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Polaron efFect on the binding energy of a hydrogenic impurity in a quantum well
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We have studied the polaron effect on the binding energy of a hydrogenic impurity in a quantum-well
structure. The interactions of an electron with both the confined bulk phonon and the interface phonon
are taken into account. The competition between these two phonon modes is discussed. We have also
extended the calculation for the case of a finite quantum well. It is found that the polaronic correction
becomes bigger as the potential barrier gets higher.

I. INTRODUCTION

In recent years many theoretical and experimental in-
vestigations have been performed on the issue of the "hy-
drogenic" binding of an electron to a donor impurity in a
semiconductor quantum well or heterostructure. Bas-
tard' proposed a variational approach to calculate the
binding energies of donor levels in terms of the well
thickness and impurity positions in the quantum well as-
suming the potential barrier at the interface to be
infinitely high. Mailhiot, Chang, and McGill, Greene
and Bajaj, and Liu and Quinn extended the work to cal-
culate the binding energies of the ground state and
several excited states of hydrogenic donors in GaAs-
Ga& Al As quantum well with finite barrier height.
Later, Chaudhuri and Lane and Greene studied the hy-
drogenic impurity states in multiple-quantum-well struc-
tures. The effects of a finite-width barrier upon the bind-
ing energies are discussed. Recently, the anisotropic
effect and the quantum-confined Stark effect ' on the
hydrogenic impurities in the quantum well have also been
reported.

Since the III-V materials used in producing typical
quantum-well structures are polar in nature, an electron
weakly bound to a hydrogenic impurity in this system
will interact with the longitudinal-optical phonons of the
host semiconductor and tend to increase the donor bind-
ing energy. In the case of a bulk semiconductor, this po-
laron effect is reasonably well understood on the basis of
the Frohlich model. " The situation in a confined
geometry, such as a quantum well, is considerably less
clear. In the past several years, a number of works have
been carried out to investigate the polaron effect in a
quantum well system. Ercelebi and Tomak' studied the
effect of electron-phonon coupling on the binding ener-
gies of a hydrogenic impurity in a GaAs-Ga, „Al As
quantum well and found that the correction becomes siz-
able as the electron gets more deeply bound. Later, De-
gani and Hipolito' calculated the polaron effect on the
ground state as a function of electron density. The
screening effect of the impurity potential is discussed.
Mason and Das Sarma' have calculated the phonon-
induced shift in the impurity binding energy due to
electron-phonon interaction in a two-dimensional

quantum-well system. It is found that the polaron shifts
in donor energy levels are of the order of 10%%uo in the
GaAs-Ga& Al„As system. However, in all the calcula-
tions mentioned above, the electron-phonon interaction is
taken to be of Frohlich type as in the bulk case. The pho-
non confinement effect and the interface phonon are ig-
nored. This is an oversimplification; indeed, several ex-
periments' carried out recently indicate that the opti-
cal phonon in the GaAs-Ga& Al As quantum-well sys-
tem is confined, i.e., the z-polarized (z perpendicular to
the surface) optical phonons are equivalent to those vi-
brations in the infinite crystal whose wave vector is given
by mm/L, where L is the thickness of the well and m is
an integer. The series of phonons labeled by m are termed
confined phonons and also sometimes called "folded"
phonons. It has been pointed out in various investiga-
tions that phonon confinement effects lead to important
modifications in the transport properties. Therefore in
studying the polaron effect in a quantum-well structure,
the confined bulk phonon should be taken into account.
There is, however, another type of phonon which is also
quite important in the quantum-well system. This is the
interface mode. Recently, the interaction of an electron
with the interface phonon mode has been theoretically es-
tablished for two-dimensional semiconductor heterojunc-
tions. ' Degani and Farias studied the exciton prob-
lem in an AlAs/GaAs system and found that the inter-
face phonon has significant effect on the exciton binding
energy. Experimental observations of these interface
modes are reported by Sood et al. ' in backscattering
Raman spectra, by Lambin et a/. in high-resolution
electron-energy-loss spectra, by Meynadier et al. in Ra-
man scattering of high order at the resonance with the
lowest optical transition, and by Gammon, Merlin, and
Markoc in magnetic-field-enhanced Raman scattering.
The purpose of this paper is to investigate the polaron
effect on the hydrogenic impurity states in a quantum
well by including both the interactions of the electron
with the confined bulk phonon and the interface phonon.
The competition between these two phonon modes and
the correction on the binding energy of the hydrogenic
impurity in the GaAs-Ga& Al As quantum well will be
studied.

