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Abstract

Biologists have determined that the control and regulation of gene expression is primarily determined by relatively
short sequences in the region surrounding a gene. These sequences vary in length, position, redundancy, orientation,
and bases. Finding these short sequences is a fundamental problem in molecular biology with important applications.
Though there exist many different approaches to signal (i.e. short sequence) finding, some new study shows that this
problem still leaves plenty of room for improvement. In 2000, Pevzner and Sze proposed the Challenge Problem of
motif detection. They reported that most current motif finding algorithms are incapable of detecting the target motifs
in their Challenge Problem. In this paper, we show that using an iterative-restart design, our new algorithm can
correctly find the target motifs. Furthermore, taking into account the fact that some transcription factors form a
dimer or even more complex structures, and transcription process can sometimes involve multiple factors with
variable spacers in between, we extend the original problem to an even more challenging one by addressing the issue
of combinatorial signals with gaps of variable lengths. To demonstrate the effectiveness of our algorithm, we tested
it on a series of the new challenge problem as well as real regulons, and compared it with some current representative
motif-finding algorithms. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Multiple various genome projects have gener-
ated an explosive amount of biosequence data;
however, our biological knowledge has not been
able to increase in the same pace of the growth
of biological data. This imbalance has stimu-

lated the development of many new methods
and devices to address issues such as annotation
of new genes. One of the most promising new
designs is the microarray gene chip technology
which allows direct measurement of the expres-
sion level change of each gene in a genome in
parallel [1,2]. Biologists can easily isolate co-reg-
ulated genes according to their gene expression
level change. This will not only increase the effi-
ciency of experiments on gene expression, but
also provide a better macro view of gene behav-
ior on a genomic scale.
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A cluster of co-regulated genes isolated by gene
expression measurements can only show which
genes in a cell have similar reaction to a stimulus.
What biologists further want to understand is the
mechanism that is responsible for the coordinated
responses. The cellular response to a stimulus is
controlled by the action of transcription factors.
A transcription factor, which itself is a special
protein, recognizes a specific DNA sequence. It
binds to this regulatory site to interact with RNA
polymerase, and thus to activate or repress the
expression of a selected set of target genes. Given
a family of genes characterized by their common
response to a perturbation, the problem we try to
solve is to find these regulatory signals (also
known as motifs or patterns), i.e. transcription
factor binding sites that are shared by the control
regions of these genes.

The motif finding problem can be formulated as
follows: given a sample of sequences defined over
a set of symbols (e.g. A, G, C and T in the case of
DNA sequences), and unknown patterns (motifs)
implanted at various locations in the sequences,
how can we find the unknown patterns? Accord-
ing to motif representations, motif significance
measures and motif search strategies, many differ-
ent approaches to this problem have been devel-
oped [3–9]. Though these algorithms have been
proved effective in many different real domains, a
new study reported that several representative
motif-finding algorithms are unable to detect the
subtle motifs in some particular form, and this
was introduced as the Challenge Problem of motif
finding [10]. Due to the fact that transcription
factors may form a dimer or more complex struc-
tures, and some transcription initiations may re-
quire the binding of two or more transcription
factors at the same time, we further extend the
Challenge Problem by addressing the issue of
combinatorial signals with gaps of variable
lengths. Most of the current approaches can only
find motifs consisting of continuous bases without
gaps. Some methods have been proposed to deal
with motifs or alignments with gaps, but they
either limit the focus on fixed-gaps [11,12] or use
other less expressive representations than the
weight matrix, e.g. regular expression-like lan-
guages or the IUPAC code [13–16]. To alleviate

the limitations of current approaches, we intro-
duce a new algorithm called MERMAID (Matrix-
based Enumeration and Ranking of Motifs with
gAps by an Iterative-restart Design), which
adopts the matrix for motif representation, and is
capable of dealing with gaps of variable lengths.
This presentation expands upon work by others
by combining multiple types of motif significance
measures with an improved iterative sampling
technique. We demonstrate its effectiveness in
both the original and the extended Challenge
Problems, and compare its performance with that
of several other major motif finding algorithms.
To verify its feasibility in real-world applications,
we also tested MERMAID on many families of
yeast genes that share known regulatory motifs.

