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Co-evolution as a computational and cognitive model of design

Mary Lou Maher, Hsien-Hui Tang

Abstract Co-evolutionary design has been developed as a
computational model that assumes two parallel search
spaces: the problem space and the solution space. The
design process iteratively searches each space using the
other space as the basis for a fitness function when eval-
uating the alternatives. Co-evolutionary design can also be
developed as a cognitive model of design by characterizing
the way in which designers iteratively search for a design
solution, making revisions to the problem specification.
This paper presents the computational model of co-evo-
lutionary design and then describes a protocol study of
human designers looking for evidence of co-evolution of
problem specifications and design solutions. The study
shows that co-evolutionary design is a good cognitive
model of design and highlights the similarities and
differences between the computational model and the
cognitive model. The results show that the two kinds of
co-evolutionary design complement each other, having
strengths in different aspects of the design process.

Keywords Co-evolutionary design, Computational
model of design, Cognitive model of design, Protocol
studies
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Introduction

Co-evolution is a term used to identify the process in
nature in which two or more species interact so intimately
that their evolutionary fitness depends on each other.
Biological co-evolution has been the inspiration for a class
of computational algorithms called co-evolutionary com-
puting (Paredis 1998). Co-evolutionary design, as intro-
duced in Maher (1994), is an approach to design problem
solving in which the requirements and solutions of design
evolve separately and affect each other. The model of
co-evolutionary design has been developed as a compu-
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tational model to show how a mechanism for design can
include reasoning about the problem in parallel with
reasoning about the design solution. Various versions of a
co-evolutionary algorithm and its applications have been
developed, and the most recent has been published in
Maher (2001). We summarize the model here and then
show how this model can be used to describe our
observations of human design cognition.

Simon (1969) characterized design as a search process,
allowing the design process to be understood as one of the
“sciences of the artificial”. Since then the design research
community has embraced the “design as search” model by
formulating the goals, state spaces, and operators for var-
ious design domains and design problems. Although the
search paradigm is very strong and still underpins much of
problem solving, other models of design have been pro-
posed that address the formalisation of design knowledge
and design goals. Here we briefly compare three related
models to highlight the characteristics of co-evolutionary
design: search, exploration, and co-evolution.

Design can be formalized as search when the goals of
the design are well-defined before search commences and
the focus of design is not changed until a solution is found.
Design becomes exploration when different parts of the
solution space are searched or the solution space is
expanded through a change in the focus of the design. A
focus, or set of requirements, determines which solution in
a solution space is considered best. Design is co-evolu-
tionary when there are two distinct spaces being searched,
and the problem space and solution space change through
mutual interaction. The focus of the search is based on the
problem requirements when searching the solution space,
and is based on the solutions when searching the problem
requirements space.

The model of design as co-evolution is illustrated in
Fig. 1. The interactions between two sets of spaces can
occur through the change in focus of the search and by
passing variables from one space to another. The down-
ward arrow corresponds to the evaluation of S using P as
the source of the focus. If no satisfactory solution is found
with the stated design requirements, the solution space
becomes the basis to derive the focus for searching the
problem space. The upward arrow corresponds to the
evaluation of P using S as the source of the focus. After
searching for relevant requirements in the problem space,
the new problem requirements space is the basis of the
focus for the search for a solution (introduced in Maher
and Poon 1996). The interaction between the spaces can
include transferring variables from one space to the other.
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Requiremeny/
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Design as co-evolution explores the spaces of problem
requirements and design solutions iteratively. Interactions
between the spaces may add new variables into both
spaces. Usually, the requirements and solution of an ill-
defined design problem cannot be understood well enough
to define a fixed focus. The search for potential solutions is
often interleaved with changes in the requirements for the
solution. Figure 2 illustrates the input and output of the
co-evolutionary model of design.

2

Computational co-evolutionary design algorithm
Computational co-evolutionary design is characterized by
having a search space of problem requirements and a
search space of problem solutions. We use a genetic
algorithm (GA) formalism to implement computational
co-evolutionary design using concepts of search spaces,
genotype/phenotype representation of individuals in the

well-defined
problem
ill-defined
roblem : VY e
p coevolution i al-'.i_‘] . ,Fh M.
VA
solution

Fig. 2. Input and output of co-evolutionary design

y g

Requirements P

Focus p

Solutions § !

Fig. 1. A model of co-evolutionary
design (after Maher 1994)

search spaces, and the operators of crossover, mutation,
selection, reproduction, and fitness evaluation. In the first
phase of co-evolutionary design, the problem space
provides the basis for a fitness function used to evaluate
alternatives in the design space. In the second phase, the
solution space provides the basis for a fitness function
used to evaluate the problem space. Each phase is essen-
tially a goal-directed search process with a fixed goal.

First, the requirements space is used to define an initial
focus, as illustrated in Fig. 3. The solution space is a
population of alternative designs. Applying the evolution
operators, the members of the population in the solution
space go through repeated cycles of selection, reproduc-
tion, crossover, and mutation. At each generation, the
solutions are evaluated against a fitness function. When
the process has converged, and if the process has not yet
reached the termination condition, the focus shifts and the
search changes to the problem space.

After convergence, the solution space is used to develop
a focus for searching the problem space, as illustrated in
Fig. 4. The search space is a population of alternative
requirements. Applying the evolution operators, the
members of the population in the problem space go
through repeated cycles of selection, reproduction, cross-
over, and mutation. At each generation, the requirements
are checked for convergence. When the process has
converged, the focus shifts and the search changes to the
solution space. Logically, termination is not possible at
this phase because this phase results in a new problem
definition and does not necessarily have a corresponding
design solution.

.“‘l

Fig. 3. Evolutionary search for design solutions
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A general algorithm of co-evolutionary design is shown
below. The algorithm is adapted and extended from a
simple GA (for example, see Mitchell 1996). Each of the two
phases of co-evolutionary design is a search process using a
simple GA and unchanging fitness function, denoted p.
Therefore, each phase corresponds to one design focus and
a change in phase indicates a change in focus. The different
evolutionary cycles are illustrated graphically in Fig. 5. The
concept of a “generation” or “cycle” in co-evolution has
different meanings from a simple GA since there is more
than one space that is evolving. Therefore, the algorithm
has three counters for time: T, ¢, and v. The quantity T
indicates the change in generation from one full cycle of co-
evolution to another; T is updated after the solution space
and the problem space have been searched and converged.
The quantity ¢ indicates a new generation in the simple GA
sense. Therefore t is updated after each generation of
search in one of the spaces; that is, after a cycle of selection,
crossover, and mutation. The quantity v is similar to ¢,
except that the value is reset for each phase so that v is a
local counter for evolutionary cycles.

