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ABSTRACT

A residual type a posteriori error estimator is presented for the least-squares finite

element solution of stationary incompressible Navier–Stokes equations based on

the velocity–vorticity–pressure formulation with nonstandard and standard

boundary conditions. Using the coerciveness of the corresponding Stokes opera-

tor and the special feature of the nonlineariry of the formulation, it is shown that

the error estimator is exact for the Stokes problem and is asymptotically exact for

the Navier–Stokes problem in an energy-like norm. The resulting adaptive

method is highly parallel because it does not require to assemble the global

matrix and the error estimation can be completely localized without using any

information from neighboring elements.

1. INTRODUCTION

A posteriori error estimation is now a standard component in adaptive methods
(Oden et al., 1989; Verfürth, 1996; Zienkiewicz, 1992). The least-squares finite
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element method (LSFEM) has been recognized as an attractive method in many
applications (Bochev, 1997; Cai et al., 1994, 1997; Jiang, 1998; Jiang and Chang,
1990). It is shown here that, for the Stokes problem in first-order least-squares
formulation, the residual type error estimator is locally as well as globally equal to the
exact error in the norm induced by the least-squares functional. For Navier–Stokes
equations, the error estimator is proved to be asymptotically exact. In other words,
the error estimator is perfectly reliable for the LSFE approximation of the Stokes
problem and very reliable for the Navier–Stokes problem. Moreover, the
computation of the estimator is completely localized without any restriction on the
approximation order and without requiring any information from the neighboring
elements and therefore very efficient for parallel computations. These advantageous
properties can be regarded as an additional appealing feature of LSFEM.

We consider the steady, incompressible Navier–Stokes equations

�
1

Re
�u þ ðu � r Þ u þ rp ¼ f in �, ð1Þ

5 � u ¼ 0 in �, ð2Þ

B ðu, pÞ ¼ 0 on @�: ð3Þ

where the symbols �, r, and r� stand for the Laplacian, gradient, and divergence
operators, respectively, � is an open bounded connected domain in R2 with the
boundary @�, Re > 0 the Reynolds number, u ¼ ðu1, u2Þ

T
2 ½H1

ð�Þ�
2 the velocity

field, and f ¼ ð f1, f2Þ
T
2 ½L2

ð�Þ�
2 the body force. The pressure p 2 L2

ð�Þ if the
admissible homogeneous boundary operator B describes the pressure on @�, other-
wise p 2 L2

0ð�Þ. Here Hs
ð�Þ, s 2 R, denotes a usual Sobolev space equipped with the

norm k�ks and L2
0ð�Þ ¼ fq 2 L2

ð�Þ j ðq, 1Þ0 ¼ 0g, where ðu, vÞ0 :¼
R
� uv d�. We

denote eHHs
ð�Þ ¼ Hs

ð�Þ \ L2
0ð�Þ.

For least-squares formulation, one usually reduces the second-order PDE to a
first-order system by introducing some suitable new variables. The standard velocity–
vorticity–pressure formulation is given in Sec. 2. We are interested in the coercivity
of the linear operator obtained from this particular formulation. A priori error
analysis of the LSFE approximation based on this formulation has been thoroughly
studied by Bochev, Gunzburger, and Jiang, see e.g., Bochev, 1997; Bochev and
Gunzburger, 1998; Jiang, 1998. We are concerned here with the a posteriori error
analysis which is given in Sec. 3. The analysis is mainly based on the coerciveness of
the first-order Stokes operator and the special feature of the nonlinear term in the
formulation.