We shall also extend the calculation to the case of the
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finite quantum well. It has been pointed out recently' '
that as the binding energy increases the localization of an
electron becomes more pronounced, and this in turn in-
creases the importance of electron-phonon coupling.
Thus the polaron effect is expected to be smaller for the
finite potential barrier where the binding would be weak-
er. However, this important behavior has been only
briefly speculated upon in previous works, and no calcu-
lation was given since they considered only the case of
the infinite quantum well.

II. THEORY

H, =
2m 2 i/2+2+ ( )2]1/2 (2)

where p =x +y is the distance in the layer plane mea-
sured from the impurity site, and z, is the coordinate of
the impurity site along the superlattice axis. We first as-
sume, for the sake of simplicity, that the barrier potential
V(z) has infinite height.

ized )L/2
0, Izl&L/2.

Later, we shall extend the calculations for the finite quan-
tum well. HIQ and H, Io are the Hamiltonians for the
free interface phonon and its interaction with the elec-
tron, respectively:

Hgo —gftco s s
q

(4)

—ql~ L/21+ —ql~+L/—2I)( —q p + +He —IO ~ q q
~ ~

q

(5)
where s

q (sq ) denotes the creation (annihilation) operator
for the IO phonon with the two-dimensional wave vector
q. For a heterostructure, the frequencies of the interface
modes, co+ are determined by e, (co)= —e2(co), with GaAs
as medium 1 and Gai „Al As as medium 2. The
frequency-dependent dielectric function. is given as

s
e(co) =e„+

1 —e)'/AT

Let us consider a hydrogenic donor impurity atom lo-
cated in a quantum well of thickness L. Within the
framework of the effective-mass approximation, the
Hamiltonian of this system contains five parts: electron-
ic; free interface phonon (IO); electron —IO-phonon in-
teraction; free bulk optical phonon (BO); and
electron —BO-phonon interaction.

He +HIO +He —IO +HBO +He —BO

The electronic Hamiltonian operator H, can be expressed
as

2

where e, and e are the static and high-frequency dielec-
tric constants, respectively. cuT is the transverse optical-
phonon frequency. The electron —IO-phonon interaction
strength I is defined as '

I = [2~a, (A/2mco, )' ]'
qA

(7a)

where 3 is the area of the surface and the electron —IO-
phonon coupling constant

1/2
e m 1

2vre, 2' co, p, (co, )+p2 (co, )
(7b)

with

p(co) = 1
2

COg CO CO T
2 2 2

CO COL
—

COT

(7c)

The Hamiltonians HBO and He BQ for the free BO
phonon and the electron —BO-phonon interaction can be
written as

AcoL
W„= —[4rca (fi/2m co )' ]' (10)

Here V is the volume and the electron —BO-phonon cou-
pling constant ab=e [(I/e )

—(1/e, )](m/2A coL )'/ .
We shall use the variational method proposed by Lee,

Low, and Pines to treat our problem. In order to calcu-
late the ground-state energy, we choose a trial wave func-
tion as

ie&=i@,&[N,N, &,

where
~ P, ) is the electronic part of the wave function for

the impurity in the infinite quantum well, which is taken
the form as used in Bastard model