2. Background

The identification of sequence motifs is a funda-
mental but important approach for suggesting
good candidates for biologically functional re-
gions that may be responsible for gene regulation.
Fundamentally gene regulation is determined by
chemical reactions which are, in turn, controlled
by the shape and electrostatic charges of the
molecules involved. One such instance of this is
the interaction between regulatory proteins and
their target binding sites. The significance of this
is that this can lead to a coordination of regula-
tion via a combination of motifs. Unfortunately
this information is not typically available. We
expect that the local shape of a binding or recep-
tor site will be primarily determined by the bases
involved, acknowledging the fact that non-local
base changes can affect local shape.

The analysis of non-coding regions in genomes
in order to understand the control mechanism is a
difficult problem. Due to the relatively intensive
study of exemplary genes, certain aspects of regu-
lation, including positional effects, multiplicity of
regulatory motifs, orientation of motifs and the
role of combinations of different motifs, although
appreciated conceptually, have not been explored
comprehensively. Research on finding subtle regu-
latory signals has been around for many years,
and still draws a lot of attention because it is one
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of the most crucial steps in the study of genomics.
Emerging knowledge of genome-wide gene activ-
ity, combined with the algorithms to infer motifs
and to correlate activity and motifs, could
broaden our understanding of gene regulation
into under-explored areas.

Despite the fact that there already exist many
various algorithms, this problem is nevertheless
far from being resolved according to Pevzner and
Sze [10]. They found several widely used motif-
finding algorithms failed on the Challenge Prob-
lem defined as what follows.

Let S={s1, s2,…,st} be a sample of t n-letter
sequences.

Each sequence contains an (l, d)-signal, i.e. a sig-
nal of length l with d mismatches. The problem is
how to find the correct (l, d)-signals.

In their experiments, they implanted a (15, 4)-
signal in a sample of 20 sequences. To verify the
effect of the sequence length, they varied n from
100 to 1000. The experimental results showed that
as the sequence length increased, the performance
of MEME [5], CONSENSUS [3] and the Gibbs
sampler [4] decreased dramatically. There are two
causes to their failures. First, the algorithms may
lodge in local optima. The increase of the se-
quence length can incur more local optima, and
further aggravates the problem. Second, they rely
on the hope that the instances of the target signal
appearing in the sample will reveal the signal
itself. However, in the Challenge Problem, there
are no exact signal occurrences in the sample,
only variant instances with four mismatches in-
stead. Pevzner and Sze proposed WINNOWER
and SP-STAR to solve the Challenge Problem,
but the applicability of WINNOWER is limited
by its complexity and the performance of SP-
STAR drops significantly like others as the se-
quence length increases [10].

3. Design considerations

Most current approaches based on greedy or
stochastic hill-climbing algorithms optimize the
weight matrix with all positions within a sequence
[3,4]. This is not only inefficient, but may also
increase the chance of getting trapped in local

optima in case of subtle signals contained in long
sequences due to a greater number of similar
random patterns coexisting in the sequences. To
avoid this drawback, we begin by allowing each
substring of length l to be a candidate signal. We
convert this particular substring into a probability
matrix, adopting an idea from Ref. [5]. This gives
us a set of seed probability matrices to be used as
starting points for iterative improvement. We use
the seed probability matrix as a reference to locate
the potential signal positions with match scores
above some threshold. The optimization proce-
dure only checks these potential positions instead
of all possible locations in a sequence. By direct-
ing the attention to the patterns same as or close
to the substring that is considered a motif candi-
date, we can significantly constrain the search
space during the iterative improvement process.

However, when the target signal is very subtle,
e.g. (15, 4)-signal, the bias that we only consider
the selected potential signal positions becomes
harmful. This bias is based on the assumption
that the instances of the target signal existing in
the sample have sufficient regularity so that we
can finally derive the correct target signal from
these instances through optimization. Unfortu-
nately, this optimistic assumption does not hold if
the regularity represented by the signal instances
is inadequate to distinguish themselves from simi-
lar random patterns. As a consequence, the
chance of mistaking random patterns for real
signal instances gets higher. The algorithm may
thus be misled to other variant patterns than the
correct signal.