Fig. 5. Illustration of the co-evolutionary design algorithm

Probhlem focus

T

Fig. 4. Evolutionary search for design requirements

I* CoDESIGN algorithm */

T=0; [*counter for co-evolutionary cycles*/
t=0; [*counter for evolutionary cycles*/
Q={};  /*set of fitness functions*/

initialize genotypes of requirements P, and solutions S;
While termination conditions, f{T,Q2), are not
satisfied

T=T+1;
t=t+1;

[*Phase 1: determine focus for new problem require-
ments, redefine problem requirements space, search for
best problem requirements*/

If T# 1 then
y=1; [*counter for local evolutionary
cycles*/
0 .r=f(S); [*fitness function*/
Q=QU{p’, 7} [Ihistory of fitness functions*/
P,=g(P, p’,1) *revised problems requirements
space*/

Time

Design focus M Kl
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Repeat

t=t+1;

v=v+1;

P:=select genotypes in P, j;

reproduce, crossover, and mutate genotypes in Py

calculate fitness of phenotypes in P, using p’r;

Until convergence by similarity of members of
population: h(v, P;, P, 1);

[*Phase 2: determine focus for new design solution,

redefine design solution space, search for best design
solution*/

v=1; [*counter for local evolutionary
cycles*/

pur=f(P); [*fitness function*/

Q=QuU{p, 7}  /*history of fitness functions*/

S=4(Ss p:,r) I*revised design solution space*/

Repeat

t=t+1;

v=v+1;

S;:=select genotypes in S, ;;

reproduce, crossover, and mutate genotypes in S;;
calculate fitness of phenotypes in S, using pr;
Until convergence by similarity of members of
population: h(v, S, S;.1);

3

Observing design using protocol studies

The co-evolutionary model of design can also be the
basis for a cognitive model suggesting that human
designers show evidence of modifying the problem
statement and design solution in an iterative and inter-
active way. By making this assumption, we do not mean
that human designers use the operators of a genetic
algorithm, that is, selection, crossover, and mutation, but
that human designers modify and shift the range of
problem requirements and design solutions over time in a
way that resembles the co-evolutionary model as
illustrated in Fig. 1. The purpose of this study is to
assume a co-evolutionary model as the basis for a
cognitive model and compare the computational and
cognitive models.

We look for features of the co-evolutionary model in
human design processes in two experiments using proto-
col analysis. In this section we provide an overview of the
methodology of design protocol studies as a way of
observing co-evolutionary design in humans before
presenting the empirical results of the experiments. Two
specific studies are described: a kettle design and an
architectural design. With the kettle design experiment we
have developed a qualitative analysis of the evolutionary
changes in design requirements, design solutions, and
their interactions. With the architectural design experi-
ment we have developed a more quantitative analysis of
the cycles of evolution and co-evolution.

Protocol studies and applied concurrent protocol
analysis were first introduced in 1970 to research the
human design process (Eastman 1970). Eastman showed
the diversity of constraints and the significance of repre-
sentational language in intuitive design. Since then, the
design community has published various protocol studies
in different design disciplines. The essential ones include

mechanical engineering (Stauffer and Ullman 1991), soft-
ware design (Guindin 1990), electrical design (McNeill et al.
1998), industrial design (Cross et al. 1996), architecture
(Akin 1993), and interior design (Eckersley 1988). This
phenomenon indicates that protocol analysis has been
accepted as a prevailing approach to elucidating the design
process in design studies.

Protocols, the main material analyzed in protocol
analysis, are the audio and video information recorded
while subjects are designing. They are used to understand
different aspects of the design process, and to explore
cognitive activities in this process. Most protocol studies
use concurrent protocols, meaning the subjects talk aloud,
think, and sketch simultaneously while designing. How-
ever, whether talking aloud influences the subject’s per-
ception and thinking process is a controversial issue even
with deliberated methodology and painstaking experi-
mental procedure. Ericsson and Simon (1993) reviewed
relevant studies and claimed that if studies meet the cri-
teria for procedure, giving concurrent protocols does not
change the end products of thoughts, except by increasing
the solution time because of the verbalization. Their strong
arguments still could not entirely resolve doubts about the
validity of protocol analysis, but in design studies the
focus has shifted from the validity of the methodology to
the insufficiency of think-aloud to reveal perceptual and
insight aspects of design activities. Concurrent protocols
are accepted as valid data in revealing the process-oriented
aspects of the design process in comparison to the
content-oriented aspects (Gero and Tang 2001).

Recently, the content-oriented protocol study, which is
the second type of protocol studies, has been recognized
(Dorst and Dijkhuis 1995) and largely applied (Suwa et al.
1998, 2000; Suwa and Tversky 1997; Tang and Gero 2001a,
2001b). Generally, studies applying concurrent protocols
focus on the process-oriented aspects of designing, since
they are largely based on the view of information pro-
cessing proposed by Simon (1992). This category of re-
search emphasizes design problems, design strategies, and
issues derived from the design process (Akin 1993; Dorst
1996; Eckersley 1988; Gero and Tang 1999). In contrast,
studies utilizing retrospective protocols are appropriate
when studying the cognitive content of the design process,
since they are founded on the notion of reflection of
actions proposed by Schon (1983). They focus on the
internal cognitive behaviors to understand the meaning of
a designer’s drawing, seeing, and issues derived from
design content (Suwa et al. 1998, 1999; Suwa and Tversky
1997). In this study, we apply the concurrent protocol in
the kettle study and the retrospective protocol in the
architectural study using available experimental data.

Generally, there are five steps to a protocol analysis: 1)
conducting experiments; 2) transcribing protocols; 3)
parsing segments; 4) encoding raw protocols by the coding
scheme; 5) analyzing encoded protocols. The difference
between concurrent and retrospective protocols are in
reporting timing: in the former, subjects report and design
simultaneously; while in the latter designers design with-
out interference and then report with the aid of videotapes
recording their design sessions. Among these steps, the
segmentation and the coding scheme play essential roles in
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manipulating protocols. The selection of a segmentation
method and a coding scheme are influenced by the par-
ticular theory or model of design being explored. In our
case they were influenced by the co-evolutionary model of
design.

4
Electric kettle design experiment

4.1

Experimental setting

The kettle design experimental data was taken from an-
other protocol study reported in Gero and McNeill (1998)
and McNeill et al. (1998). Voluntary participants were
recruited from third-year students at the Faculty of Design,
Architecture and Building in University of Technology,
Sydney. Devices used were two video recorders, one tie-
clipped microphone with one amplifier, one TV, and one
VCR. Recorders were arranged to cause minimum inter-
ference in subjects. They respectively provided a micro-
scopic view, showing what was written and sketched on the
papers, and a macroscopic view, showing what gestures
the subject presented during the process. The experiments
took place at one of their studios to decrease the tensions
caused by experiments.

The instructions play a very important role in directing
subjects to give protocols in an appropriate way. The final
version includes warm-up exercises, main experiments,
and a brief interview. Following the instructions, subjects
were asked to talk aloud all details of what they thought
while solving the design problem, which is documented in
the design brief. The experimenter tried to avoid inter-
fering with subjects, and subjects were supposed to think
aloud instead of explaining their design concepts to the
experimenter. The experimenter sat behind the subjects
and kept silent, unless obvious pauses in speeches
appeared for a noticeable duration or subjects required
relevant information about the design.

411

The design brief

The design task for this experiment was to design new
electrical kettles for a famous international company. The
main design point was to develop the interface of kettles for
preventing accidental scalds. Subjects were asked to con-
sider both functions and forms of the kettle, developing a
concept design within 40 min. This design problem was
selected to be a size that could be addressed in the time
given and to be effective in revealing the design process.

