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In this paper, we perform our algorithm developed in [Yu & Lee, 2001] to present the entire
branches of quasiperiodic solutions starting from the bifurcation points in the branches of
periodic solutions in an interval of parameters for the 2-mode damped, driven sine-Gordon

ODE.
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1. Introduction

In [Yu & Lee, 2001], we developed an algorithm to
seek a new branch of quasiperiodic solutions from a
Hopf bifurcation point in a branch of periodic solu-

tions of the truncated 2-mode damped, driven sine-
Gordon ODE,

iio + 0.04a0 = —V/12Jy (%) sin (%)

—T'V12cos(0.871), (1)

i1 + 0.04dy
2\ 2 a1 ao
“(E) @ = 2V6, (%) (m) !

where I' is the parameter, and Jy, J; are the Bessel
functions.! Here, for conventional reason (for exam-
ple, see [Xiong, 1991]), w = 0.87, « = 0.04, L = 12.
Let by(t) = ap(t), bi(t) = ai(t), then Egs. (1) are
reduced to a system of first-order nonautonomous
ODEs,

'The N-mode s-G ODE is truncated from the damped, driven s-G PDE (e.g. [Xiong, 1991; Yu & Lee, 2001]),

Uge — Ut = sin u + aus + I cos(wt),
w(e+ L, 1) = u(z, 1),

with u(z, t) = EN_l a;j(t)ej(z), j=0,..., N —1, where e;(z) = C; cos(2jmz/L), an orthonormal basis on [—L/2, L/2].
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In this paper, we apply our algorithm to the
other Hopf bifurcation point on the same branch (as
in Fig. 1, Table 1, and will be explained later). We
observed that, different to those in Fig. 2 which were
developed in [Yu & Lee, 2001] where the invariant
curves are geometrically stable while extremely un-
stable in dynamics, the invariant curves in the new
branch behave in totally opposite ways, i.e. they
are relatively much more stable in dynamics yet
their geometry is very unstable, as will be explained
later.
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Fig. 1. The bold lines represent stable periodic orbits.
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2. Bifurcation Diagram

The branches of periodic solutions of Eq. (2) are
shown in Fig. 1 and Table 1. Each point along
those branches represents a periodic orbit f(¢, I')
where the z-axis is I' and the y-axis is the aver-
age norm (1/7) fOT |f(t, T')|dt. Notice that, since
Eq. (2) is nonautonomous, all periodic solutions
have the same period 7' = 27 /w. At this stage, our
result is identical to the result of [Xiong, 1991]. In

Fig. 2. Projection of invariant curves on the (v1, v2)-plane
(horizontal vi-direction, vertical wva-direction) where vy =
(1,0, 1, 0), v2 = (0, 1, 0, 1) with the origin (3.0384, —2.4048,
1.8238, —1.0612). #2 is on a degenerate torus composed of
periodic flows.

Table 1. Detailed data for the special periodic orbits in Fig. 1.
No. T The Point (ao, bo, a1, b1) at t = 0 in each orbit
1 0.13576883 (—2.83446, —0.52587, 0.00000, 0.000000) turning
2 0.08771292 (—3.76470, —1.77319, 0.00000, 0.000000) bifurcation
3 0.04936938 (—0.35558, —3.83029, 0.04226, —1.54063) turning
4 0.07818738 (3.038438, —2.40477, 1.82377, —1.06116) Hopf bifur.
5 0.24312576 (3.609704, —0.90174, 3.56885, —0.38254) Hopf bifur.
6 0.39100055 (2.703455, —0.74562, 5.27208, —0.07098) turning
7 0.21305707 (2.406232, —1.96636, 4.82407, 2.776126) turning
8 0.05093021 (—0.42442, —4.53817, 0.00000, 0.000000) turning
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Table 2. A list of points on each of the invariant curves in Fig. 2.

No. r K One Point in Each Invariant Torus
1 0.077809950131 6 (3.0068369, —2.4313861, 2.0346760, —1.0915413)
2 0.077433369764 7 (2.9957650, —2.4349805, 2.1218120, —1.1066790)
3 0.075759950131 7 (3.0006727, —2.3797740, 2.3694473, —1.1546730)
4 0.072059950131 7 (3.0305030, —2.2429552, 2.6643805, —1.2396269)
5 0.068059950131 8 (3.0482276, —2.1256094, 2.8221643, —1.3305490)
6 0.063659950131 9 (3.0347579, —2.0525683, 2.8654246, —1.4388124)
7 0.058271099694 13 (2.6521675, —2.4298479, 2.6852601, —1.6141144)
8 0.057632139695 14 (2.6482699, —2.4204007, 2.6629485, —1.6285777)
9 0.056299117535 18 (2.6401067, —2.4003577, 2.6038422, —1.6565491)
10 0.055993300836 20 (2.6376785, —2.3962939, 2.5875636, —1.6623931)

a further work, we have found two Hopf bifurcation
points, namely #4 and #b5 in Fig. 1.

Theoretically, there is a mnew branch of
quasiperiodic solutions bifurcated from each of the
two bifurcation points, i.e. in Poincaré sections,?
branches of invariant curves should be born. In
the following figures, those numbered and ordered
curves in the Poincaré sections represent some of
the quasiperiodic tori in the branch as the parame-
ter I' varies.