When dealing with subtle signals, it is not guar-
anteed stochastic optimization can find the correct
target signal due to the influence of similar ran-
dom patterns. However, the pattern it converges
to must be close to the target itself because the
random patterns must carry some resemblance to
the target signal; otherwise, they would not be
selected to participate in the optimization process.
Suppose the target signal is the most conserved
pattern in the sample as usually expected and we
use one signal instance as the seed for optimiza-
tion. No matter what pattern it finally converges
to, this pattern is at least closer to the target
signal than the substring (i.e. the signal instance in
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the sample) used as the seed even if it may not be
the same as the target. Since the converged pat-
tern is closer to the target signal, one way to
further refine this pattern is to reuse it as a seed,
and run through the optimization process again.
We can iteratively restart the optimization proce-
dure, using the refined pattern as a new seed, until
no improvement is shown. With this iterative
restart strategy, we expect to successfully detect
subtle signals like (l, d)-signals in the Challenge
Problem.

Pevzner and Sze introduced some extension to
SP-STAR to deal with gapped signals, but their
method typically addressed the fixed-gap issue
only. However, in some real domains, motifs may
contain gaps of variable lengths, and simulta-
neous and proximal binding of two or more tran-
scription factors may be required to initiate
transcription. Therefore, a natural extension to
the Challenge Problem proposed by Pevzner and
Sze is to find combinatorial (l, d)-signals. A com-
binatorial (l, d)-signal may consist of multiple
(l, d)-signals as its components, and the length of
gap between two components may vary within a
given range. For example, a (l, d)–X(m, n)– (l, d)-
signal is one that has two (l, d)-signals with a gap
of variable lengths between m and n bases. Note
that the signal length and the number of muta-
tions may be different in various components.

There are generally two approaches to finding
combinatorial signals. The first one is a two-step
approach. We first find signal component candi-
dates. In the second step, we use the component
candidates to form signal combinations and verify
their significance [17]. This approach is effective
only if the signal components by themselves are
significant enough so they can be isolated in the
first step for later combination check. In cases
that the signal components gain significance only
in combinations, the earlier approach may over-
look the interaction between components and
thus fail to find their combinations. To avoid this
limitation, an alternative approach is to find com-
binatorial signals directly. Based on the design
consideration mentioned above, we developed
MERMAID to deal with subtle combinatorial
signals. MERMAID enumerates all possible sub-
string combinations with different gap lengths

within a given range. It constructs a probability
matrix for each signal component, and then ap-
plies an iterative-restart procedure to optimize the
matrices. Provided that the gap range is relatively
small, the time complexity of MERMAID does
not increase dramatically.

4. System description

The sequence segments, such as binding sites
for a particular protein, are not necessarily accu-
rately represented by a single sequence pattern
because modest variations in the motif are impor-
tant for controlling the differential binding of the
protein to different regulatory regions. Conse-
quently, the weight matrix was adopted for motif
representation in MERMAID. Given a sample of
N biosequences, MERMAID first converts a sub-
string combination into an initial matrix combina-
tion, and then carries out an iterative
improvement search to optimize the consensus
quality of the matrix combination. To avoid the
lodge on local optimum, it then applies an itera-
tive restart strategy to refine the matrices. The
same process is repeated for all substring combi-
nations in the sample to produce a user-defined
number, d, of matrix combinations that maximize
motif significance that is based on the combina-
tion of multiple types of motif quality measures,
including consensus [3], multiplicity [9] and cover-
age [6]. These d matrix combinations are combi-
natorial motif candidates, and can be later ranked
according to its significance.

