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Abstract

We present a theoretical study of the spin-dependent electron scattering from spherical quantum dots (antidots) embedded

into III–V semiconductors. To calculate the elastic scattering cross-section we use the effective one electron band Hamiltonian

and spin-dependent boundary conditions generated by the spin–orbit interaction in the structures. It is demonstrated that the

spin–orbit interaction can lead to a recognizable magnitude of polarization for single and double scattering at zero magnetic

field.
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The asymmetric scattering of polarized electrons in gas

and metallic systems has been extensively studied for

decades (see Refs. [1–3] and references therein). The

relaxation of electron and hole spin polarization due to

spin-dependent scattering in semiconductor structures

was also of great interest and has been studied both

experimentally and theoretically [4–6]. Recently it was

discovered that most of the scattering events conserve

spin and the electron spin-relaxation time can become

surprisingly long in III–V semiconductors (as 100 ns

[6]). The spin-diffusion length is much longer than the

electron mean free path, and in some III–V semicon-

ductor nano-structures it may be of the order of the

sample dimensions (100 mm [7]).

In semiconductors the most important interaction,

which causes spin-dependent processes is the spin–orbit

interaction [8,9]. The Rashba spin–orbit coupling [9] is

an essential element of the spin field effect transistor

proposed by Datta and Das [10]. A new branch of

semiconductor electronics so called spintronics [11]

became under an extensive development recently. For

this reason, the spin-dependent kinetics of electrons in

traditional III – V semiconductor heterostructures

becomes a topic of a great.

This paper describes a model of the spin-dependent

electron scattering from nano-scale semiconductor quantum

dots (antidots). Recent advances in semiconductor nano-

technology allow us to consider small spherical dots

(antidots) of III–V semiconductors [12] as ‘artificial

defects’ with controllable parameters. We calculate the

polarization (the Sherman function [2,3]) after a single

scattering and investigate how the polarization changes after

the second scattering. In our calculation we use the effective

one band Hamiltonian with the spin-dependent boundary

conditions [13–15]. The rectangular hard-wall potential of

the dots (antidots) is induced by the discontinuity of the

conduction band edge of the system.

For three-dimensional semiconductor quantum dots

(antidots) the approximate one electronic band effective
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Hamiltonian is given in the form [13]

Ĥ ¼ 2
"2

2
7r

1

mðE; rÞ
7r þ VðrÞ þ VsoðrÞ; ð1Þ

where 7r stands for the spatial gradient, mðE; rÞ is energy

and position-dependent electron effective mass

1

mðE; rÞ
¼

2P2

3"2

�
2

E þ EgðrÞ2 VðrÞ
þ

1

E þ EgðrÞ2 VðrÞ þ DðrÞ

" #
;

VðrÞ is the hard-wall confinement potential of the dots or

hard core repulsive potential of the antidots, EgðrÞ and DðrÞ

stand for position-dependent band gap and the spin–orbit

splitting in the valence band, P is the momentum matrix

element. The spin–orbit interaction VsoðrÞ for conducting

band electrons is described by [9,14,15]

VsoðrÞ ¼ i7rbðE; rÞ·½ŝ £ 7r�; ð2Þ

where

bðE; rÞ ¼
P2

3

�
1

E þ EgðrÞ2 VðrÞ
2

1

E þ EgðrÞ þ DðrÞ2 VðrÞ

" #
; ð3Þ

is the spin–orbit coupling parameter, and ŝ ¼ {sx;sy;sz}

is the vector of the Pauli matrices.

