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Polaron effect on the binding energy of a hydrogenic impurity in a quantum well
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We have studied the polaron effect on the binding energy of a hydrogenic impurity in a quantum-well
structure. The interactions of an electron with both the confined bulk phonon and the interface phonon
are taken into account. The competition between these two phonon modes is discussed. We have also
extended the calculation for the case of a finite quantum well. It is found that the polaronic correction

becomes bigger as the potential barrier gets higher.

I. INTRODUCTION

In recent years many theoretical and experimental in-
vestigations have been performed on the issue of the “hy-
drogenic” binding of an electron to a donor impurity in a
semiconductor quantum well or heterostructure. Bas-
tard! proposed a variational approach to calculate the
binding energies of donor levels in terms of the well
thickness and impurity positions in the quantum well as-
suming the potential barrier at the interface to be
infinitely high. Mailhiot, Chang, and McGill,?2 Greene
and Bajaj,? and Liu and Quinn* extended the work to cal-
culate the binding energies of the ground state and
several excited states of hydrogenic donors in GaAs-
Ga;_,Al _As quantum well with finite barrier height.
Later, Chaudhuri’® and Lane and Greene® studied the hy-
drogenic impurity states in multiple-quantum-well struc-
tures. The effects of a finite-width barrier upon the bind-
ing energies are discussed. Recently, the anisotropic
effect’ and the quantum-confined Stark effect® '° on the
hydrogenic impurities in the quantum well have also been
reported.

Since the III-V materials used in producing typical
quantum-well structures are polar in nature, an electron
weakly bound to a hydrogenic impurity in this system
will interact with the longitudinal-optical phonons of the
host semiconductor and tend to increase the donor bind-
ing energy. In the case of a bulk semiconductor, this po-
laron effect is reasonably well understood on the basis of
the Frohlich model.!! The situation in a confined
geometry, such as a quantum well, is considerably less
clear. In the past several years, a number of works have
been carried out to investigate the polaron effect in a
quantum well system. Ercelebi and Tomak!? studied the
effect of electron-phonon coupling on the binding ener-
gies of a hydrogenic impurity in a GaAs-Ga;_,Al, As
quantum well and found that the correction becomes siz-
able as the electron gets more deeply bound. Later, De-
gani and Hipolito!? calculated the polaron effect on the
ground state as a function of electron density. The
screening effect of the impurity potential is discussed.
Mason and Das Sarma'* have calculated the phonon-
induced shift in the impurity binding energy due to
electron-phonon interaction in a two-dimensional

0163-1829/93/48(16)/11965(7)/$06.00 48

quantum-well system. It is found that the polaron shifts
in donor energy levels are of the order of 10% in the
GaAs-Ga;_, Al As system. However, in all the calcula-
tions mentioned above, the electron-phonon interaction is
taken to be of Frohlich type as in the bulk case. The pho-
non confinement effect and the interface phonon are ig-
nored. This is an oversimplification; indeed, several ex-
periments!®> ™20 carried out recently indicate that the opti-
cal phonon in the GaAs-Ga, _, Al, As quantum-well sys-
tem is confined, i.e., the z-polarized (z perpendicular to
the surface) optical phonons are equivalent to those vi-
brations in the infinite crystal whose wave vector is given
by mw /L, where L is the thickness of the well and m is
an integer. The series of phonons labeled by m are termed
confined phonons and also sometimes called ‘“folded”
phonons. It has been pointed out in various investiga-
tions that phonon confinement effects lead to important
modifications in the transport properties. Therefore 1n
studying the polaron effect in a quantum-well structure,
the confined bulk phonon should be taken into account.
There is, however, another type of phonon which is also
quite important in the quantum-well system. This is the
interface mode. Recently, the interaction of an electron
with the interface phonon mode has been theoretically es-
tablished for two-dimensional semiconductor heterojunc-
tions.?1"?? Degani and Farias?® studied the exciton prob-
lem in an AlAs/GaAs system and found that the inter-
face phonon has significant effect on the exciton binding
energy. Experimental observations of these interface
modes are reported by Sood et al.!” in backscattering
Raman spectra, by Lambin et al.?* in high-resolution
electron-energy-loss spectra, by Meynadier et al.?® in Ra-
man scattering of high order at the resonance with the
lowest optical transition, and by Gammon, Merlin, and
Markoc?® in magnetic-field-enhanced Raman scattering.
The purpose of this paper is to investigate the polaron
effect on the hydrogenic impurity states in a quantum
well by including both the interactions of the electron
with the confined bulk phonon and the interface phonon.
The competition between these two phonon modes and
the correction on the binding energy of the hydrogenic
impurity in the GaAs-Ga,;_, Al As quantum well will be
studied.