4.1.2

Segmentation

After transcribing the talking in the video data, the raw
protocol is parsed into small units called segments. The
purpose of segmentation is to facilitate the analysis
process because the encoding method applies a code to a
single segment. One segment may belong to one or more
of the subclasses in one predetermined category,
depending on the coding scheme that is applied. In recent
protocol studies, the protocol was divided along lines of
designers’ intentions and actions, instead of time unit,

verbalization events, or syntactic markers. Therefore, the
designer’s intention is interpreted in each utterance, and
each segment represents one single intention of the
designer during the design process.

Although the definition of one segment appears precise
and clear in the literature, it is still ambiguous when
applied in practice. The methods of segmentation in two
recent papers (Gero and Mc Neill 1998; Suwa et al. 1998)
are claimed to be similar to Goldschmidt’s definition
(1994); however, in fact they are different to some extent.
For example, the relationship between segments and the
encoding categories is not similar. In the former paper,
one encoding subcategory corresponds to one segment,
while in the latter paper, there may be more subcategories
corresponding to one segment. Moreover, the bases of
segmentations are different. The segmentation proposed
by Gero and McNeill (1988) are principally based on the
transcripts, while the segmentation proposed by Suwa et al.
(1998) are essentially based on the designer’s actions in the
video. As a result, the meanings of segmentations are
different in these papers despite their claims. In this
experiment, we segmented the data according to the
designer’s intention and modified the method
corresponding to our content.

413

Coding scheme

The coding schemes in most previous protocol studies
are closely related to information processing theory. The
obvious example was Eastman’s study (1970). He used
design units, constraints, and manipulations to encode
protocols, and then tabulated the problem behavior
graph representing the design process in terms of infor-
mation processing. Similarly, Chan (1990) used a more
detailed coding scheme to analyze the architectural
design process. Akin (1984) conducted the first protocol
studies focusing on architectural design in terms of the
concept of plan.

Recent protocol research has identified two significant
coding schemes for different types of protocols (Gero and
McNeill 1998; Suwa et al. 1998). Gero and McNeill propose a
coding scheme to understand the process-oriented aspects
of design. It consists of the problem domain and the design
strategy related to the design process. In contrast, the
action categories proposed by Suwa and Tversky (1997)
were established to understand the content-oriented as-
pects of design. They used notions proposed by Larkin and
Simon (1987) to define three subclasses for analyzing what
designers saw and possibly thought. The coding schemes
were further developed by Suwa et al. into very detailed
action categories to understand the roles of sketches and
unexpected discovery (Suwa et al. 1998, 2000). These two
coding schemes provided influential advances in protocol
analysis, and this study adapts part of these results.

Here, we establish our own coding scheme in order to
observe the human design process as a co-evolutionary
process. The first level of coding is to encode the seg-
ments into problem requirements (P) and solutions (S),
the two spaces in the computational model of co-evolu-
tionary design. The two spaces are characterized by the
role of each search space in the design process: the

51




52

Res Eng Design 14 (2003)

problem requirements space defines the features and
constraints that specify required or desired aspects of a
design solution, and the design solution space defines the
features and behaviors of a range of design solutions.
Therefore, the segments were encoded into four
categories:

¢ Features of problem requirements (P-fea): as declarative
statements about specific features required in the design
solution;

e Behaviors of problem requirements (P-be): as state-
ments about behaviors the design needs to fulfill;

e Features of solutions (S-fea): as statements about
features of the solutions for the design;

e Behaviors of solution (S-be): as statements about how
the solutions behave.

4.2
Results

4.2.1

The separation between problem requirements

and solutions

The results of the first level of coding are plotted in Fig. 6,
in which the horizontal axis presents the time, the vertical
axis presents the type of the segment, and discontinuities
represent the segments that could not be categorized into
either problem requirements or solutions. This diagram
clearly substantiates the viability of separating the design
process into problem requirements and solutions. The
horizontal lines indicate a period of time in which the
designer was thinking about either the problem require-
ments or design solutions, and the vertical lines indicate a
shift from one to the other.

4,2.2

The qualitative interactions between problem
requirements and solutions

To examine the relationship between the segments
regarding problem requirements — and those for solutions
- we consider the times indicated by a vertical line. These
are the periods when the two spaces interact with each
other. Computationally, the interactions between them
drive the co-evolutionary process forward and make the
problem requirements and solution spaces evolve in

response to the other. Many interactions are found in this
data, and some of the segments are extracted to demon-
strate the interactions.

A. After 10 minutes in the design process, the designer
examined the existing design and said:

Let’s see . .. Um, seems like a thick plastic station, It’s,
(it’s, it’s) compact and clean but not as (not as) elegant
as the things that I would like.

In this instance, the examination of the current solution
stimulates a change in the direction of the behaviors of
problem requirements, as illustrated in Fig. 7. He realized
his initial thoughts were different from the real product
and decided to make a better design. After this, the elegant
form became a more essential issue in the design solution.
As a result, the direction of problem requirements changes
because of the solutions, given that the designer’s exam-
ination is regarded as one type of reasoning about the
solution space.

B. In the middle of the design process when the
designer sketched the design solution, he said,

cause it (needs, be) needs still, be sort of recognizable as
the same as the same product (sketching). So I guess
obviously needs a logo somewhere, (and) a band there’ve
got here, and . . .

The designer was trying to modify the shape of the lid
in one of the current solutions and realized the logo and a
band were needed. The former, a logo, is a new problem
requirement, that is added into consideration, while the
latter, a band, is an old problem requirement. In this case,
the solution affects the generation of both new and old
problem requirements, as illustrated in Fig. 8. It is the
interaction between problem requirements and solutions
in the co-evolutionary model in which the problem
requirements are evolved.

In addition, this is a good instance to show the role of
drawings as vehicles for thinking about solutions. The
designer tried to list all the possible functions in the
beginning. However, there were always some additions
or modifications of the problem requirements after
sketching the solutions. The sketches provide the means to
test the solutions in mind or on the papers. It becomes

Fig. 6. Representation of the

= s
\ || _

human design process as two
search spaces

Examining the existing
design

New directions in
problem requirements

Fig. 7. Examining the existing drawing
produces new directions in problem
requirements
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Sketching the
solutions

realistic to regard the design process as co-evolution with
the evolution and interaction between sketching/examining
and problem requirements of the artifacts to be designed.
C. In the middle of the design process, while reasoning
about the problem requirements, the designer reported,

Um ... butthelid . .. the handle is my major concern.
Maybe I need try (to) go back that and try (and)
integrate . . .

In this segment, the reasoning about problem require-
ments drives the designer’s sketching and thinking about
solutions from sketches. He recognized that the lid was an
important issue, so he then tried to put his thoughts about
this into sketches, as illustrated in Fig. 9. This model is
frequently found in the whole design process. The sketches
are related to not only the lid but also to the whole area or
even to the whole design. This means drawing is not only
putting the thoughts down, but it also facilitates thinking
about the solutions partially or wholly.

D. In the design process the designer thought about the
lid. During that period he reported,

but the thing I reckon the major issues probably the lid
maybe needs a little bit more of a lip kind of

thing . . . ’cause it (needs, be) needs still, be sort of
recognizable as the same as the same product. So I guess
obviously needs a logo somewhere, a band there’ve got
here . .. Makes the kettle look a bit more...um...a
bit more technical. I guess at least it looks better.