For systems with a sharp discontinuity of the conduction

band edge between the dot (antidot) (material 1) and the

crystal matrix (material 2) the scattering potential can be

presented as

VðrÞ ¼
2V0; r [ 1

0; r [ 2;

(
; ð4Þ

where the potential barrier is chosen as V0 $ 0 for dots and

V0 # 0 for antidots. From integration of the Shrödinger

equation with Hamiltonian (1) along direction perpendicular

to the interface ðrnÞ we obtain the spin-dependent Ben

Daniel–Duke boundary conditions for the electron wave

function CðrÞ

C1ðrsÞ ¼ C2ðrsÞ;

"2

2mðE; rÞ
7r 2 ibðE; rÞ½ŝ £ 7r�

( )
n

C1ðrsÞ

¼
"2

2mðE; rÞ
7r 2 ibðE; rÞ½ŝ £ 7r�

( )
n

C2ðrsÞ;

ð5Þ

where rs denotes the position of the system interface.

Considering dots (antidots) with spherical shapes we

choose the solution of the scattering problem in spherical

coordinates ðr; u;fÞ as [1,16,17]

CðrÞ ¼ ð4pÞ1=2
X

l;s¼^1

il½l þ ð1 þ sÞ=2�1=2Rs
l ðrÞY

s
l ðu;wÞ; ð6Þ

where

Ys
l ðu;wÞ ¼ s

X
s0¼^1

C½l þ s=2; 1=2;

£ ð1 2 s0Þ=2; s0=2�·Yl;ð12s0Þ=2ðu;wÞx
s0
;

C½x; y; z;w� are the Clebsh – Gordan coefficients [1],

Yl;mðu;wÞ are the spherical harmonics, s ¼ ^1 refers to the

electron spin polarization, and xs is a spin function upon

which the Pauli matrix vector operates:

xþ1 ¼
1

0

 !
; x21 ¼

0

1

 !
:

Substituting Eq. (6) into the Schrödinger equation, we

obtain

2
"2

2m1ðEÞ

1

r2

d

dr
r2 d
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2

lðl þ 1Þ
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� 	
Rs
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� 	
Rs

2lðrÞ ¼ ERs
2lðrÞ;

r , r0;

ð7Þ

where r0 is the radius of the sphere. The spin-dependent

boundary conditions (5) for the spherical quantum dot

(antidot) can be written as

Rs
1lðr0Þ ¼ Rs

2lðr0Þ;

"2

m1ðEÞ

d

dr
Rs

1lðrÞ







r0

2
"2

m2ðEÞ

d

dr
Rs

2lðr0Þ







r0

þ
2½b1ðEÞ2 b2ðEÞ�

r0

� jðj þ 1Þ2 lðl þ 1Þ2
3

4

� 	
Rs

1lðr0Þ

¼ 0; ð8Þ

where j ¼ ll þ s=2l:
The method of partial waves is convenient in this specific

case of spherical quantum dots (antidots) with short-range

potentials (4), when we can solve the scattering problem

without additional assumptions. The proper solution of Eq.

(7) behaves like

Rs
1lðrÞ ¼ As

l glðkrÞ;

Rs
2lðrÞ ¼ Bs

l ½jlðkrÞ2 tan ds
lhlðkrÞ�;

ð9Þ

where ds
l is the phase shift due to spin-dependent scattering,

jl and hl are the spherical Bessel functions of the first and
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second kind, respectively

kðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2m2ðEÞE

p

"
;

and gl is a solution in the dot (antidot) region. For the dot

case:

glðkrÞ ¼ jlðkrÞ;

where

kðEÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðEÞðE þ V0Þ

p

"
;

while for the antidot case:

glðkrÞ ¼

ffiffiffiffiffiffi
p

2kr

r
Ilþ1=2ðkrÞ;

kð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m1ðEÞðlV0l2 EÞ

p
"

:

(Ilþ1=2ðzÞ is the modified Bessel function of the first kind).

The phase shift ds
l can be obtained from the values of the

wave functions Rs
l ðrÞ at the dot boundary ðr ¼ r0Þ

tan ds
l ¼

kj0lðkr0Þ2 gs
l jlðkr0Þ

kh0
lðkr0Þ2 gs

lhlðkr0Þ
; ð10Þ

where

gs
l ¼ k

m2

m1

g0l
gl

þ
2m2ðb1 2 b2Þ

r0"
2

jðj þ 1Þ2 lðl þ 1Þ2
3

4

� 	
;

and primes denote the first derivatives with respect to the

function argument.