We shall also extend the calculation to the case of the
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finite quantum well. It has been pointed out recently'?!3

that as the binding energy increases the localization of an
electron becomes more pronounced, and this in turn in-
creases the importance of electron-phonon coupling.
Thus the polaron effect is expected to be smaller for the
finite potential barrier where the binding would be weak-
er. However, this important behavior has been only
briefly speculated upon in previous works, and no calcu-
lation was given since they considered only the case of
the infinite quantum well.

II. THEORY

Let us consider a hydrogenic donor impurity atom lo-
cated in a quantum well of thickness L. Within the
framework of the effective-mass approximation, the
Hamiltonian of this system contains five parts: electron-
ic; free interface phonon (IO); electron-IO-phonon in-

teraction; free bulk optical phonon (BO); and
electron—-BO-phonon interaction.
H=H,+H o +H, o+Hgo+H, g - (1)

The electronic Hamiltonian operator H, can be expressed
as
2

2
H=2_— ¢ +Vi(z), )
e 2m 60[p2+(Z _7-1')2]1/2 z

where p?=x2+y? is the distance in the layer plane mea-
sured from the impurity site, and z; is the coordinate of
the impurity site along the superlattice axis. We first as-
sume, for the sake of simplicity, that the barrier potential
V(z) has infinite height.

w, |z|>L/2

V@)=1o . |z1<L/2. 3)

Later, we shall extend the calculations for the finite quan-
tum well. H;y and H, ;g are the Hamiltonians for the
free interface phonon and its interaction with the elec-
tron, respectively:

Hlozzh@ssérsq > (4)
q
H,_1oc=23T,e —alzmLA2 4 g —alz L2 (o ~9sS +H.c.),
q

(5)
where s; (s4) denotes the creation (annihilation) operator
for the IO phonon with the two-dimensional wave vector
q. For a heterostructure, the frequencies of the interface
modes, o, are determined by €,(w)= —¢€,(w), with GaAs
as medium 1 and Ga,;_,Al,As as medium 2. The
frequency-dependent dielectric function is given as
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where €; and €, are the static and high-frequency dielec-
tric constants, respectively. w; is the transverse optical-
phonon frequency. The electron—IO-phonon interaction
strength T, is defined as?'

r = fiw,
q-‘/qA

where A is the area of the surface and the electron—IO-
phonon coupling constant

[27a(#/2me,) /]2, (7a)

o2 m 172 1
as=2 3 —1 1 5 (7b)
e, | 2w, B Nw,)+B;5 Nw,)
with
> 0% — a2 2
Blw)= | -1 |22 0T (7¢)
€ € | 0? wi—w%

The Hamiltonians Hgy and H, _po for the free BO
phonon and the electron—-BO-phonon interaction can be
written as

Hyo=S#w0.b}by , (8)
k
H, o= W, sin(k,z)(e "*’b} +H.c.), 9)
k

where #w, is the BO-phonon energy. b, and b, are, re-
spectively, the creation and annihilation operators for the
BO phonon with wave vector k=(k,k,). For the
confined bulk phonon, only limited values for the z wave
vector are allowed, given by k, =n /L, where n is an in-
teger, since these phonons are confined within the quan-
tum well. Recently Ren, Chu, and Chang?’ studied the
anisotropy of the optical phonon and the interface mode
in a superlattice, and found that the interface mode and
the confined mode with zero node (n =1) do not coexist
in a quantum well for a fixed value of in-plane wave vec-
tor q. Therefore, the electron—BO-phonon interaction for
the n =1 mode should be excluded to avoid doubled
counting. The interaction strength W, is given as

fiw
Wk=;~‘/%[47rab(h/2me)l/2]‘/2. (10)
Here V is the volume and the electron—BO-phonon cou-
pling constant a, =e?[(1/€,)—(1/€,))(m /2#w, )%
We shall use the variational method proposed by Lee,
Low, and Pines?® to treat our problem. In order to calcu-
late the ground-state energy, we choose a trial wave func-
tion as

w)=1¢,) NN, ), (11)

where |¢, ) is the electronic part of the wave function for

ew)=e_+ _& 7€ , 6) the impurity in the infinite quantum well, which is taken
1 —0*/ok the form as used in Bastard model:!
J
16,) = N cos(k,z) exp —%[pz—f-(z —z;)?]172 |z| <L /2

0, lzl>L/2.