2.1. Hopf bifurcation point #4

To start and continue this new branch from the
bifurcation point #4, we developed our algorithm
[Yu & Lee, 2001]. As shown in Fig. 2 with de-
tailed data in Table 2, where k is the maximum
integer less than or equal to the reciprocal of the
rotation number,? the tori are apparently growing
with k increasing rapidly. But, after curve #8,
those curves immediately become almost undistin-
guishable. This indicates that the dynamics of the
system has a dramatic change for this range of
parameter.

2.2. Hopf bifurcation point #5

As shown in Figs. 3-7 with detailed data in
Table 3, we illustrate the new branch of the
quasiperiodic solutions starting from the bifurca-
tion point #5 in Fig. 1. Here, we found very differ-
ent phenomena from that shown in Fig. 2. On one

2See Sec. 1.5 in [Guckenheimer & Holmes, 1993].
3See definition in [Guckenheimer & Holmes, 1993].
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Fig. 3. Projection of invariant curves on the (v1, v2)-plane
(horizontal wvi-direction, vertical wva-direction) where vy =
(1,0, 1, 0),v2 = (0, 1, 0, 1) with the origin (3.6097, —0.9017,
3.5688, —0.3825). Curve #1 is almost a periodic orbit.
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Fig. 4. Projection of invariant curves in a further variation
of I' follows Fig. 3. Curve #20 is a turning point in the whole
branch.
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Fig. 5.
of I" follows Fig. 4.
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Projection of invariant curves in a further variation

Fig. 6.
of I" follows Fig. 5.

A list of points on each of the invariant curves in Figs. 3-7.
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0.243141125798
0.243140641398
0.243138745871
0.243138186567
0.243136615826
0.243136272400
0.243132947697
0.243123086071
0.243115310071
0.243114448770
0.243111950235
0.243102248737
0.243096933896
0.243093409214
0.243087107650
0.243081647473
0.243076801955
0.243073710251
0.243068636097
0.243068576864
0.243070340654
0.243070592307
0.243070629618
0.243071219946
0.243071758246
0.243072367446
0.243072779528
0.243073027310
0.243073065882
0.243073223000
0.243073439952

(3.6096751, —0.90170201, 3.5689838, —0.38252321
(3.6096496, —0.90170566, 3.5689677, —0.38256568
(3.6095982, —0.90168933, 3.5689616, —0.38259390
(3.6096504, —0.90170448, 3.5689563, —0.38255728
(3.6095900, —0.90168014, 3.5689594, —0.38257971
(3.6096179, —0.90169125, 3.5689525, —0.38256699
(3.6095762, —0.90166996, 3.5689484, —0.38256794
(3.6095414, —0.90164635, 3.5689147, —0.38254192
(3.6095370, —0.90164254, 3.5688764, —0.38252480
(3.6095927, —0.90167663, 3.5688457, —0.38252724
(3.6096547, —0.90171706, 3.5688001, —0.38253275
(3.6097472, —0.90179700, 3.5686739, —0.38257608
(3.6097499, —0.90179676, 3.5686466, —0.38256203
(3.6097615, —0.90181413, 3.5686087, —0.38258036
(3.6097670, —0.90182556, 3.5685616, —0.38258808
(3.6097822, —0.90184462, 3.5685122, —0.38260189
(3.6097922, —0.90186022, 3.5684690, —0.38261598
(3.6097950, —0.90186471, 3.5684474, —0.38261701
(3.6098071, —0.90188107, 3.5684026, —0.38262938
(3.6097978, —0.90187098, 3.5684125, —0.38261834
(3.6098104, —0.90188300, 3.5684104, —0.38263255
(3.6098220, —0.90188061, 3.5684188, —0.38261166
(3.6098159, —0.90188078, 3.5684167, —0.38262045
(3.6098129, —0.90188005, 3.5684199, —0.38262387
(3.6098097, —0.90187881, 3.5684233, —0.38262638
(3.6098213, —0.90187658, 3.5684335, —0.38260637
(3.6098049, —0.90187754, 3.5684288, —0.38263181
(3.6098236, —0.90187991, 3.5684334, —0.38261228
(3.6098314, —0.90188193, 3.5684336, —0.38260641
(3.6098089, —0.90187664, 3.5684338, —0.38262500
(3.6098039, —0.90187586, 3.5684343, —0.38263030
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Projection of invariant curves in a further variation
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Fig. 7. Projection of invariant curves in a further variation
of I" follows Fig. 6.

hand, the dynamics of the tori are almost stable
with kK = 4. On the other hand, in a very small
interval of parameter, namely 0.243068576864 <
I' <0.243141125798, the geometry of those invari-
ant curves changes rapidly in all categories such as
size, shape, positions, etc. Notice that the curve
#20 is a turning point in the whole branch. In-
deed, due to the sensitivity in all aspects of those
invariant curves, we have been extremely careful in
applying our algorithm to this case.

3. Conclusion

Apparently, the truncated 2-mode damped, driven
s-G ODE does have a complicated dynamics. The
truncated 3-mode case, e.g.

N-1
b A e . ,, . p— ] . . .
aj + ad; = ajle;, e;) <sm <Z azez> , e]>
i=0

— T cos(wt)(1, ej),
j=01,...,N—1,

where N = 3, is now under investigation. Due to
the complexity of its dynamics and geometry, it is
nontrivial at all to continue a smooth branch of the
quasiperiodic solutions starting from a bifurcation
point. We have already made some progress which
is yet far from the desired result. To our knowledge,
up to now, there is still no satisfactory algorithm in
developing the invariant tori branch, and the reason
seems quite clear. We shall continue to improve our
method to do current and further research work.
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