Following Ref. [18], the consensus quality of a
matrix is derived from the entropy. The entropy is
calculated from the probability that each base
occurs at each position in the motif, Pm. More
precisely, the entropy for a particular column n in
the matrix is given by:

E(n)= − �
b4

i=b1

Pmi ·log2 Pmi

where b1,…,b4 are the bases A, G, C, and T. If
the bases are uniformly distributed over a posi-
tion, then the maximum value of 2 is obtained. If
only a single base appears in a position then the
minimum value of 0 is obtained. Thus we define
the consensus quality of column n as:
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C(n)=2−E(n)

The final consensus quality of a matrix b, is
defined as the average of all position quality,
where w is the width of the motif.

Con(b)=
1
w

�
w

1

C(n)

The multiplicity significance is derived from the
measure of precision as defined in the information
retrieval paradigm. It is simple and empirically
effective. We define the multiplicity significance of
a motif b as:

Mul(b)=
occS(b)
occG(b)

where occS(b) is b ’s occurrences in a given family
S, and occG(b) is b ’s occurrences in genome.

The motif coverage is defined as the ratio of the
number of the sequences containing b to the total
number of sequences given.

Cov(b)=
contS(b)

�S �
where contS(b) is the number of sequences in S
that contain b, and �S � is the total number of
sequences in S.

Given the d motifs, we first normalize the con-
sensus quality, the multiplicity significance and
the motif coverage of each motif b, using the
maximum value, as defined below:

Connorm(b)=
Con(b)

MAX(Con)

Mulnorm(b)=
Mul(b)

MAX(Mul)

Covnorm(b)=
Cov(b)

MAX(Cov)

where MAX(Con) is the maximum consensus
quality of the d motifs, MAX(Mul) is the maxi-
mum multiplicity significance of the d motifs, and
MAX(Cov), is the maximum motif coverage of
the d motifs.

It is important to evaluate all objective func-
tions above in conjunction because it may be easy
to optimize any single one separately. However,
for a motif to be significant we demand that it be

conserved as well have good coverage and high
multiplicity. In order to quantify this with a single
measure, we borrow the idea of F-measure, a
weighted combination [21], and propose the final
merit measure of a motif b as defined below:

Merit(b)

=
1

1
3
� 1

Connorm(b)
+

1
Mulnorm(b)

+
1

Covnorm(b)
�

The value of merit is in the range between 0 and
1. It reflects the synergy of the consensus quality,
the multiplicity significance and the motif
coverage.

The main process flow of MERMAID is di-
vided into four steps. First, it translates substring
combinations into matrices. Each matrix repre-
sents a component of a combinatorial motif. Sec-
ond, it filters the potential motif positions in the
sample of sequences. Third, given the set of po-
tential motif positions, it performs an iterative
stochastic optimization procedure to find motif
candidates. Finally, it ranks and reports these
candidates based on the motif significance.

A pseudo-code description of the iterative-
restart optimization procedure in MERMAID is
given in Fig. 1. Let n be the sequence length. The
pseudo-codes (4)– (9) scan the entire sample
against each matrix m to find the highest match
scoring substring combination in each sequence,
locate the potential positions of the combinatorial
motif, and form an initial matrix combination M.
These totally take O(n ·GN−1·�S �) operations,
where G is the maximum gap range and N is the
total number of motif components. Let p be the
maximum number of potential positions in a se-
quence, p typically �n. The inner repeat-loop
(10)– (14) takes (p ·L) operations to check differ-
ent positions, where L is a constant for the cycle
limit. Pseudo-codes (15)– (19), which scan the en-
tire sample against matrix M to isolate signal
repeats, and form the final probability matrix
FM, also take O(n ·GN−1·�S �) operations. From
above, the outer repeat-loop (3)– (21) totally takes
O(L(2n ·GN−1·�S �+pL)=O(n ·GN−1·�S �). Now
considering the outer for-loop (1)– (21) and (22)–
(23), we conclude the whole procedure is bounded
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by O(n ·GN−1·�S �·n ·GN−1·�S �)=O((n ·GN−1·�S �)2).
When G and N are relatively small, O((n ·GN−1·
�S �)2)=O((n ·�S �)2), which is the same as MEME
and SP-STAR, but lower than WINNOWER’s
O((n ·�S �)k+1), where k is the clique size, k�2 in
general.