(12)
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N is the normalization constant, A is a variational param-
eter, and k;=m/L. |N N,) is the phonon wave func-
tion, with N and Ny the number of 10 and BO phonons,
respectlvely In the low-lying state, |N Ny ) can be taken
as |040y ), the phonon vacuum state.

Flrst we make the unitary transformation

U,=exp [i [Pp—zs;sqﬁq—zb:bkﬁkp]-p] , (13)
q k
where Pp is the two-dimensional momentum defined as

szpp+2ﬁqs;sq+§ﬁkpb Kby - (14)
q

The Hamiltonian is transformed into

H,=U{HU,

= F: (Z)+—1— P,— S igs s, —
2m 2m | ° q ¥ afq

zhkpb;rbk 2
k
+Hiw, Fsasqt ST, (sq +sg)
q q
+Hiw, Sbl b+ S Wby +by) . (15)
k k
In terms of the second Lee-Low-Pines transformation,

U,=exp [S(F;sd +F}s)+3(Geby +Gby) | . (16)
q k

The Hamiltonian finally becomes
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Taking the expectation value of H' with the trial wave
function given in Eq. (11), i.e.,

E=(4,;0,0\|H’'|$,;0,0,) . (18)

The variational parameters F, and G, are determined by
the variational conditions 8E /8Fq =8E /8G; =0, which
yield

-1
- # #iP,-q _
F,=-T, fiw+2q +—LZ (g, H |, (192)
Gy — W, [y + 1Ky TRy () R
k k L+ m m Ns TNy .
(19b)
Here 7, and 7, are defined by
S#qF;=n,P,, (20a)
q
>#k,Gi=1,P, (20b)
k
and
T,=Tq(¢.lexp(—qlz —L /2|)
+exp(—gqlz+L/2D)|¢,) , (21a)
W,=W,{¢,|sin(k,z)|¢, ) (21b)

With the trial wave function |¢, ) given in Eq. (12), the
closed forms of I') and W) can be obtained. Substituting
Eqgs. (19a) and (19b) into Eq. (18), the ground-state energy

H'=U; H,U, . (17)  Eis obtained as
J
_ #k? + 2 N2\2 . cos(2k,z;) k32 cosh 2z; s | = L
2m 2e. T+K2A2 1+k2A2 O el B
-1
# 2 =2 # q ﬁzq
+2m7»2[1 (s +73) ]—21" fiow, + Y- (17S+77b )
-1
27,2 2
— S Wi |fiw, + kp+hk”(n +n,7 (22)
< 2m mA F
|
For slow electrons, Egs. (19) and (20) yield The binding energy of the hydrogenic impurity is given
2 by
— xs
Ns —_———1+2xs+2xb ) (23a) E;=E,—E, (25)
2x, where E is the ground-state energy for an infinite quan-
Ny = 15 2% +2x. ° (23b) tum well without impurity. Minimizing E with respect to
Xs T Xp A, we obtain the binding energy as a function of the well
where width L and impurity position z;.
2 _ Next, we shall consider the case of finite quantum well.
x, = ﬂz SP AP, q oo, + ﬁ;qz ’ (242) The potential well is given as
PL’q m m o, lzZl<L/2
m . [#P K e |7 V@O=ly  lz>L/2. (26)
—_m 2 P =p P
xp =27 2 Wi o + (24b)
P, m 2m We assume that the band-gap discontinuity®>3° in the
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GaAs-Ga;_, Al As heterostructure is distributed about
40% on the valence band and 60% on the conduction
band with the total band-gap difference AE, between
GaAs and Ga,_, Al As given as a function of the Al con-
centration x <0.4 as’ AE, (eV)=1.247x.