Um ... but the lid . . . the handle is my major con-
cern . .. Maybe I need, try, go back, that and try, inte-
grate . . . They want this band on there ... You need
straight, upright flat shape of the kettle.

The essential requirement, lid, caused the oscillation
between problem requirements and solutions. It becomes

Reasoning about problem
requirements

Logo and
Band

7
G >

New and old
requirements

Thinking about the sketches and
the related solutions

Fig. 8. Sketching triggers new
and old problem requirements

the operator between a series of problem requirements and
solutions. The result of the problem requirements is put
into the solutions, and then the thinking of the solutions
trigger the reasoning about problem requirements. The
process iterates until satisfactory solutions appear, as
illustrated in Fig. 10. Although in our data these sentences
are not consecutive, thinking about the lid plays an im-
portant role in associating different solutions and problem
requirements.

4.23

The evolution of the problem requirements

One of the features in the co-evolutionary model is the
evolution of the problem requirements. In design, the
problem requirements are not complete or explicit when
the process commences. While some problem require-
ments are stated initially, others come along during the
process of creating solutions. These additional problem
requirements can be an elaboration of the initial problem
requirements into more detailed requirements, or they can
be in response to difficulties encountered when developing
a particular design solution.

To explore the evolution of problem requirements, we
isolate the designer’s reference to the problem features
P-fea (Table 1). The table shows Code, the code assigned to
the segment, and Features of the problem requirements that
are associated with that code and their associated duration
in time. The local counter for time ¢ is given as a duration of
the cycle in which the problem requirements were being
considered. The global counter T is given as the duration of
a co-evolutionary cycle in which a set of problem require-
ments and design solutions were being considered. In
this data set, we have 14 units of consecutive problem
requirements labelled as P-fea. We found that the designer
does not consider the entire set of problem requirements at
one time, as in the computational co-evolutionary model.

Fig. 9. Reasoning in the
problem requirements leads
to sketching

.
Coeame >

Fig. 10. Interaction between
two spaces
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Table 1. The evolution of the

features of problem require- Code Features of problem specifications t T
ments P-fea 1 Speedo and ergonomic 0:02:02 0:02:53
P-fea 2 Form and market 0:00:16 0:03:25
P-fea 3 Marker/ readout, temperature, safe lid, large handle, 0:02:14 0:06:10
insulated outer, stable, pouring, power
P-fea 4 Button, lid (P3), power (P3), market (P2), compact 0:02:02 0:10:15
and clear, switch
P-fea 5 Lid (P4) 0:00:30 0:12:27
P-fea 6 Lid (P5) 0:00:45 0:14:33
P-fea 7 Lid (P6), handle (P3) 0:00:26 0:15:17
P-fea 8 Logo 0:00:27 0:17:18
P-fea 9 Lid (P6) 0:00:08 0:19:16
P-fea 10 Band 0:00:04 0:20:44
P-fea 11 Capacity, cost/market (P4) 0:01:21 0:23:46
P-fea 12 Speed, temperature meter (P3) 0:00:36 0:26:02
P-fea 13 Wide base, cheap (P10) 0:00:10 0:27:05
P-fea 14 Power plug-in (P4) 0:00:38 0:36:27

One part of the problem requirements was examined at one
time. Some important problem requirements were
considered several times, such as the lid in this data.

Furthermore, we qualitatively group the units of prob-
lem requirements as they were in one cycle of co-evolution,
in which the search of the problem requirements space has
converged. In our data, three distinct groups are found,
P-fea 1~3, P-fea 4~9, and P-fea 10~14. During the time
from P-fea 1 to P-fea 3, this designer was trying to gen-
erate as many functions for the design as possible. Some
previous studies call it “the primary generator” or “the
organizing principle”. Consequently, we can find most of
the rest of the problem requirements are related to these
problem requirements in three units of the first groups.
For example, the temperature meter shown in P-fea 12
appeared initially in P-fea 3. Among these features of
problem requirements, the “lid” appears most frequently.
The evolving process could be traced through the series
of problem requirements, P-fea 3, P-fea 4, P-fea 5, P-fea 6,
and P-fea 9. Possibly because of the limited duration, most
of the P-feas appear twice. Given the observation of a
long-term design process, it may be possible to find more
changes of problem requirements over time.

4.2.4
The transitions resulting in changes
of problem requirements
The interaction between problem requirements and solu-
tions is another important feature of the co-evolutionary
model. In Sect. 4.2.1, it was shown that the design process
could be regarded as two interacting spaces, while in the
following two sections, various types of transitions are ill-
ustrated in detail. We first examine the transitions resulting
in changes of problem requirements in the design process,
and then the transitions resulting in changes of solutions.
Theoretically, three different types of transitions in
changes of problem requirements could be found, due to
the combinations of the four elements of the coding
scheme. However, types of transitions are richer in terms
of the content, which varies the combinations between
problem requirements and solutions. Consequently, we
further divide these four categories into subcategories in
order to highlight more detail.

Four different types of changes of problem require-
ments are found from the analysis and observation of data.

¢ Adding new problem requirements (ADD): a design
problem is now well known as an ill-defined problem,
without clear problem requirements in the beginning, so
designers generally find new problem requirements
during the design process. This kind of change in
problem requirements is named “adding new problem
requirements”, which extends the boundary of the space
of problem requirements.

¢ Refining problem requirements (REF): the initial
problem requirements are often modified according to
how designers apprehend and reframe the design
problem. This kind of change is named “refinement of
problem requirements”, which refines the information
within the original bounds of the space of problem
requirements.

The above two types of changes modify the space of
problem requirements; however, we enlist two other
thinking processes, which do not modify the problem
requirements, but may lead to changes of the problem
requirements.

e Searching for new problem requirements (SEA): the
effort of designers in finding new problem requirements
is not always conclusive, but is a search process without
immediate results. When this occurs, the corresponding
protocol is encoded as a “search for new problem
requirements”.

e Re-examination of problem requirements (REE): the
initial problem requirements generally must be
fulfilled, no matter how the design requirements are
interpreted during the design process. Consequently,
designers often re-examine the initial problem
requirements to assure their fulfillment. These periods
are regarded as “re-examination of problem require-
ments”.

The following group of segments illustrates how the
design requirements were changed as a result of reasoning
about the current best problem requirements and
solutions, using the classification above.
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a ADD. Reasoning about the behaviors of problem re-
quirements results in adding new problem requirements,
for example, the transition in C8 (P-be—P-fea).

‘Cause it ,needs, be, needs still (to) be sort of recogniz-
able as the same as the same product.

So I guess obviously needs a logo somewhere, a band
there’ve got here, and . . .

b REF. Reasoning about the behaviors of problem re-
quirements results in refinement of the problem require-
ments, for example, the transition in C7 (P-be—P-fea).

Even, make it a bit more interesting
But the thing I reckon the major issues probably the lid
maybe needs a little bit more of a lip kind of thing

¢ ADD. Thinking about the solutions results in adding
new problem requirements, for example, the instance in
C3 (S-fea—P-fea).

So I have, think of some kettle designs I will take them
all ..., let’s see . .. [were thinking]

It would be nice if people knew exact how the hot water
was just so they knew (m: how, pour the water)

d ADD. Drawings of solutions result in adding new
problem requirements, for example, C10, R12 (S-fea—
P-fea).