5. Status report

One of the goals of this paper is to demonstrate
that by applying a simple iterative restart strategy,
our motif detection algorithm is capable of find-
ing subtle signals, e.g., (15, 4)-signal. Based on its
definition, we reproduced the Challenge Problem,
and used it to compare our new algorithm with
others.

Pevzner and Sze’s study [10] showed that for a
(15, 4)-signal, CONSENSUS, the Gibbs sampler

and MEME start to break at sequence length
300–400 bp. Their system called SP-STAR breaks
at length 800–900, and their other algorithm
named WINNOWER performs well through the
whole range of lengths till 1000 bp. Using the
same data generator to create data samples
(thanks to Sze for providing the program), we
demonstrate that MERMAID is competitive with
others. Moreover, in order to show that it is the
synergy of the iterative restart strategy and the
optimization procedure combined with the multi-
ple objective functions in MERMAID that helps
find the subtle signals, we implanted in the sample
the motif found by MEME with minimum mis-
matches to the target signal at a random position.
We then reran MEME. We repeated the above
process, and checked whether this iterative restart
strategy alone could improve MEME’s perfor-
mance. The reason we tested MEME is that
MERMAID adopts the same motif enumeration
method as MEME. Since MEME exhaustively
tests every substring in the sample, the implanted
substring will be used in the next run. We only
implanted the motif closest to the real signal (i.e.
minimum mismatches) to ensure that the base
distribution in the sample was nearly unchanged.
Though we did not actually re-code MEME, this
approximate simulation could still effectively
reflect its performance.

To keep the consistency, we followed Pevzner
and Sze’s test methodology as mentioned above.
We tested each algorithm on eight random sam-
ples. Each sample contains 20 i.i.d. sequences,
each of 1000 bp. Each sequence contains one
(15, 4)-signal at random position. The objective of
this experiment is to demonstrate the performance
of various algorithms in detecting the implanted
signals. The numbers in Table 1 present the per-
formance coefficients as defined in Ref. [10] aver-
aged over eight samples. Let K be the set of
known signal positions in a sample, and let P be
the set of predicted positions. The performance
coefficient is defined as P�K/P�K.

Table 1 indicates that MERMAID outperforms
CONSENSUS, the Gibbs sampler and MEME
(with or without iterative restart) by a significant
scale. Note that the performance coefficients of
WINNOWER and SP-STAR reported in Ref. [10]Fig. 1. Pseudo-code of MERMAID.
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Table 1
Comparison of performances in detecting (15, 4)-signals

MEME MEME MERMAIDCONSENSUS OligonucleotideGibbs sampler WINNOWER SP-STAR
analysis (van(w/iterative

restart) Helden)

0.020.06 0.090.11 0.00 0.88 0.23 0.75

are included only for reference because we did
not have access to these two systems at the
time. However, this indirect evidence may sug-
gest that MERMAID performs better than SP-
STAR, and is expected to be comparable with
WINNOWER. Also note that though the per-
formance of MEME with iterative restart is a
bit better than the original MEME, yet the re-
sult is not significant. This not only shows that
iterative restart alone may not improve the per-
formance, but also provides the evidence that
the success of MERMAID is attributed to the
synergy of the iterative restart strategy and the
optimization procedure combined with the mul-
tiple objective functions.

We also tested MERMAID on ten real regu-
lons collected by van Helden et al. [9] to verify
its usefulness in finding motifs in real-world do-
mains. MERMAID successfully identified all the
known motifs in each regulon.

For motifs with gaps of variable lengths, we
first tested MERMAID on (6, 1)–X(m, n)– (6,1)-
signals in a set of 20 sequences, each of length
1000 bp, where m and n present the lower and
the upper bound of the gap between two (6, 1)-
signals. Without losing the generality, we fixed
the lower bound, m, at 1, and varied the upper
bound, n, from three to nine in each experi-
ment. For example, in the first experiment, we
set n to be 3, which means each 1000 bp se-
quence contains a (6, 1)–X(1, 3)– (6, 1)-signal,
i.e. two (6, 1)-signals with a gap of one to three
bases at random in between. The purpose of
these experiments is to verify the variance toler-
ance of MERMAID to the gap range. As the
gap range increases, the search space of the
target signals increases, and thus makes it
harder for MERMAID to locate the right mo-
tifs.