The complex scattering amplitude [17] is defined as

Fs ¼ ½f sðuÞ þ ðŝ·n1Þg
sðuÞ�xs

; ð11Þ

where

f sðuÞ ¼
1

k
·
X1
l¼0

½ðl þ 1Þexpðidþl Þsin dþl

þl expðid2l Þsin d2l �Plðcos uÞ;

and

gsðuÞ ¼
i

k
·
X1
l¼1

½expðidþl Þsin dþl 2 expðid2l Þsin d2l �P
1
l ðcos uÞ;

are the direct amplitude and the spin-flip amplitude,

correspondingly, ( is the scattering angle between initial ki

and final kf wave vectors,

n1 ¼
ki £ kf

lki £ kf l
;

is a unit vector perpendicular to the scattering plane,

Plðcos uÞ and P1
l ðcos uÞ are the Legendre polynomial and

Legendre associated function, respectively.The Mott scat-

tering cross-section for spin-polarized electrons can be

written in terms of the incident electron spin-polarization

vector Pi

sðuÞ ¼ IðuÞ½1 þ SðuÞPi·n1�; ð12Þ

where

IðuÞ ¼ lf sðuÞl2 þ lgsðuÞl2;

is the differential cross-section for an un-polarized incident

beam and

SðuÞ ¼
f spgs þ f sgsp

lf sðuÞl2 þ lgsðuÞl2
; ð13Þ

is the Sherman function [2,3]. The Sherman function

characterizes the left–right asymmetry in the scattering

cross-section for initially polarized electron beams and the

average polarization after a single scattering Pl for an

initially unpolirazed beam

P1 ¼ SðuÞn1:

It follows from the equations above that the spin–orbit

interaction influences the phase shifts with angular momen-

tum l . 0: The effect is stronger for pairs of materials with a

lager difference in the spin–orbit coupling parameters. Fig. 1

Fig. 1. The Sherman function for (a) spherical InAs/GaAs quantum

dot with r0 ¼ 1:3 nm and (b) spherical GaAs/InAs antidot with

r0 ¼ 6 nm. EgInAs ¼ 0.42 eV, EgGaAs ¼ 1.52 eV, lV0l ¼ 0:77 eV,

DInAs ¼ 0:38 eV, DGaAs ¼ 0:34 eV, mInAsð0Þ ¼ 0:023m0;

mGaAsð0Þ ¼ 0:067m0 (m0—the free electron mass) [13].
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presents the Sherman function versus the scattering angle

and the energy of the incoming electrons calculated for a

nano-scale quantum dot (InAs/GaAs) and antidot (GaAs/

InAs). In the case of quantum dots (Fig. 1(a)) we avoided an

additional complexity by neglecting the interaction of the

scattered electrons with charges bound in the dots and the

resonance effects. This restricts us to use dot sizes, which do

not allow any bound states in the dots. The electron energy

is adjusted to the electron band edge of GaAs. In the dot

region the denominators of the spin– orbit coupling

parameter (see Eq. (3)) are relatively large (V0 ¼ 0.77 eV,

E1g ¼ EgInAs ¼ 0.42 eV, D1 ¼ DInAs ¼ 0:38 eVÞ that makes

b1, the total difference b1 2 b2 and the effect rather small.

For the antidot case, the situation is quite different. In

antidot region the dominators are relatively small, so the

parameter b1 2 b2 is large. The Sherman function ampli-

tude becomes much lager than that for the quantum dot case

(see Fig. 1(b)).