Maybe I need, try, go back, that and try, integrate . . .
They want this band on there . . .

e ADD. Examining the solutions results in adding new
problem requirements, for example, the instance in R10,
R13 (S-fea—P-fea).

So I just thinking . .. oh . . . this kettle I've drawn was
already too small.

If (if) the size of the kettle is a major setting point then
my kettle also to be able to be same size.

f ADD. Reasoning about the interactions between the
existing depicted ideas and its environment results in
adding new problem requirements, for example, the
instance of C15, C16 (S-be—P-fea).

Tall and thin was prone, tip over by mistake
So this I want a pretty wide base for everything. flare up
the base a bit.

g ADD. Examining the behaviors of the existing depicted
ideas results in adding new problem requirements, for
example, the instance in C13 (S-be—P-fea).

Um . .. yeah, I am basically thinking of . . . it looks
right now,
I've (I've) decided that . . . scalding-wise

The following group of segments illustrates how the
designer was reasoning about the design specifications

although changes were not made explicitly, using the
classification above.

a SEA. Reasoning about the behaviors of problem
requirements results in searching for new problem
requirements, for example, the transition in R6 (P-be—
P-fea).

And the water drips everywhere and I'll see exactly what
the problem is, but, no, it (the kettle) was all fine.

So I'm just looking at the overall shape again, trying to
see what else could possibly be wrong.

b REE. Reasoning about the behaviors in the problem
requirements results in re-examining the initial problem
requirements, for example, the transition in C6 (P-be—
P-fea).

Just trying (to) think what people are get-

ting, ... um ... some things like scalds caused by
kettles.

Several ways . . . find and modify the interface of the
kettle areas that are . . . some expensive electrical

devices . . . [reading the brief]

¢ REE. Thinking about solutions results in re-examination
of the initial problem requirements, for example, the
instance in R1 (S-fea—P-fea).

So my first of the Speedo kettle were just like a
streamlined kind of design, streamlined I thought of
because Speedo costumes, swimming, streamlined.
So again I was reading through making sure exactly
what my requirements are for the project.

d SEA. Thinking about solutions results in searching for
new problem requirements, for example, the instance in
R9 (S-fea—P-fea).

but its probably, I think probably incorporate some
features from this design into a kettle that looks more
like the other kettle.

Ah, now I was looking at the box and seeing what the
actual features of this kettle need to be, what that
marketing and setting points are, a matter of meeting
the need.

e SEA. Drawing solutions results in searching for new
problem requirements via examining the existing product,
for example, C11 (S-fea—P-fea).

You need straight, upright flat shape of the kettle.
A couple of capacity or compact [looking at catalogue]

f REE. Drawings of solutions results in re-examining
initial problem requirements, for example, R2 (S-fea—
P-fea).

So I was going over that, looking at that, seeing how I
could possibly improve the spout design just from my
rough drawing,

Umm, still thinking about the main things
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Table 2. The transition types

resulting in changes to require- Code Type of reasoning Type of change to problem requirements
ments found in this data set ADD REF REE SEA
P-be Reasoning about the behaviors X X X X
of problem requirements
S-fea Thoughts of solutions X - X X
Drawings of solutions X - X X
Examining the solutions X - - X
S-be  Reasoning the interactions between the X - X -
existing depicted ideas and its environment
Examining the behaviors of the existed X X X -

depicted ideas

g SEA. Examining the solutions results in searching for
new problem requirements via examining the existing
product, for example, the instance in R11 (S-fea—P-fea).

So even though I (sort of) like that shape, it’s not quite
appropriate.

Looking again at the box, thinking of what it says,
‘cause if I was trying to design for this company I have
to know what that company wants.

h REE. Reasoning about the interactions between the
existing depicted ideas and their environment results in
re-examination of the initial problem requirements, for
example, the instance of C2 (S-be—P-fea).

so that (so that) they (don’t doesn’t have that) can’t spill
out here and then,
Um, ok some elegant and beautiful forms

i REE. Examining the behaviors of the existing depicted
ideas results in re-examination of the initial problem re-
quirements, for example, the instance in C9 (S-be—P-fea).

Makes the kettle look a bit more ... um . .. a bit more
technical. I guess, at least it looks better
Um ... butthelid ... the handle is my major concern.

Different transitions resulting in the changes of prob-
lem requirements are illustrated above and tabulated in
Table 2. In this table, the “Code” is the type of code
applied to the segment that initiated the transition to
problem requirements, “Type of reasoning” describes
what the designer was reasoning about, and “Type of
change to problem requirements” refers to the categories
described above. The mark “X” indicates that we found
this type of change in a transition between vertical and
horizontal elements in this data. However, not all types of
changes are found for all types of transitions in our data,
probably because we had limited data analyzed, or these
types actually do not exist in the design process. Therefore,
it necessitates the further analysis of more data to examine
the transitions completely.

4,25

The transitions resulting in changes of solutions

This section examines the transitions resulting in the
changes of solutions according to the same method

applied in the previous section. The salient difference of
the analysis in this section from the previous is that the
results rely heavily on the observations of the drawing
activity of the designer. The relationship between new and
old events, either thoughts or drawings, is too vague to
distinguish due to the mixture of these events. There are
not enough cues to trace each drawing back to its prece-
dent. Moreover, we studied only the verbal protocol in this
experiment so that the instances of drawing activities are
based on the verbal utterance. Therefore, not all of the
drawing activities are reported by the protocol, and this
situation increases the difficulty in distinguishing one in-
stance as adding new solutions or as a re-examination of
current solutions.

In the computational co-evolutionary model, the solu-
tions space was changed through the application of genetic
operators, while in the human design process, it is im-
possible to see the underlying mechanisms that lead to the
changes in the solution. We can only see the changes re-
vealed by superficial verbal description. By protocol and
observations, three essential types of changes of the solu-
tions found in the analysis of data are: 1) reasoning about
the interactions between the current solution and its en-
vironment, 2) examining the behaviors of the current so-
lution, and 3) the intention of the designer to introduce a
new concept.

There are three types of changes in features of solu-
tions:

e Thoughts of solutions (THO): a brilliant solution for a
design problem may be the concept that breaks the
traditional way of solving a problem.

e Drawings of solutions (DRA): the material a designer
uses to communicate with peers and clients is drawings.
Creating and examining those drawings indicates rea-
soning about the solution.

¢ Examining the solutions (EXA): the evaluation of an
existing solution is part of the solution since it sets up
the priority for the solutions.

All the transitions found in this data result in changes
in the space of solutions either by conceptual thought or
by physical drawings. There is no transition resulting in
the examination of solutions in this data set.

Here we look at how the designer examined the current
solution in order to make changes to the design. This is the
horizontal evolution of the solution space in the co-evo-
lutionary model of design.
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a DRA. The intention of the designer results in the
drawings of features of solutions, for example, the instance
in C5.

I don’t want (to) change it so much so people would be
able (to) recognize it. I guess,

Um ... drawing out. I guess what I am drawing out
what . . . I am thinking things that I like and don’t like.

b THO. Examining the behaviors of the current design
solution results in the thoughts of features of solutions, for
example, the instance in C6.