HBQ Q~~Lbk bk
k

—ik pH BQ g Wk sin(k, z )(e bk +H. c. )
k

where AcoL is the BO-phonon energy. bk and bk are, re-
spectively, the creation and annihilation operators for the
BO phonon with wave vector k=(k, k, ). For the
confined bulk phonon, only limited values for the z wave
vector are allowed, given by k, =nor/L, where n is an in-
teger, since these phonons are confined within the quan-
tum well. Recently Ren, Chu, and Chang studied the
anisotropy of the optical phonon and the interface mode
in a superlattice, and found that the interface mode and
the confined mode with zero node (n =1) do not coexist
in a quantum well for a fixed value of in-plane wave vec-
tor q. Therefore, the electron —BO-phonon interaction for
the n =1 mode should be excluded to avoid doubled
counting. The interaction strength W& is given as

~y)=. ' 7,
N cos(k, z) exp ——[p +(z —z;) ]'/, ~z~ &L/2

(12)



48 POLARON EFFECT ON THE BINDING ENERGY OF A. . . 11 967

Ui =exp i P —gs s fiq g—bi+, bi, A'k p (13)

N is the normalization constant, A, is a variational param-
eter, and k, =ir/L. N&Ni, & is the phonon wave func-
tion, with Nq and Nk the number of IO and BO phonons,
respectively. In the low-lying state, N&Ni, & can be taken
as

I O&oi, &, the phonon vacuum state.
First, we make the unitary transformation

Taking the expectation value of H' with the trial wave
function given in Eq. (11), i.e.,

E=&y, ;O,O„IH Iy, ;o,o„& .

The variational parameters F and Gk are determined by
the variational conditions 5E/5Fq =5E/5Gk =0, which
yield

where P is the two-dimensional momentum defined as
g2q2 AP .q

F, = —r, r~+ ~ + ' (g+g, ')- (19a)

P =p +giriqs+s +giiik bi+, bi, .
q k

The Hamiltonian is transformed into

H1 = U 1+HU1

p2
+ V(z)+ P —gAqs+s —girik b„+bi,

2m 2m
L

+a~, ys,+s, +yr, (s,++s, )

q q

+ficol /bi, bi, +/8'J, (bi, +bi, ) .
k k

(14)

(15)

Ak AP k

Here g, and gb are defined by

QiiiqF =i),P
q

QAk Gi, =ribs
k

r~=rq&&, lexp( qlz L/2I)

+exp( —qlz +I /2I ) I &, &

(19b)

(20a)

(20b)

(21a)

The Hamiltonian finally becomes

H'= U2+H1U2 . (17)

In terms of the second Lee-Low-Pines transformation,

U, =exp g(F,s, +F,'s, )+g(G„b„++G„*b„) . (16)
re, = IV/, & y, I

sin( k,z) I y, & . (21b)

With the trial wave function IP, & given in Eq. (12), the
closed forms of rq and 8'k can be obtained. Substituting
Eqs. (19a) and (19b) into Eq. (18), the ground-state energy
E is obtained as

2 N2g2E= +
2m 2E'

cos(2k, z, )1+
1+k1A,

k1k. 2z

1+k A,
cosh exp

g2 g2 2 g2+ ",Il —(„,+„,) j —yr', r, +'& + "&(„,+„)
2m' 2m mX

Ak A'k—g Wq ficoi + + (r), +r)b ')
k Zm mk

(22)

For slow electrons, Eqs. (19) and (20) yield

2x
9s 1+2x, +2xb

(23a) E~ =Eo —E, (25)

The binding energy of the hydrogenic impurity is given
by

where

2xb

1+2x, +2xb

AP .qx, = QrP m

2
g2 2

+
2m

—3

(23b)

(24a)

where Eo is the ground-state energy for an infinite quan-
tum well without impurity. Minimizing E with respect to
A, , we obtain the binding energy as a function of the well
width L and impurity position z;.