2. VELOCITY–VORTICITY–PRESSURE FORMULATION

In two space dimensions, with the vorticity ! ¼ r � u ¼ @u2=@x � @u1=@y
and the Bernoulli pressure or the total pressure r ¼ p þ ð1=2Þjuj2, the
Navier–Stokes Eqs. (1)–(3) can be reduced to the first-order system (Bochev, 1997;
Jiang and Chang, 1990)

NU ¼ F in �, ð4Þ
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with the boundary condition

RU¼ 0 on @�, ð5Þ

where

NU ¼

�u � !þ
1

Re
5�!þr r

!�5� u

5 � u

8>><>>: ð6Þ

U ¼ ðu,!, rÞT and F ¼ ðf, 0, 0ÞT : Note that the cross product u � ! is defined by
embedding u and ! into three-dimensional vectors ðu1, u2, 0Þ

T and ð0, 0,!ÞT , i.e.,
u � ! ¼ ðu2!, �u1!Þ

T : The corresponding first-order Stokes operator is

LV ¼

1

Re
5� �þr �

� �5� v

5 � v:

8><>: ð7Þ

Let

V ¼ fV ¼ ðv, �, �Þ 2 ½H1
ð�Þ�

2
� H1

ð�Þ � H
1
ð�Þ;RV ¼ 0 on @�g; ð8Þ

where H
1
ð�Þ denotes the space H1

ð�Þ whenever the boundary operator R prescribes
the pressure r on @�, and eHH1

ð�Þ otherwise. We shall consider five different types of
the boundary condition RU described as in Lemma 1.

The nonlinear term u � ! in Eq. (6) is of zero order and thus is not related to
any derivatives while the rest of the terms constitute the linear Stokes operator.
Therefore, the nonlinear term has no effect on the classification of the Navier–
Stokes equations and the boundary conditions for the Stokes equations are valid
for the Navier–Stokes equations. And it does not matter how large the Reynolds
number is, the whole system is elliptic. For this reason, the permissible boundary
conditions for Navier–Stokes equations are those for Stokes equations.

The coercivity of the Stokes operator L on function space V for a large number
of boundary operators R was studied by Bochev (1997) and Jiang (1998). In
Bochev (1997), according to the elliptic regularity theory of Agmon et al. (1964),
Bochev examined the complementing condition of Agmon (1964), which is both
necessary and sufficient for such coercivity to hold for the operators L and R:
Jiang proved the same coercivity based on the bounded inverse theorem and the
Friedrichs inequalities related to grad, div, and curl operators. For the sake of
simplicity, we consider only homogeneous boundary conditions. These results can
be extended to mixed and inhomogeneous boundary conditions without difficulty.
Following Jiang (1998), we summarize these results as follows.

Lemma 1. For the first-order Stokes operator L of Eq. (7), let the boundary operator R
be of the following five types:
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RV ¼
v � n

�

� �
RV ¼

v � n

�

� �
RV ¼

v � t

�

� �
RV ¼

v � t

�

� �
ð9Þ

RV ¼
v � n

v � t

� �
where n and t are the outward normal and tangential unit vectors to @�, respectively.
Then there exists a positive constant C depending on the Reynolds number such that,
for types ( i )–(iv),

LVk k
2
0 � C vk k

2
1 þ �k k

2
1 þ �k k

2
1

	 

8V 2 V ð10Þ

and that, for type (v),

LVk k
2
0 � C vk k

2
1 þ �k k

2
0 þ �k k

2
0

	 

8V 2 V: ð11Þ

For V 2 V, define the functional:

JðVÞ ¼
1

2
�v � � þ

1

Re
5� �þr�� f

���� ����2
0

þ � �5� vk k
2
0 þ 5 � vk k

2
0

 !
:

A necessary condition that the solution Un 2 V of Eq. (4) be a minimizer of the
functional J is

lim
t!0

d

dt
JðUn þ tVÞ ¼ 0 8V 2 V,

which is equivalent to

BnðUn,VÞ ¼0 8V 2 V, ð12Þ

where

BnðUn,VÞ ¼ BsðUn,VÞ �FðVÞ þ NðUn,VÞ ð13Þ

BsðUn,VÞ ¼ ðLUn,LVÞ0 ð14Þ

FðVÞ ¼ ðF, LVÞ0 ¼ ð f,
1

Re
5� �þr �Þ0 ð15Þ

NðUn,VÞ ¼ ð�u�!þ
1

Re
5�!þr r � f, � v�!� u� �Þ0

þ ð�u�!,
1

Re
5��þr�Þ0: ð16Þ

Similarly, corresponding to the Stokes problem, we have the variational
formulation