The experimental results are presented in
Table 2. It shows that the performance coeffi-
cient of MERMAID is quite stable till n reaches
7, then breaks at 9. For comparison, we also
tested CONSENSUS, Gibbs sampler, MEME
and oligonucleotide analysis on the same data
sets. The results show the performance coeffi-
cient of each of the above algorithms is near
zero in all gap ranges.

In addition to the artificial problem, we also
tested MERMAID on several real regulons [11]
in which the known binding sites have fixed
gaps. The summary of the regulons is presented
in Table 3, and we show the results in Table 4.
In the fourth column of Table 4, the number
within each bracket means the rank of the sig-
nal found by MERMAID. The experimental re-
sults indicate MERMAID, which was originally
developed to deal with variable gaps, performs
well on real domains where motifs have fixed
gaps. The motifs converted from the weight ma-
trices discovered by MERMAID are all very
similar to the known motifs.

6. Lessons learned

The difficulty of finding the biologically mean-
ingful motifs results from the variability in (1)
the bases at each position in the motif, (2) the
location of the motif in the sequence and (3) the
multiplicity of motif occurrences within a given

Table 2
Performance of MERMAID on (6, 1)–X(1, n)–(6, 1)-signal

n=9n=3 n=5 n=7

0.560.900.91 0.88
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Table 3
Summary of regulons used in the experiments

GenesFamily

GAL1, GAL2, GAL7, GAL80, MEL1, GCY1GAL4
ACR1, lCL1, MLS1, PCK1, FBP1CAT8
CYB2, CYC1, CYC7, CTT1, CYT1, ERG11,HAP1
HEM13 HMG1, ROX1

LEU3 GDH1, lLV1, LEU1, LEU2, LEU4
LYS1, LYS2, LYS4, LYS9, LYS20, LYS21LYS
URA1, URA3, URA4PPR1

PUT3 PUT1, PUT2

extract single motifs with variable spacers can
be further generalized to identify motif combina-
tions. As gene expression often requires the
binding of multiple transcription factors to spe-
cific DNA sequences, with the generalized capa-
bility MERMAID can discover the potential
interaction between transcription factors.

7. Future plans

In this paper we have described a new subtle
signal detection algorithm called MERMAID,
which iteratively restart a multi-strategy opti-
mization procedure combined with complemen-
tary objective functions to find motifs. The
experimental results show that the system per-
forms significantly better than most current al-
gorithms in the Challenge Problem. To argue
the success of MERMAID is attributed to the
synergy of iterative restart and other compo-
nents in the system, i.e. optimization procedures
and objective functions, we used MEME as an
example to demonstrate that simply attaching an
iterative restart strategy to an arbitrary motif
finding algorithm shows little improvement.

For future work, we aim to improve MER-
MAID in two directions. One is efficiency and
the other is generality. First, the optimization
process in MERMAID for a single candidate is
independent of each other. Therefore, MER-
MAID can be easily implemented on a parallel
or distributed system to improve its efficiency.
Second, MERMAID only performs well on
combinatorial signals with gaps within a rela-
tively tight range. Despite that higher consensus
quality of each signal component allows for
wider gap ranges, MERMAID has difficulties
finding very subtle combinatorial signals whose
components reveal little locality. A wider range
of gap length produces a larger search space for
motif-finding algorithms, and in such cases, it is
computationally prohibited to enumerate all
possibilities exhaustively. Thus we plan to apply
another stochastic sampling technique to search
through the space, and incorporate domain
knowledge when available to constrain the
search space.

sequence. In addition, the short length of many
biologically significant motifs and the fact that
motifs gain biological significance only in com-
binations make them difficult to determine
[11,19]. Though many protein–DNA-binding
domains establish contact with a limited number
of adjacent nucleotides, a good number of tran-
scription factors bind to a pair of or more rela-
tively short conserved nucleotide sequences
separated by non-conserved regions.