Next, we shall consider the case of finite quantum well.
The potential well is given as

2
m AP k

xb =,XIV''
p k m

/2k 2
P

flML +
2m

(24b)
Vo, I

z & L /2 . (26)

We assume that the band-gap discontinuity ' in the
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III. RESULTS AND DISCUSSION

A. Infinite quantum well

We first give the resu ts o1 f the infinite quantum well for
efineAl As system. It is convenient to de ne

/ dth ff t
ber R *=e /2eoa '. The material parameters use

in the calculation are given in a e
of the binding energies as a function o ay-the variations o t e in

'

d on-ed e impurities.er thickness for the on-center anu on-e ge im

TABLE I. The matenal paramrameters for GaAs and
G Al As used in the calculations.al —x x

GaAs
Ga& Al As

Ep

12.9 10.9
0.14 12.04 10.57
0.30 11.18 10.16
0.36 10.89 10.04

(cm ')

293
285
278
275

coT (cm ~)

269
267
265
264

a Al As heterostructure is distributeded aboutGaAs-Ga& „A s e e
60/ the conduction40%%uo on the valence band and o on

ce AE betweenband wit eh the total band-gap difference e w
the Al con-GaAs and a)Ga Al As given as a function of t

It is well known that when the potential well is ni e,
e - not be solved for as simply asthe bound-state energies canno

ne has to solvee case of the infinite quantum well. One has to so ve
. W h 11 use a general per-tal e uations. e s a

b hodp opro osed by Lee an ei o
fi 't potential-well problems. It is foun ani e

hen one is interesteh d is sufficiently accurate w-enmet o is su
Recently, this ap-1 in the low-lying bound states.

as pp d t d the anisotropic effectas been appliea to s u y

cessful results have been obtained. ' In t is me o
-state ener ies o ef th finite quantum well can be ap-

the ei enenergies o ef the infinite quantumproximated by 'g
'

n which de ends on the11 with a perturbative correction w ic epe
inverse square root of t e po en i

11 which mustwave function o e
'f th infinite quantum we w ic

t e hard wall, the actual wave function wilill
11 thenetrate a distancee 5 into the so t wa,

ction ofe size of the wave function by a frac ion
o ld ob'o 1 b26/L. However, this increase cou

1 shifting the infinite wall farther awayy py ~

6A hm the original position by a distance . s efrom e or'g'
d with the eigenenergies of thetial height is large compare wi

low-lying sta es,t the penetration depth 6 is given by

(0) 1 /2
2m ( Vo E)—

g2

where E' ' represents the ground-state energy of the cor-

h a well width L can be considered the same aswell with a we wi
well with a broadened wellthat in an infinite quantum we wi a

width L +26.

{a)

rity

3
UJ

I I I I I I 4
1
0 I 2 3

L/a "
I i I

8 9 10

(b)

3

LLj

ge impurity

2
I i I i II i I i I0 I I I I i I I

5 6 7 8 90 1 2 3 4

L/a"
10

E/R* as a function of theFIG 1. Reduced binding energy E/~ ~

uced well width L/a for (a) the on-center imp
'

yurit and (b)
e - ' '

curve 1 (2) corresponds to the casethe on-edge impurity. The curve cor
with (without) electron-phonon interactions.

'
h ut the electron-phonon interactions are

n in the figure for comparison. It can e seenalso shown in e
h th olaron effects on the binding energt att epoa

For the on-center impurity the effec sects are aboutportant. or e
reduce to about 1.8%22%%u for the small well widths, and reduce

as the well width increases to L/a =20, andand eventually
a roaches the value of the bulk. For the on-edge impur-
it, the polaron effect is arger an
in the bulk limit to a out oin

'
b 23%%uo for very narrow well size.

ola-1 bi and Tomak' have calculated the po a-
ron e ec orff t for the on-center impurity, and o aine

in the bulk case and 15% for the smamall well size.3/o int e u

A e have mentioned before, in these previous cal-ness. As we ave m
th honon confinement effects is igculations e p

e is also neglected. This is ofthe interface phonon mode is also neg ec e ~

course an oversimplification. . In our calculations, bot t e
k np onhonon confinement and the