BsðUs,VÞ ¼FðVÞ, ð17Þ

where Us is the solution of Eq. (4) in which the operator N is replaced by L.
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With respect to Eqs. (17) and (12), the finite element problems are to seek the
solutions Us, h 2 Sh and Un, h 2 Sh such that

BsðUs, h,VhÞ ¼ FðVhÞ 8Vh 2 Sh ð18Þ

BnðUn, h,VhÞ ¼ 0 8Vh 2 Sh ð19Þ

where Sh is a finite element subspace of V parametrized by the mesh size h of some
triangulation (denoted by Th) on the domain �. The abstract approximation theory
for branches of nonsingular solutions developed by Brezzi et al. (1980) allows us to
address existence, uniqueness, and a priori error estimates for LSFEM solutions of
the Navier–Stokes equations by using the results established in the context of the
linear Stokes equations (Bochev, 1997). The subspace Sh can be constructed by the
standard finite elements for all variables in the vector-valued function U. For
example, the velocity components u1, u2, vorticity !, and total pressure r can all
be approximated by the same piecewise linear polynomials. Newton’s iteration on
Eq. (19) always results in symmetric positive definite systems of linear algebraic
equations independent of the Reynolds number provided that the initial guess of
the iteration is sufficiently close to the solution.

3. ERROR ESTIMATION

Once an approximate solution Us, h or Un, h is available, one of the major
concerns in practice is to assess the reliability of the approximation, i.e., to
estimate the exact error Es ¼ Us � Us, h or En ¼ Un � Un, h in some suitable norm
for which, following the a priori estimates Eqs. (10) and (11), we choose the norm
LVk k0, 8V 2 ½H1

ð�Þ�
4. For LSFE approximation, residual type of error estimation

is a natural choice. Define the local residual norms

Es, i ¼ kF � LUs, hk0, ti , En, i ¼ F �NUn, h

�� ��
0, ti

ð20Þ

on each element ti 2 Th and the estimators

Es ¼
X
ti2Th

E
2
s, i

 !1=2

, En ¼
X
ti2Th

E
2
n, i

 !1=2

, ð21Þ

where the norm �k k0, ti is the L2 norm restricted to the element ti:
The error indicators Es, i and En, i are readily computable without any jump

conditions across inter-element boundaries and hence the resulting computations
are highly efficient and very suitable for parallel implementation. Together with
the symmetric property of the algebraic system, the resulting adaptive procedure
of LSFE computations can be completely parallel if a conjugate gradient solver is
used because there is no need for a global assembly of the system and the iterative
process can be done locally (Jiang and Carey, 1987). Moreover, for the Stokes
problem, the error estimator and error indicators are perfectly reliable and effective.

Theorem 1. Let Es ¼ Us � Us, h where Us and Us, h are the solutions of problems (17)
and (18), respectively. Then
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Es, i ¼ LEs

�� ��
0, ti

, 8ti 2 Th, ð22Þ

Es ¼ LEs

�� ��
0
: ð23Þ

Proof.

E
2
s, i ¼ F � LUs, h

�� ��2
0, ti

¼ LUs � LUs, h

�� ��2
0, ti

:

Hence, we have Eqs. (22) and (23).
We now study the estimator for the Navier–Stokes equations. For this we make

the following assumption

ku � uhk0 þ k!� !hk0 � Ch	ku � uhk1, 	 > 0, ð24Þ

where C is a generic positive constant independent of h. The assumption essentially
states that the convergence rate of the approximate velocity uh and vorticity !h in
L2 norm is of order 	 > 0 which is higher than that in H1 norm. This kind of
convergence is commonly observed in numerical experiments on finite element com-
putations of second-order partial differential equations (see Bochev (1997), Bochev
and Gunzburger (1998), Jiang (1998) for Navier–Stokes equations).

