � 1Þ received an IL edge token from
PEi�1ðt � 2Þ.

2

1. PEiðtÞ is a black pixel.
2. PEiðtÞ received an OR (or IL) edge token

from PEiðt � 1Þ.
3. PEiðt � 1Þ received an OR (or IL) edge

token from PEi�1ðt � 2Þ.

3

1. PEiðtÞ is a black pixel.
2. PEiðtÞ received an OR (or IL) edge token

from PEi�1ðt � 1Þ.

4

1. PEiðtÞ is a black pixel.
2. PEiðtÞ received an OL (outer-left) or IR
(inner-right) edge token from PEiðt � 1Þ.
3. PEiðt � 1Þ did not receive an OL (or IR)
edge token from PEi�1ðt � 2Þ.

(continued on next page)
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PEi generates a chain code based on the information of the edge tokens

received from itself and the PEi�1. The relationships between the chain codes

and the information of the edge tokens are also represented in Table 1. Each

row in Table 1 stands for the generation rule of a specific kind of chain code.

The generation rule specifies relations among PE�s, clock cycles, pixel values,
and edge tokens that can be illustrated in a time–space diagram. For example,

when the PEi receives three white pixels during the cycles from t � 2; t � 1, to t,

and holds the same outer contour tokens during cycles t � 1 and t, it generates
a chain code ‘‘0’’ at cycle t for this outer contour. A complete illustration of the

chain code generated for the pattern in Fig. 1 is demonstrated in Fig. 5.

There are two exceptions to the code generation rules presented in Table 1.

The first exception is associated with the inner contour starting point because

Table 1 (continued)

Generated

chain code

The edge token in the

time–space diagram

Condition description

5

1. PEiðtÞ is a black pixel.
2. PEiðtÞ received an OL (or IR) edge token
from PEiðt � 1Þ.
3. PEiðt � 1Þ received an OL (or IR) edge

token from PEi�1ðt � 2Þ.

6

1. PEiðtÞ is a white pixel.
2. PEiðtÞ received an OL (or IR) edge token
from PEiðt � 1Þ.
3. PEiðt � 1Þ received an OL (or IR) edge

token from PEi�1ðt � 2Þ.

7

1. PEiðtÞ is a white pixel.
2. PEiðtÞ received an OL (or IR) edge token
from PEi�1ðt � 1Þ.

Fig. 5. The space–time diagram illustration of generated locations of chain codes.
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the inner contour tracing must be performed on the white transition pixels,

whereas the actual inner contour tracing is finished at the black transition
pixels. These two tracings differ at the two ends of the inner white row con-

taining an inner contour starting point. Codes ‘‘1’’ and ‘‘7’’ are missing at the

above two ends. These situations occur in PE9 at cycles 22 and 26 as in Fig. 5.

The correct chain code of the pattern in Fig. 1 is displayed in Fig. 6. The second

exception is associated with the white ending points. In this case codes ‘‘1’’ and/

or ‘‘7’’ are excessive codes. There situation occur in PE12 at cycles 27 and 34 as

in Fig. 5.

3. Chain collection

Chain codes are outputted by each PE in a sequential timing sequence and

stored in the image buffer after the chain code generation procedure is finished.

The edge token label (i.e., the coordinates of the starting point) is employed to

collect the chain codes belonging to the same contour segments. The chain

codes generated with the same edge token label will be stored in the same lo-

cation in the memory buffer of the image buffer. The chain codes belonging to
contour segments a; b; c; . . ., to f of pattern A are illustrated in Fig. 7(a).

Fig. 6. The chain codes of the given pattern.
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The PE for each contour segment may produce more than two chain codes,

but only one location in the memory buffer can save these chain codes. Only

thirteen kinds of the chain code sequences can be generated by the PE ac-

cording to the spatial connection relationship between adjacent contour pixels.
The chain code patterns and encoded chain code are summarized in Table 2.

Fig. 7. (a) The contour structure of the pattern ‘‘A’’. (b) The linked contour structure. (c) The

memory storage layout of the chain codes belonging to the same contour segment.
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The symbol ‘‘�’’ in the head of the chain code symbolizes the code that may be

cycled. The code n represents the repeated number of the chain code with a
symbol ‘‘�’’ in the head. Therefore, each PE collects all the chain codes that it

created and encodes these chain codes into a 4-bit code with a repeated

number. The encoded chain codes and the memory storage layout of the

pattern in Fig. 1 are depicted in Fig. 7(c).

4. Chain linking

Two contour segments can be merged to obtain the complete chain codes of

the object if they have the same starting point or ending point. This situation is

exemplified by the pointer from f to a in Fig. 7(b). Two edge tokens are ad-

jacent when they meet and an ending point is detected. A pointer is created in

the ending point location of one token that points to the other end location of

the chain as exemplified by the pointer from a to b in Fig. 7(b).