It is well known that when the potential well is finite,
the bound-state energies cannot be solved for as simply as
in the case of the infinite quantum well. One has to solve
the transcendental equations. We shall use a general per-
turbative method proposed by Lee and Mei’? to treat the
finite potential-well problems. It is found that this
method is sufficiently accurate when one is interested
only in the low-lying bound states. Recently, this ap-
proach has been applied to study the anisotropic effect
and Stark effect in the quantum-well structures, and suc-
cessful results have been obtained.”!° In this method the
bound-state energies of the finite quantum well can be ap-
proximated by the eigenenergies of the infinite quantum
well with a perturbative correction which depends on the
inverse square root of the potential height. Unlike the
wave function of the infinite quantum well which must
vanish at the hard wall, the actual wave function will
penetrate a distance 8 into the soft wall, therefore in-
creasing the size of the wave function by a fraction of
26/L. However, this increase could obviously be
achieved by simply shifting the infinite wall farther away
from the original position by a distance 8. As the poten-
tial height is large compared with the eigenenergies of the
low-lying states, the penetration depth § is given by

(27)

2m(Vy—E©) | ?
#? ’

where E'© represents the ground-state energy of the cor-
responding unperturbed infinite quantum well. There-
fore, the hydrogenic impurity state in a finite quantum
well with a well width L can be considered the same as
that in an infinite quantum well with a broadened well
width L +28.

III. RESULTS AND DISCUSSION

A. Infinite quantum well

We first give the results of the infinite quantum well for
the GaAs-Ga,_, Al, As system. It is convenient to define
the effective Bohr radius a * =#%€,/me? and the effective
Rydberg R*=e?/2€,a*. The material parameters* used
in the calculation are given in Table I. Figure 1 shows
the variations of the binding energies as a function of lay-
er thickness for the on-center and on-edge impurities.

TABLE 1. The material parameters for GaAs and
Ga,_,Al,As used in the calculations.
x € €, w; cm™Y)  wr m™Y)
GaAs 12.9 10.9 293 269
Ga;_,Al,As 0.14 12.04 10.57 285 267
0.30 11.18 10.16 278 265
0.36 10.89 10.04 275 264
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FIG. 1. Reduced binding energy E/R* as a function of the
reduced well width L /a* for (a) the on-center impurity and (b)
the on-edge impurity. The curve 1 (2) corresponds to the case
with (without) electron-phonon interactions.

The results without the electron-phonon interactions are
also shown in the figure for comparison. It can be seen
that the polaron effects on the binding energies are im-
portant. For the on-center impurity the effects are about
22% for the small well widths, and reduce to about 1.8%
as the well width increases to L /a* =20, and eventually
approaches the value of the bulk. For the on-edge impur-
ity, the polaron effect is larger and ranges from about 7%
in the bulk limit to about 23% for very narrow well size.
Recently Ercelebi and Tomak'? have calculated the pola-
ron effect for the on-center impurity, and obtained about
3% in the bulk case and 15% for the small well size.
Mason and Das Sarma'* also studied this problem and
obtained a polaronic shift of 1.6% for large well thick-
ness. As we have mentioned before, in these previous cal-
culations the phonon confinement effects is ignored and
the interface phonon mode is also neglected. This is of
course an oversimplification. In our calculations, both the
phonon confinement and the interface phonon are taken
into account. Therefore, our result seems to be more reli-
able than the others. We have also studied the competi-
tion between the confined bulk phonon and the interface
phonon modes. Figure 2 gives the variation of binding
energy as a function of well width, including only the
confined bulk phonon or the interface phonon. It is
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(a)

on-center impurity

E/R*
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E/R¥*
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L/a*

FIG. 2. Reduced binding energy E /R * as a function of the
reduced well width L /a* with the confined bulk phonon (curve
1) or the interface phonon (curve 2) for an impurity located (a)
at the center or (b) on the edge of the well.

found that the competition between these two modes in-
dicates that in the case of small well thickness the inter-
face phonon plays the dominant role and the confined
bulk phonon makes little contribution. As the well width
increases, the interface phonon contribution decreases
and eventually the bulk phonon becomes the important
one as L > 10a*. This is in accordance with our expecta-
tion. Since the bulk phonon is confined in the longitudi-
nal direction (i.e., the z axis) there should be no bulk pho-
non effect as the well width L approaches zero. It is
worth to note that this result is different from the previ-
ous calculations where the usual Frohlich interaction was
used and the phonon confinement effect was neglected so
that the main contribution still came from the bulk pho-
non even as L —0. In our calculations, it is the interface
phonon which makes the main contribution as the well
width gets smaller. Tatham et al.3* have recently report-
ed a significant increase in the relaxation rate for a very
narrow well (25 A), which we believe is responsible for
the interface modes.