Theorem 2. Let En ¼ Un �Un, h where Un and Un, h are the solutions of Problems (12)
and (19), respectively. If assumption (24) holds, then the error estimator En is asymp-
totically exact, i.e.,

ð1� Oðh	ÞÞ LEn

�� ��
0
� En � ð1þ Oðh	ÞÞ LEn

�� ��
0
: ð25Þ

Proof. Let

KUn ¼NUn � LUn 8Un2V:

Then,

KUn �KUn,h

�� ��2
0
¼

�u�!

0

0

0B@
1CA�

�uh �!h

0

0

0B@
1CA

�������
�������
2

0

¼

�u2!

u1!

0

0

0BBB@
1CCCA�

�u2,h!hÞ

u1,h!h

0

0

0BBB@
1CCCA

���������

���������
2

0

¼ u2!� u2,h!h

�� ��2
0
þ u1!� u1,h!h

�� ��2
0

¼ u2ð!�!hÞ þ!hðu2 � u2,hÞ
�� ��2

0
þ u1ð!�!hÞ þ!hðu1 � u1,hÞ
�� ��2

0

� 4 uk k
2
0 !�!h

�� ��2
0
þ !h

�� ��2
0

u� uh

�� ��2
0

� �
The convergence assumption implies that k!hk0 is bounded independently of h
and hence
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uk k
2
0 !� !h

�� ��2
0
þ !h

�� ��2
0

u � uh

�� ��2
0
� C u � uh

�� ��2
0
þ !� !h

�� ��2
0

� �
It follows Eq. (24) that

KUn �KUn, h

�� ��
0
� Cð u � uh

�� ��
0
þ !� !h

�� ��
0
Þ

� Ch	 u � uh

�� ��
1

� Ch	 LðUn�Un, hÞ
�� ��

0
:

Since

En ¼ kF �NUn, hk0

¼ NUn �NUn, h

�� ��
0

¼ LUn � LUn, h þKUn �KUn, h

�� ��
0

¼ LEn þ ðKUn �KUn, hÞ
�� ��

0

we have

LEn

�� ��
0
� KUn �KUn, h

�� ��
0
� En � LEn

�� ��
0
þ KUn �KUn, h

�� ��
0

and therefore Eq. (25).

4. CONCLUSION

It is well known that the LSFEM provides very attractive properties in applica-
tions. For example, a single piecewise polynomial finite element space may be used
for all test and trial functions, it always leads to symmetric positive definite systems,
and it does not require the inf–sup condition when compared with the mixed finite
element method. However, it usually results in more degrees of freedom in the
systems due to extra state variables. Adaptive methods with effective mesh refine-
ment can dramatically reduce DOFs especially for the singular problems.

The a posteriori error analysis presented in this article shows that the error
indicator is perfectly reliable for the guidance of mesh refinement at least for the
Stokes problems and is very effective for the Navier–Stokes problem. And the error
estimator is also highly reliable for feedback error control in self-adaptive automatic
computations. The implementation of the residual estimator is very simple. The error
indicators can be computed strictly within each element without using any
information from neighboring elements because they do not involve jump conditions
across element boundaries and local boundary conditions. Therefore, together with
the symmetric property of the algebraic system in a neighborhood of a solution
(Bochev and Gunzburger, 1993), the adaptive procedure of least squares
computations for the Navier–Stokes equations can be completely parallel on an
element-by-element basis if a conjugate gradient solver is used (Jiang and Carey,
1987). For more numerical results of adaptive LSFE computations, we also refer to
Hsieh et al. (1999).
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