Um, 1 just find the overall shape little bit boring, sort of,
like a Tupperware kind of things. (It) doesn’t look like a
nice (nice) kettle

Maybe (it) need some colors or something.

¢ THO. Reasoning about the interactions between the
current design solution and its environment results in the
thoughts of features of solutions, for example, the instance
in C2.

You can push out with your thumb, but flips up the lid,
so they don’t actually have (to) take the lid off. They can
be holding the handle, while they pour it in.

I think, (to) pour it you must have good lip at the front.

d THO. Reasoning about the interactions between the
problematic kettle and its environment results in the
thoughts of features of solutions, for example, the instance
in C9.

It’s half of the water at all time before switch on [read
the text on the bottom of the problematic kettle].

Just want to know it’s on the top of the market. It might
be good (to) have a little (floating bubble to show the
height of the water).

e DRA. Examining the behaviors of the current design
solution results in drawings of features of solutions, for
example, the instance in C10.

Um this idea works well. Maybe we should trying (to)
work in.
Round it a bit more. It’s a bit square.

Here we look at the transitions from behaviors of
problem requirements to features of solutions. This is the
downward arrow in the model of co-evolutionary design.

a THO. Reasoning about the behaviors of problem
requirements via examining the current solution results in
the thoughts of features of solutions, for example, the
instance in R7.

Just looking at the handle thinking about how it all
works.

Yeah, so now I’'m thinking, I'd put in the meter thing
for . .. that was like the measure, oh.

b DRA. Reasoning about the behaviors of problem
requirements via examining the current solution results
in the drawings of features of solutions, for example, the
instance in R25.

Looking inside to see how the element works, and see
how if I can see any injected points or injection points
just to see how its melded.

And I am putting it back there, now to try and draw it
again.

¢ THO. Reasoning about the behaviors of problem re-
quirements results in the thoughts of features of solutions,
for example, the instance in R3.

I think of people pouring hot water and how they go
about it so, just what they do.

So I can think of how my kettle design should reflect how
people pour water from their kettle umm.

d DRA. Reasoning about the behaviors of problem re-
quirements results in the drawings of features of solutions,
for example, the instance in R27.

On the side and again I was trying to look at how, trying
to work out how it’s made

First comparing my design to that kettle, trying to see
how if there is anything I can do, to sort of, make them
work together better.

The transitions that result in changing the design solu-
tions are tabulated in Table 3. Our results show that our

Table 3. The types of the tran-
sitions resulting in the changes
of solutions

Code Type of reasoning

Type of change

THO DRA EXA
P-be Reasoning about the behaviors of problem requirements X X -
Reasoning about the behaviors of problem requirements via examining X X -
the current solution results in the drawings of solutions
S-be Reasoning about the interactions between the current solution and its X - -
environment
Examining the behaviors of the current solution X X -
The intention of the design X - -
P-fe  Adding new features X X -

Refinements
Re-examination
Searching
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designer’s transitions between behaviors of solutions and
features of solutions occupy 70% of all the transitions re-
sulting in changes of solutions. This phenomenon indicates
that reasoning about solutions plays an important role in
generating solutions, while the interactions between the
problem requirements and solutions are much less fre-
quent. Similar to the computational co-evolutionary model,
in each evolutionary cycle the best result is produced after a
number of evolutions and evaluations, and then the result is
passed to change the problem requirements.

4.3

Discussion

Reasoning and examination are two main events found in
our analysis of the interactions, excluding free-hand
sketching. In pursuing co-evolutionary design as a cogni-
tive model of the design process, we can draw a loose
equivalence between examining and reasoning as observed
in human designers with the fitness functions and genetic
operators of the computational model. Both human rea-
soning and genetic operators result in the generation of new
alternative problem specifications and solutions, while both
examination and fitness functions identify the best in one
generation of problem specifications and solutions.

In this analysis, we observed a co-evolutionary process
between problem requirements and solutions in the human
design process. We identified the following four mecha-
nisms related to the evolution of problem requirements:

e adding new problem requirements;

e refining problem requirements;

e searching for new problem requirements;
e 4e-examination of problem requirements .

We identified three mechanisms related to the
evolution of the features of design solutions:

¢ thoughts of new solutions;
e drawings of solutions;
¢ examining the solutions.

5
Architectural design experiment

5.1

Experimental setting

The protocol data for the architectural design experiment
was taken from previous studies (Suwa et al. 1998, 2000;

Table 4. Design brief data

Space Area (m®)
Living/dining area 40
Kitchen 15
Bath 10
Master bedroom 30
Bedroom 20
Painter’s studio 50
Dancer’s studio 50
Observatory 20
WC-shower 9
Parking space 36

Tang and Gero 2001a). In this experiment, voluntary
participants were practicing architects with 30 years’ ex-
perience in residential house design. The device and its
arrangement were the same as those in the kettle design
experiment, and the experiments were held at the same
studios at the University of Sydney.

The final version of instructions for this experiment
included warm-up exercises, design, retrospective report,
and a brief interview. The separation between design and
report made these retrospective protocol studies. Follow-
ing the instructions, subjects were asked to design without
thinking aloud, and then to retrospectively report all
details of what they thought while solving the problem. To
aid in the quality of the report, the videotapes recording
the design session were used for visual cues. The experi-
menter did not interfere with the subjects, and the subjects
were asked to report what they thought instead of ex-
plaining their design concepts to the experimenter. The
experimenter sat next to the subjects and kept tracing the
reporting progress to ensure that the subjects reported
relevant information about the design.

5.2

The design brief

The design brief for this experiment was to design a house
for a couple. The subjects were given the following infor-
mation. The female, age 29, is a dancer, and the male, age
34, is a painter. They are sensitive to color and beauty and

Table 5. The encoded segment based on intentions

Segment P/S F/B/S

The features of the site where the views P SI
might be, the orientation of the sun, and to
get the feel of the actual area of the site

Table 6. The encoded segment based on intentions and nouns

Segments P/S F/B/S

The features of the site P
Location of the views P B
Orientation of the sun P
To get the feel of the actual area of the site P

Table 7. The encoded protocol based on intentions

Segment P/S F/B/S

Unlike most houses that I had, three spaces P F
that I didn’t really understand: the dance studio,
the painting studio, and the observatory room

Table 8. The encoded protocol based on nouns

Segments PorS F/B/S

Unlike most houses that I had, three spaces P
That I didn’t really understand: the dance studio P
The painting studio P
The observatory room P

el sl silies]
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enjoy contact with the natural environment. The site is
located on the corner of fully serviced home sites sur-
rounded by a large central open-space recreation reserve
in Matraville, one of Sydney’s southeastern newly desirable
locations. It is trapezoidally shaped and slopes down to the
edge of the recreation reserve. The site has a view of the
flame trees in the recreation reserve and the whole reserve.
The site area is 700 m>. The floor-space ratio for this site is
0.65:1, so the maximum floor plan can be 455 m?. The
house will have gentle sea breezes and is screened by a
stately grove of flame trees along the edge of the estate. A
sculpture garden is required to display their art collec-
tions. According to the Randwick Development Control
Plan No. 4, the height of a dwelling house should not
exceed a maximum of 9.5 m. The design task was to give
form to and to arrange the spaces on the site with the
approximate sizes shown in Table 4.