B. Finite quantum well

In this section, we present the results for the case of
the finite potential well. The TO and LO frequencies for
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Ga,;_, Al As have been obtained with a different Al con-
centration x from the Kramers-Kronig dispersion
analysis of the infrared reflectivity spectra.> Table I lists
the values that are used in our calculations. We have
used the general perturbative method of Lee and Mei’? to
study the finite quantum-well problem. In order to check
the validity of this method for our problem, a preliminary
calculation is first performed for the case without the

(a)
3t X=0.36
*
%
~ -
0 2
]..
0 R L
0O t 2 3 4 5 6 7 8 9 10
L/a*
(b)
3r X =0.30
x
%
~ L
w 2
].-
0 o L
0O 1t 2 3 4 5 6 7 8 9 10
L/a%
(c)
3r X =014
X
o
~ 2}
w
1._
0 ey
01t 2 3 4 5 6 7 8 9 10
L/a*

FIG. 3. The variation of the reduced binding energy E /R *
without the electron-phonon interactions as a function of the
well width L /a* using the general perturbative method (dotted
line) and the exact method of Liu and Quinn (solid line) for
several values of the barrier heights (a) Vy(x =0.36), (b)
Vo(x =0.30), and (c) Vyo(x =0.14). The impurity is at the
center of the finite quantum well.



E/RX

FIG. 4. Reduced binding energy E/R* as a function of the
reduced well width L /a* for an impurity located at the center
in the finite quantum well. Curve 1 (2) corresponds to the case
with  (without) electron-phonon interactions for (a)
Vo(x =0.14), (b) V,(x =0.30), and (c) Vy(x =0.36).

electron-phonon interaction, and the results are com-
pared to those of the exact calculation using the method
of Liu and Quinn* as shown in Fig. 3. It is clearly seen
that the agreement is quite good even as the well width
reduces to L/a*~0.3 for the case of x =0.36,
L/a*~0.4 for x =0.30, and L /a*~0.65 for x =0.14.
Therefore, our method is reasonably applicable to the
problem when the well size is greater than the above re-
gions. This method is then used to study the case with
the electron-phonon interactions taken into account.

We have calculated the binding energy as a function of
well thickness for different potential barrier heights ¥V
corresponding to x =0.14, 0.30, and 0.36. The results
are shown in Fig. 4 for the on-center impurity and in Fig.
5 for the on-edge impurity. Figure 6 gives the correction
of binding energy due to the electron-phonon interac-
tions. Our results show that the polaronic shift is also
quite important for the case of the finite quantum well.
For the GaAs-Gag ;Al 3As system (x =0.3), which cor-
responds to the potential-well height V,=36R *, the po-
laronic shift ranges from about 13% for small well size to
2.8% for the bulk limit. It is interesting to note from
Fig. 6 that the polaron effect becomes bigger as the po-
tential barrier gets higher. This is because the higher the
barrier the larger the binding energy, the localization of
the electron becomes more pronounced and thus in-
creases the importance of the electron-phonon interac-
tion. As we have pointed out before, this important
behavior has only been briefly speculated upon in previ-
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FIG. 5. Same as in Fig. 5 but for the impurity located on the
edge of the well.
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FIG. 6. The shifts of binding energy due to the electron-
phonon interactions for (a) on-center and (b) on-edge impurities
in the finite quantum well, with different ¥, corresponding to
x =0.36 (curve 1), 0.30 (curve 2), and 0.14 (curve 3).
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ous works, >!3 but no calculation was given since they
only considered the case of the infinite quantum well.
Our work is an explicit calculation and presents the re-
sults for different potential barrier heights. For example,
for the on-center impurity with L =a*, the percentage of
polaronic correction is 10% for the barrier height
Vo(x =0.36), and decreases to about 7% for
Vo(x =0.14). It is clear to see that, in general, for a
lower quantum-well height where the binding energy is
smaller, the polaron effect becomes weaker. It is also
worth noting that the tendency of decreasing polaron
effect as the barrier is lowered is quite fast for smaller
well thicknesses. As the well width becomes larger, the
polaronic correction is almost the same for different bar-
rier heights, and approaches the limiting bulk value.