'
interface honon are ta enP

o be more re i-1
0t. Therefore, our result seems tointo accoun .

able than the others. We have also studied pthe corn eti-
bulk honon and the interfacetion between the confined p

d F' re 2 gives the variation o in ingP
f '

n of well width, including on yenergy as a unctio
confined bulk phonon or the interface p onon.
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(a)

ter impurity

Gal „Al As have been obtained with a different Al con-
centration x from the Kramers-Kronig dispersion
analysis of the infrared reAectivity spectra. Table I lists
the values that are used in our calculations. We have
used the general perturbative method of Lee and Mei to
study the finite quantum-well problem. In order to check
the validity of this method for our problem, a preliminary
calculation is first performed for the case without the

I ~ l & I I I i I l l i l ) I ( I

0 1 2 3 4 5 6 7 8 9 10

L/a
X = 0.36

on-edge impurity

0 I I t 1 I I

0 1 2 3 4 5 6 7 8 9 10
L/a

0 a l s l t I ) l l I I I ~ I t l I I

0 1 2 3 4 5 6 7 8 9 10

L/a"
3- X = 0.30

FIG. 2. Reduced binding energy E/R * as a function of the
reduced well width L/a* with the confined bulk phonon (curve
1) or the interface phonon (curve 2) for an impurity located (a)
at the center or (b) on the edge of the well.

Ct

2-
LU

found that the competition between these two modes in-
dicates that in the case of small well thickness the inter-
face phonon plays the dominant role and the confined
bulk phonon makes little contribution. As the well width
increases, the interface phonon contribution decreases
and eventually the bulk phonon becomes the important
one as L ) 10a*. This is in accordance with our expecta-
tion. Since the bulk phonon is confined in the longitudi-
nal direction (i.e., the z axis) there should be no bulk pho-
non effect as the well width I, approaches zero. It is
worth to note that this result is different from the previ-
ous calculations where the usual Frohlich interaction was
used and the phonon confinement effect was neglected so
that the main contribution still came from the bulk pho-
non even as I —+0. In our calculations, it is the interface
phonon which makes the main contribution as the well
width gets smaller. Tatham et al. have recently report-
ed a significant increase in the relaxation rate for a very
narrow well (25 A), which we believe is responsible for
the interface modes.

B. Finite quantum well

In this section, we present the results for the case of
the finite potential well. The TO and LO frequencies for

p
0 1

I 1 I I I

2 3 4 5 6 7 8 9 10
L /a~

X = 0.14

CL
2-

LU

0 I t I I I I I I l

0 1 2 3 4 5 6 7 8 9 1Q

L/a~

FIG. 3. The variation of the reduced binding energy E/R*
without the electron-phonon interactions as a function of the
well width L/a* using the general perturbative method (dotted
line) and the exact method of Liu and Quinn (solid line) for
several values of the barrier heights (a) Vo(x =0.36), (b)
Vo(x =0.30), and (c) Vo(x =0.14). The impurity is at the
center of the finite quantum well.
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(c)

10

3.6
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3.2-

3-
2.8
2.6
2.4
2.2

CL

LU 1.8-
1.6-
1.4-
1.2-

0.8
0.6
0.4-
0.2

(c)

I I I I

2 4 6 8 10
L/a"

FIG. 4. Reduced binding energy E/R * as a function of the
re uced well width L/a for an impurity located at the center
in e n'th fi ite quantum well. Curve 1 (2) correspon s o
with (without) electron-phonon interactions or
Vo(x =0.14), (b) Vo(x =0.30), and (c) Vo(x =0.36).

FIG. 5. Same as in Fig. 5 but for the impurity located on the
edge of the well.