5.2.1

Segmentation

Segmentation for this study is important because it de-
termines the results of the transitions between consecutive
segments that are essential for observing the co-evolu-
tionary process. Segmentation enables the clear observa-
tion of transitions between problem and solution spaces.
In the previous experiment, we divided the design protocol
along lines of designers’ intentions and actions. In this
way, the content of segments is closer to that of the
smallest units of the thinking process. Therefore, the
designer’s intention is interpreted, and each segment
represents a single intention of the designer.

Similarly, we applied the same method in this experi-
ment, but further parsed the segments into smaller units,
based on the notion of “discussed issues”. They are con-
sidered as nouns of the utterances in each segment. To
illustrate, the same protocol is parsed and encoded by both
of the methods used in the kettle design and the archi-
tectural design experiments. In the tables below there are

Table 9. The example of segmentation and encoding

Transcript P/S  FIB/S

So the living areas / dining and living / would  S/S/S B/B/B
actually be orientated to the north-east

and look out to the best outlook

Table 10. The example of encoding a segment

two columns representing the different levels of the coding
scheme, which will be described in the next section. In the
first column, the segment is coded as Problem or Solution
and in the second column the segment is coded as Func-
tion (F), Behavior (B), or Structure (S) and we use SI if the
issue is the design site. The segmentation in Table 5 is
based on the designer’s intention only, and the segmen-
tation in Table 6 is based on the intentions and nouns in
the same protocol. The encoded results show that the latter
method gives us more detailed transitions in the design
process, and preserves the essential encoding, such as the
P in P/S spaces and the S in the F/B/S code. We have more
information when parsing the protocol based on both in-
tentions and discussed issues, and it helps us identify the
co-evolutionary issues that designers deal with.

For another example, the segmentation in Table 7 is
based on intentions. In Table 8, three more discussed
issues were identified. The parsed results demonstrate a
design situation that a designer tends to think about
related issues together in an intention. This means the
designers thought about the three spaces in the house and
intentions. However, at the same time four issues were
discussed: the dance studio, the painting studio, the ob-
servatory room, and the collection of these three. The
separated nouns enrich the transitions that we can
observe, and now we can observe not only transitions
between intentions but also between discussed issues.

In parsing discussed issues, it should be noticed that we
considered the shared context in the same segment to
distinguish the different discussed issues. For example, the
three discussed issues in the F/B/S column of Table 9 were
considered as coherent issues, so all of them were encoded
as behaviors. However, if we considered the issues indi-
vidually, the first two issues would be different. “The living
areas” and “dining and living”, respectively, would be
coded as Structure according to the definitions.

This is similar to encoding a segment. Sometimes it has
to be based on other segments that have an intentional
relationship with it, and they could be the following or
previous segments. For example, the segment in Table 10
is hard to define by itself, and consequently, the following
segment is considered in order to understand the design-
er’s intention to encode the content.

5.2.2

Coding scheme

For this design experiment, the first level of coding is the
two co-evolutionary spaces, where problem requirements
(P) and solutions (S) spaces are the essential categories for

Transcript P/S F/B/s investigating the diagonal behaviors of co-evolution. To
— - clarify, the definition of problem requirements space is the

But I am still just looking at p S articulations of requirements, specs, needs, and desires
Table 11. The example of .
encoding a segment Number Transcript P/S

1 And then to the bedroom, the main bedroom was a bit of S

a problem because initially I sketched it, ah, a bit more square

2 And I wanted to orient it to the courtyard P

3 I wanted to make the courtyard as big as possible. P

4 So that it wasn’t crammed against the studio at the back P
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that a designer wants in the design solution. For example,
the first segment in Table 11 is about a confusing issue
found in the structure, and it is encoded as solutions
space. The following segments are encoded as in the
problem spaces, since the contents are about the design
requirements that the designer wanted to achieve.

The second level of coding is based on the prototype
framework: function, behavior, and structure (Gero and
Rosenman 1990), which are applied to describe the content
of the problem specifications and solutions spaces. In Gero
and Rosenman’s definition:

¢ function (F) relates to the purpose of an artefact, and
when in the Problem space it refers to the intended or
desired purpose, when in the Solution space it refers to
the actual purpose;

¢ behavior (B) relates to the actions or processes of an
object or artefact, again in the Problem space it is the
expected behaviors and in the Solution space it refers to
the actual behaviors; and

e structure (S) relates to the definition of objects and their
relationships that comprise a physical solution, where in
the Problem space it refers to required structure and in
the Solution space to actual structure.

In addition to these three, two new subcategories are
added to account for the context of the design of a
residential house.

e site specification (SI) related to the original require-
ments for the building site.

e site structure (ST) related to the additional requirements
for the building set up by a designer.

Based on the context of design task and the experience
from encoding data, we extend the working definitions of
function-behavior-structure as follows.

Function includes the purpose of the rooms and the
activities intended to occur in the space, for example,
“because the activities would tend to be more internal
rather than outward looking” is encoded as function.
Function can apply to segments that are encoded as a

Problem!Solution

P w—e———. EmmaE  mE o= = - Emm mr o -

T T T T T T
a 100 200 300 400 500

Segment Number

Fig. 11. The occurrence of problem and solution spaces: P indicates
the thinking of problem and § indicates the thinking of solution
spaces

Problem requirements or Solutions space. For example,
“that we’re going to need to be put into the house” is
encoded as a problem space/function segment, and “that
we’re going to put into the house” is encoded as a solution
space/function segment.

Behavior includes the performance measure of the
design, and views, for example, “so going up to a second
story was not going to benefit the living in the house”. This
segment is encoded as behavior. Behavior can also be
applicable in both problem specifications and solutions
spaces. For example, “to get the feel of the actual area of
the site”, is encoded as a problem space/behavior segment,
and “and having roughly divided them into three groups”
is encoded as a solutions space/behavior segment. More-
over, the segments including the designers’ evaluation are
encoded as behavior, so this kind of segment may be
related to the following vocabularies: number, fit, close,
enough, bigger, smaller, and work.

Structure includes the locations and adjacencies of
spaces, for example, “so I assume the council normally
have a set back building lines set back” is encoded as
structure. An example of a problem space/structure
segment is “I've started off with the simplest thing, the
garage”. An example of solution space/structure segment
is “So I set out the actual area that I thought would
probably be the (the) allowable building area”.

This coding scheme provides a basis for 1) examining
the evolutionary processes of problem specifications and
solutions spaces, 2) examining the content of problem
requirements and solutions spaces, and 3) closer exam-
ination of transitions since (smaller) nounal segments
were coded instead of (larger) intentional segments.
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Results

In this section, we describe the statistical results of the
distribution of occurrences in problem requirements and
solutions spaces, and the distribution of occurrences in
function/behavior/structure spaces.