Polarization produced by scattering of an unpolarized

electron beam affects subsequent scattering processes. The

first scattering generates a polarization that in the second

scattering results in the left– right asymmetry in the

scattering cross-section. If the azimuthal asymmetry after

the second scattering can be measured, the scattering

induced polarization can be found [1,16,17]. We consider

double scattering in the same x–y plane as it is presented in

Fig. 2. The polarization P2 in the double scattering process is

parallel to n1 and it is described by

Pl
2ðu1; u2Þ ¼

S1ðu1Þ þ S2ðu2Þ

1 þ S1ðu1ÞS2ðu2Þ
;

when the second scattering occurs to the left of an observer

standing to n1 and

Pr
2ðu1; u2Þ ¼

S1ðu1Þ2 S2ðu2Þ

1 2 S1ðu1ÞS2ðu2Þ
;

when the second scattering occurs to the right of the

observer.

In Fig. 3 we present the calculated result of the left

polarization for the double scattering from GaAs/InAs

antidotes. The results demonstrate a well recognizable

polarization after the second scattering. In addition, Fig. 4

shows the energy dependence of the polarization of the

double scattering process with a fixed direction of the first

scattering.

Subsequent scatterings (more than double) generate

more complicated angular dependencies of the polarization

[1,2] and could be investigated theoretically one after

another [2,17]. But in reality, the intensity of the polarized

electrons is small. In addition the background scattering

processes (phonons, impurities, defects, plural scatterings,

etc.) should substantially randomize the subsequent polar-

ization process [2]. From other side, this randomization in

higher order scatterings provides some grounding in the

kinetic theory of the anomalous Hall effect [18–21].

Following the method from [18–21], for degenerated

electronic system and a random three dimensional array of

the quantum dots (antidots) at zero magnetic field the

anomalous Hall angle can be estimated as

luHl ¼
t0

tH

; ð14Þ

Fig. 2. Schematic diagram of single and double scattering.

Fig. 3. Polarization of double scattering to the left ðPl
2ðu1; u2Þ ¼

Pr
2ðu1;2u2ÞÞ induced by scattering from GaAs/InAs antidotes with

r0 ¼ 6 nm and E ¼ 20 meV.

Fig. 4. Energy dependence of the left–right double scattering

polarizations induced by scattering from GaAs/InAs antidotes with

r0 ¼ 6 nm and u1 ¼ 2p=2:
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where

1

t0

¼ 2pNdvF

ðp

0
du IðuÞð1 2 cos uÞsin u; ð15Þ

is the elastic scattering rate, and

1

tH

¼ 2pNdvF

ðp

0
du IðuÞSðuÞð1 2 cos uÞsin3u; ð16Þ

is the spin-flip scattering rate. All functions are taken at the

Fermi shell, Nd is the concentration of the dots (antidotes),

vF is the Fermi velocity, and it is assumed that the electron

current is completely polarized. In Fig. 5 we present the

result calculated for the anomalous Hall angle as a function

on the Fermi energy for an array of GaAs/InAs antidotes. It

should be noted, the anomalous Hall effect produced by

quantum antidots has a measurable magnitude.

In summary, we discussed the influence of the spin–orbit

interaction on the electron scattering from semiconductor

quantum dots and antidots. The one electron band effective

Hamiltonian and the spin-dependent boundary conditions

for spherical quantum dots (antidots) allowed us to calculate

a spin asymmetry in the electron scattering cross-section.

We found a polarization produced by single and double

scattering of unpolirazed electron beams due to the spin–

orbit interaction. We would like to stress that, the

polarization is caused by non-magnetic GaAs/InAs semi-

conductor structures without external magnetic fields. We

should mention, that in the anomalous Hall effect the Hall

angle is proportional to the Sherman function at the Fermi

energy shell [18,19]. Our calculation results suggest a small

but measurable magnitude of the Hall angle for antidots.

The anomalous Hall effect produced by quantum antidots is

expected to be reduced by the electron impurity scattering,

but should still have a significant magnitude. This effect is

potentially useful in integrated electron spin-polarization

devices based on all-semiconductor heterostructures.
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