0.5
(

Q.4—

electron-phonon interaction, andd the results are com-
d to those of the exact calculation using the methodpare o o

of Liu and Quinn as shown in Fig. 3. It is clear y
n as the well widtht a eh t the agreement is quite good even as t

d s to L /a *-0.3 for the case of x ==0.36reduces to a
r x =0.14.L/a*-0. 4 for x =0.30, and L/a*-0. 65 for x =

Therefore, our method is reasonably applicable to the
problem when the well size is greater than the above re-
gions. This method is then used to study the case with
the electron-phonon interactions taken into account.

We have calculated the binding energy as a function o
well thickness for different potential barrier heights

d t =0.14 0.30, and 0.36. The resultscorresponding to x =
~ F 0

are shown in Fi . 4 for the on-center impurity and in ig.
5 for the on-edge impurity. Figure 6 gives the correction

tions. Our results show that the polaronic shift is a so
quite impor ant t for the case of the finite quantum we .
For the GaAs-Ga07Alo 3As system (x =0.3), which cor-
res onds to the potential-well height V0=36R *, the po-respon s o
laronic shift ranges from about 13%%uo for smal we1 ell size to

8/ f the bulk limit. It is interesting to note from
Fi . 6 that the polaron effect becomes bigger as e p-
tential barrier gets higher. This is because t 'g

ig. a
~ ~ ~

he hi her the
b

'
the larger the binding energy, the localization ofarrier e

the electron becomes more pronounce~ an us
creases e

'
the importance of the electron-phonon interac-

tion. As we have pointed out before, this impor an
behavior has only been briefly speculated upon in previ-

LLI

0, 2—

: x =0.36
: x =0.30
: x =0.14

0.1

1 s I r I i I i I s 1 l I i I s I

6 7 8 9 100 1 2

0.5,

Q 4—

0.3—

Ii)
&j 0.2—

0.36
0.30
0. 1 4

0 1—

0.0
0

II i I I sI s I i l i I s l

13 4 5 6 7 8 9 0

L/a"

FIG. 6. The shifts of binding energy due to the electron-
phonon interactions for (a) on-center and - gb) on-ed e impurities
in the finite quantum well, with different Vo corresponding to
x =0.36 (curve 1), 0.30 (curve 2), and 0.14 (curve 3).
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ous works, ' ' but no calculation was given since they
only considered the case of the infinite quantum well.
Our work is an explicit calculation and presents the re-
sults for different potential barrier heights. For example,
for the on-center impurity with I. =a*, the percentage of
polaronic correction is 10% for the barrier height
Vo(x =0.36), and decreases to about 7% for
Vo(x =0.14). It is clear to see that, in general, for a
lower quantum-well height where the binding energy is
smaller, the polaron effect becomes weaker. It is also
worth noting that the tendency of decreasing polaron
effect as the barrier is lowered is quite fast for smaller
well thicknesses. As the well width becomes larger, the
polaronic correction is almost the same for different bar-
rier heights, and approaches the limiting bulk value.

IV. CONCLUSION

We have studied the polaron effect on the hydrogenic
impurity in the GaAs-Ga& Al As quantum-well sys-
tem. It is found that the shifts of binding energy due to
electron-phonon couplings are quite important for both
the on-center and on-edge impurities. The polaronic
correction can be as large as 23%%uo for the small well

thickness. In this work both the interactions of the elec-
tron with the confined bulk phonon and interface phonon
are taken into account. Therefore, our result seems to be
more reliable than those of previous calculations where
the phonon confinement effect and the interface phonon
mode are neglected. The competition between the inter-
face and confined bulk phonons is also investigated. Our
results show that the dominant contribution comes from
the interface mode in the case of thin layers, and the bulk
phonon is more important as the well thickness becomes
larger than 10a*. We have extended the work for the
case of the finite quantum well with different potential
barrier heights. It is found that the higher the quantum-
well barrier where the binding energy is larger, the larger
the polaronic correction due to the increasing importance
of the electron-phonon interaction. We also find that the
polaron effect decreases very quickly as the barrier height
is lowered, for a small well width and approaches the lim-
iting bulk result for the large well size.
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