IV. CONCLUSION

We have studied the polaron effect on the hydrogenic
impurity in the GaAs-Ga;_,Al _As quantum-well sys-
tem. It is found that the shifts of binding energy due to
electron-phonon couplings are quite important for both
the on-center and on-edge impurities. The polaronic
correction can be as large as 23% for the small well

11971

thickness. In this work both the interactions of the elec-
tron with the confined bulk phonon and interface phonon
are taken into account. Therefore, our result seems to be
more reliable than those of previous calculations where
the phonon confinement effect and the interface phonon
mode are neglected. The competition between the inter-
face and confined bulk phonons is also investigated. Our
results show that the dominant contribution comes from
the interface mode in the case of thin layers, and the bulk
phonon is more important as the well thickness becomes
larger than 10a*. We have extended the work for the
case of the finite quantum well with different potential
barrier heights. It is found that the higher the quantum-
well barrier where the binding energy is larger, the larger
the polaronic correction due to the increasing importance
of the electron-phonon interaction. We also find that the
polaron effect decreases very quickly as the barrier height
is lowered, for a small well width and approaches the lim-
iting bulk result for the large well size.

ACKNOWLEDGMENT

The work was supported by the National Science
Council of Taiwan.

1G. Bastard, Phys. Rev. B 24, 4714 (1981).

2C. Mailhiot, Y. C. Chang, and T. C. McGill, Phys. Rev. B 26,
4449 (1982).

3R. L. Greene and K. K. Bajaj, Solid State Commun. 45, 825
(1983).

4W. M. Liu and J. J. Quinn, Phys. Rev. B 31, 2348 (1985).

5S. Chaudhuri, Phys. Rev. B 28, 4480 (1983).

SP. Lane and R. L. Greene, Phys. Rev. B 33, 5871 (1986).

"W. C. Chou, W. J. Huang, P. Y. Chu, C. S. Han, and D. S.
Chu, Physica B 150, 361 (1988).

8D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard,
W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev.
Lett. 53, 2173 (1984); Phys. Rev. B 32, 1043 (1985).

9J. A. Brum, C. Priester, and G. Allan, Phys. Rev. B 32, 2378
(1985).

10C., S. Han and Y. C. Hsieh, Physica B 179, 355 (1992).

11H. Frohlich, Proc. R. Soc. London 215, 291 (1952).

12A. Ercelebi and M. Tomak, Solid State Commun. 54, 883
(1985).

13M. H. Degani and O. Hipolito, Phys. Rev. B 33, 4090 (1986).

14B. A. Mason and S. Das Sarma, Phys. Rev. B 33, 8379 (1986).

I5A. Lassnig, Phys. Rev. B 30, 7132 (1984).

16F. A. Riddoch and B. K. Ridley, Physica 134, 342 (1985).

17A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys.
Rev. Lett. 54, 2111 (1985).

18N, Sawaki, J. Phys. C 19, 4965 (1986).

198, K. Ridley, Phys. Rev. B 39, 5282 (1989).

208. Rudin and T. L. Reinecke, Phys. Rev. B 41, 7713 (1990).

2IN. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).

22M. H. Degani and O. Hipolito, Phys. Rev. B 35, 7717 (1987);
Surf. Sci. 196, 459 (1988).

23M. H. Degani and G. A. Farias, Phys. Rev. B 42, 11701
(1990).

24P, Lambin, J. P. Vigneron, A. A. Lucas, P. A. Thiry, M.
Liehr, J. J. Pireaux, R. Candano, and T. J. Kuech, Phys. Rev.
Lett. 56, 1842 (1986).

25M. H. Meynadier, E. Finkman, M. D. Sturge, J. M. Worlock,
and M. C. Tamargo, Phys. Rev. B 35, 2517 (1987).

26D, Gammon, R. Merlin, and H. Morkoc, Phys. Rev. B 35,
2552 (1987).

27S. F. Ren, H. Chu, and Y. C. Chang, Phys. Rev. B 37, 8899
(1988).

28T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953).

29R. C. Miller, D. A. Kleinman, and A. C. Gossard, Phys. Rev.
B 29, 7085 (1984).

30W. Wang, E. E. Mendez, and F. Stern, Appl. Phys. Lett. 45,
639 (1984).

31H. C. Casey, Jr., J. Appl. Phys. 49, 3684 (1978).

32Y. C. Lee and W. N. Mei, J. Phys. C 15, L545 (1982).

330. K. Kim and W. G. Spitzer, J. Appl. Phys. 50, 4362 (1979).

34M. Tatham, R. A. Taylor, J. F. Ryan, W. I. Wang, and C. T.
Foxon, Solid State Electron. 31, 459 (1988).