The PE will utilize a memory location that belongs to one contour segment
to save the encoded chain code and the other to hold the pointer that indicates

the location of the adjacent contour segment because the chain codes generated

in the contour starting point contains one sequence at most. The encoded chain

code for an OCSP (or ICSP) will be saved in the left (right) contour segment

and the pointer is saved in the address of the right (left) contour segment. For

example, the PE0 in the OCSP A splits the object contour into two contour

segments and generates the encoded chain code (6; 1). The addresses assigned
to the left contour segment and the right contour segment are a and f, re-
spectively. Thus, the encoded chain code will be stored at the address a in the

Table 2

The chain code patterns and encoded codes

Chain code patterns Encoded code

0 (0; n)
1þ 0 (1; n)
1þ 0þ 7 (2; n)
2 (3; 0)

3þ 4 (4; n)
3þ 4þ 5þ 7 (5; n)
4 (6; n)
4þ 5 (7; n)
4þ 5þ 7 (8; n)
5þ 4þ 3 (9; n)
6 (a; 0)
6þ 7 (b; n)
7þ 0 (c; n)
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local memory buffer 0 and the pointer with point value a will be saved at the

address f in the memory buffer 0.

The same cases exemplified in the starting points will also occur in the

ending points. The encoded chain code will be saved in the address of the image
buffer when two outer contour segments (or one outer contour segment with

one inner contour segment) meet at an ending point. The pointer will be stored

in the address of the other contour segment, whereas the opposite arrangement

will occur if two joined contour segments are the inner contour segments.

A linked list with predecessor/successor relations in the memory is derived

after the above manipulation is performed. The closed chain of the object can

be extracted from a starting point of the contour segment and a top-down trace

can be created at which the chain code has been stored in the same address
among the memory buffers until the ending point appears. The chain will jump

to the ending point of the next chain belonging to an adjacent contour segment

based on the pointer in the former chain. A bottom-up trace is then made for

the chain of the contour segment until the starting point arrives, after which the

chain will jump to the next starting point of an adjacent contour segment. This

sequential process will repeat until the chain is closed.

5. Performance evaluation

The time complexity of the chain code generation algorithm can be easily

adopting via the space–time diagram of an input image. If the input data rate is

one pixel per cycle, all the chain codes will be obtained in 3N cycles where

3N ¼ ðthe length of the first rowÞ � ðthe execution cycle per pixelÞ
þ ðthe skewed delay per rowÞ
� ½ðthe row number of imageþ 1Þ � 1�

¼ N � 1þ 2� N :

Therefore, it meets the requirements for real-time applications since it is of
order OðNÞ and independent of the image content.

6. The partitioning method

The number of PEs must not be too large to make the linear array suitable

for VLSI implementation. This means that the number of PEs, denoted as M,

must be fixed at a total smaller than the image size N (N P 512) in practical

applications. The same parallel architecture previously presented will be em-

ployed when N > M , but some extra hardware is needed to handle the image
partition problem.
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Assume an image is N � N size with a linear array that has M PEs. Let

N PM . The image must first be divided into several subimages,

m ¼ dðN þ 1Þ=Me each with M rows or less. This row partitioning starts from

top to bottom (refer to Fig. 9(a)), hence the subimage Sj includes the part of the
image from row M � j to row M � ðjþ 1Þ � 1, where j ¼ 0; 1; . . .,
dðN þ 1Þ=Me � 2 and Sm�1, Sm�1 includes the part of the image from row

M � ðm� 1Þ to row N. These subimages are rendered in increasing order of the

index j from 0 to m� 1. The parallel architecture presented above will require

an extra programmable delay line between the data output of PEM�1 and the

input port of PE0 (refer to Fig. 8).

According to the N and M values, the execution model is as follows:

Case 1: M < N þ 16 2M

Although the element PE0 executes the first row of the subimage S1, it must
wait until the corresponding output of PEM�1 belonging to subimage S0 is
computed. Therefore, the subimage S1 must be delayed 2M � N clock cycles

before it is inputted to port of PE0. The programming delay line will be set to

zero. The time–space diagram is illustrated in Fig. 9(b), and the total execution

time is 3N . The chain code of the image of size N � N can be obtained via

Fig. 8. The linear array architecture for executing the partitioned image.
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dðN þ 1Þ=2e PEs, and the total execution time is the same if we employ N þ 1

PEs.

Case 2: N þ 1P 2M

The output of PEM�1 must be inputted through an N � 2M delayed line

since the output results of the last row of Sj produced from PEM�1 are N � 2M

Fig. 9. The time–space diagram of the chain code generation for the case N þ 1 > M : (a) an image
is divided into subimages; (b) the diagram for M < N þ 16 2M ; (c) the diagram for N þ 1P 2M .
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clocks ahead of the input data of the first row of Sjþ1 to PE0. Thus, the side
effect between Sj and Sjþ1 can be reduced through the timing delay. The time–
space diagram for this case is illustrated in Fig. 9(c), and the total execution

time is Nmþ 2½N �Mðm� 1Þ�.

7. Conclusion

This work has described parallel algorithm and its hardware architecture for

generating a chain code. The proposed architecture can obtain the chain codes

of the objects in an N � N binary image within 3N cycles employing an ar-

chitecture of dðN þ 1Þ=2e PEs. The developed architecture also has com-
mendable modularity, expandability, data flow regularity, and PE simplicity. It

is also suitable for VLSI implementation because it has simple and modular

properties. We also consider the partition problem when the image size is larger

than the size of the PE array.
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