5.3.1

The distribution of occurrences in problem space

and solution space

The distribution of occurrences in problem specifications
and solutions spaces in our analytical data is plotted in
Fig. 11. Each dot in the figure presents a segment that we
regarded as in either problem specifications or solutions

Proble ms
2%

Problems

50 0%

Fig. 12. The relative amounts of time spent for problem and solution
space in the human left, and computational design process right
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Fig. 13. Percentile comparison for segments in problem and solution
spaces

spaces. The segments that are indistinguishable in terms of
problem/solution spaces are excluded from this figure.
Figure 11 demonstrates two distinguishing features.
First is the co-evolution of problem and solution issues in
the human-thinking process. Despite the difference in the

number of segments between the two spaces, the thinking
of both problems specifications and solutions occurred
pervasively in the whole design process. The observed
frequency of the reasoning about requirements does not
decrease dramatically in the end of this conceptual design.
What we can propose here is that the conceptual designing
in this case study could be regarded as a co-evolutionary
process between problem requirements and design
solutions spaces.

Second, we observed an unbalanced amount of rea-
soning in the problem and solution spaces. The left pie
chart in Fig. 12 shows the amount of segments that relate
to problem requirements space is two quarters less than
the amount for the solutions spaces. The trend shows that
this designer spent more time thinking about the solutions
in the design process. This is different from the compu-
tational co-evolutionary model in which we tend to give
the same number of evolutionary circles to both spaces,
shown in the right pie chart, Fig. 12. It may be interesting
to apply this feature to the computational co-evolutionary
model to examine whether this unbalanced amount of
reasoning is beneficial to the computational performance.

To further examine the trend of reasoning between
problem requirements and solution spaces, we plotted the
occurrences of segments in both spaces in percentile
comparison (Fig. 13). A comparison percentile plot allows
us to compare the distributions of segments in two spaces.
The points plotted in the graph in Fig. 13 are the 1,2, 3,4, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 96, 97, 98, and 99th

P(F) — - - E B m | [ I ] - L 1L |
PE)— W mom == = - n = -
w
D pEn— mm mmw EmmE n - - u
=
"
oy
E" PST) = - - EEEE B . - LN | . n . L.
& Fig. 14. The transitions
‘3 between function, behavior,
_C; and structure: P(F) indicates
g S(F) == . I N . .- - - ] | ] - 0| - HE N the problem Space/function
15 segment, P(B) indicates the
problem space/behavior one,
508y — - - N BN N S N S BN N N BN N . P(SI) indicates the problem
space/ site specification one,
P(ST) indicates the problem
space/structure one, S(F)
S(5) = .. ' ' _________® | | . | | ‘& | | ___]/.]9/]/] . . .
indicates the solution space/
function one, S(B) indicates

the solution space/behavior

0 100 200 300 400 500 ate
one, and S(S) indicates the
Segment Number solution space/structure one
Table 12. The mean and stan-
dard deviation of the segment S(E) S(B) S(S) P(F) P(B) P(SD) P(ST) Total
number in different spaces Mean 2555 2922 2863 2586 2655  111.0 2747 2705
Frequency 63 137 218 32 23 32 34 539
Std. deviation 171.8 134.3 151.1 192.8 172.4 120.2 143.0 156.2
Skewness 344 -.026 —.088 127 -.209 1.497 —.434 —.001
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Table 13. The count of segments in different spaces

Function Behavior Structure
Problem space 32 23 66
Solution space 63 137 216

Chi-square test result 3*=13.05>y(2)=9.21
(p-value<0.01)

percentiles. The 50th percentile point indicates that the
50th occurrence of reasoning in the solution space was in
about segment 300, and the 50th occurrence of reasoning
in problem space was in about segment 200. This indicates
that the segments of reasoning in the requirements space
appear earlier than those in the solutions space. It means
that the designer reasoned in problem space more in the
first half of the design process. This phenomenon is dif-
ferent from the reasoning process in the computational
model. It would also be interesting to apply this phenom-
enon to the structure of computational models, changing
the time distribution in reasoning different spaces.

In this experiment, a single segment was determined to
be a single intention of the designer, rather than the fea-
tures of the requirements/solutions as discussed before.
Therefore, an episode of reasoning in the requirements
space might span through several segments. To demon-
strate this situation, we calculated the average continuous
segment length in the requirements space and in the so-
lution space. The results are 3.3 segments and 11.3 seg-
ments, respectively. This shows that a designer reasoning
in the solution space expresses more intentions continu-
ously before reconsidering the requirements space.

5.3.2

The transitions between function, behavior, and structure
in terms of problem and solution spaces

To observe the transitions between function, behavior, and
structure, we plotted the instances of thinking about them,
and further divided them in terms of problem require-
ments and solutions spaces (Fig. 14). The problem space/
structure segments are divided into two subcategories, site
specification (SI) and site structure (ST), which were
presented in Sect. 5.1.3.

Figure 14 shows that different types of thinking occur
throughout the design process. Reasoning in function, be-
havior, site specification, and site structure in the problem
spaces still occurred after the 450th segment, and reasoning
of function, behavior, and structure in the problem spaces
still occurred until the end of the design process.

We calculate the mean, frequency, skewness, and
standard deviation of the number of segments in terms
of each category, shown in Table 12. The skewness
statistic of less than 1 suggests a symmetrical distribu-
tion in a category, and most of the categories have
symmetrical distributions, except P(SI). Although the
distribution is even, the observed frequency in each
category varies, ranging from 218 to 63. The solutions
space/structure segments are the most frequent activity
in this case study.

The numbers of structure type segments in both
problem requirements and solution spaces exceed that
in other types. To verify this, a chi-square test for the

distributions of function, behavior, and structure in the
two spaces was conducted, (Table 13). To validate this test,
site specifications and site structure are merged into
structure in the problem space.

The result indicates that there is a statistical signifi-
cance in the difference between problem requirements and
solutions spaces in terms of function, behavior, and
structure. The segments that enable the distance between
these two spaces are the functional and structural concerns
in the problem space and the behavioral concerns in the
solution space. The bold numbers in two spaces represent
the number that exceeds the expected count in the case
where all cells are independent.

In this architectural design study, the interesting find-
ing is the difference between the computational co-evo-
lutionary model and the human design process. It is shown
in this paper that the human design process could be
appropriately presented as a co-evolutionary process, and
the statistics demonstrate the even distribution in different
categories. However, the difference between the numbers
of occurrences shows the difference in the mechanism
between co-evolutionary computational and cognitive
models of design.

6

Conclusions

The two protocol studies clearly show evidence of the
transitions in the computational co-evolutionary model: P
to P, Pto S, Sto P, and S to S. The protocol studies also
identify the nature of these transitions and suggest the
transitions are both temporal and have some basis in the
content of the design information. This validates our
hypothesis that co-evolutionary design can be the basis for
a cognitive model of design. In computational co-evolu-
tion, selection, crossover, and mutation are genetic oper-
ators that we have used to facilitate the generation of the
best problem requirements in one evolution cycle. We are
not able to observe the mechanisms used by human
designers to compare directly with computational
co-evolutionary design, but the analytical data demon-
strates that the characteristics of both human cognition
and computational algorithms are similar in terms of
co-evolutionary cycles.

For human designers, this process is more like a depth-
first search due to the powerful reasoning and limited
cognitive abilities of human being. In contrast, for
computers, it is more like a breadth-first search because of
their relatively large memory and limited abilities in
reasoning. As a result, the use of selection, crossover, and
mutation give computational designing a relatively simple
algorithm, compared to human reasoning. This indicates
that the computational model of co-evolutionary design
complements the human designer’s co-evolutionary cycles:
the computational model can examine and generate large
numbers of designs and the human designer reasons about
a few designs.
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