Various approaches have been developed to
identify shared motifs from functionally related
biosequences. Each method is based on a differ-
ent model for the motifs. We review some of
the methods for the detection of motifs, and
compare them to our new approach. These
methods were selected because they are well de-
veloped. They are freely available over the Inter-
net, and represent a spectrum of different
approaches as shown in Table 5.

Despite the fact that these approaches only
find motifs of continuous nucleotides, several al-
gorithms adopting the ideas from these ap-
proaches are further developed to detect gapped
motifs [7,11,12]. Unlike current gapped motif
detection algorithms that can only deal with
fixed gaps, MERMAID was developed to iden-
tify subtle combinatorial signals with variable
spacers in between. Our experiments showed
that MERMAID not only effectively detected
combinatorial signals composed of proximal
components in artificial domains, but also suc-
cessfully identified the known motifs with gaps
in real regulons. The ability of MERMAID to
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Table 4
Summary of MERMAID’s analysis results in regulons

Known motifsFamily Dyad-analysis by van Helden MERMAID
et al.

GAL4 TCGGAn9TCCGACGGRnnRCYnYnC CGG–X(11)–CCG [1]
nCCG TCGGAn8CGCCGA A 0.0 0.0 0.0–X(11)–0.0 0.0 0.0

CCGGAn9TCCGA G 0.0 0.9 1.0–X(11)–0.0 0.0 1.0
C 1.0 0.1 0.0–X(11)–0.9 1.0 0.0
T 0.0 0.0 0.0–X(11)–0.1 0.0 0.0

CGCn4ATGGAACAT8 CGG–X(6)–GGA [1]CGGnnnnnnGGA
A 0.0 0.0 0.0–X(6)–0.0 0.0 1.0
G 0.0 1.0 1.0–X(6)–1.0 1.0 0.0
C 1.0 0.0 0.0–X(6)–0.0 0.0 0.0
T 0.0 0.0 0.0–X(6)–0.0 0.0 0.0

GGAn5CGGCHAP1 CGG–X(6)–CGG [10]CGGnnnTAnCGG
A 0.0 0.0 0.0–X(6)–0.0 0.0 0.0
G 0.3 0.8 0.9–X(6)–0.0 1.0 1.0
C 0.6 0.0 0.1–X(6)–1.0 0.0 0.0
T 0.1 0.2 0.0–X(6)–0.0 0.0 0.0

RCCGGnnCCGGYLEU3 ACCGGCGCCGGT GCCGG–X(2)–CCGGC [3]

A 0.1 0.0 0.0 0.0 0.0–X(2)–0.1 0.0 0.0 0.0 0.4
G 0.8 0.0 0.0 0.8 0.9–X(2)–0.0 0.2 1.0 1.0 0.0
C 0.0 1.0 0.9 0.2 0.0–X(2)–0.9 0.8 0.0 0.0 0.6
T 0.1 0.0 0.1 0.0 0.1–X(2)–0.0 0.0 0.0 0.0 0.0

WWWTCCRnYGGLYS AAATTCCG TTCCR–X(1)–YGGAA [10]
AWWW

A 0.0 0.0 0.1 0.0 0.5–X(1)–0.0 0.0 0.0 0.9 1.0
G 0.0 0.1 0.0 0.0 0.5–X(1)–0.1 1.0 1.0 0.1 0.0
C 0.0 0.1 0.9 1.0 0.0–X(1)–0.6 0.0 0.0 0.0 0.0
T 1.0 0.8 0.0 0.0 0.0–X(1)–0.3 0.0 0.0 0.0 0.0

WYCGGnnWWYKPPR1 CGGn6CCG TTCGG–X(2)–AACCCCGAG [4]
CCGAW

A 0.0 0.0 0.0 0.0 0.0–X(2)–1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.0
G 0.0 0.0 0.0 1.0 1.0–X(2)–0.0 0.3 0.3 0.0 0.0 0.0 0.7 0.3 0.7
C 0.3 0.0 1.0 0.0 0.0–X(2)–0.0 0.0 0.7 0.7 1.0 0.7 0.3 0.3 0.0
T 0.7 1.0 0.0 0.0 0.0–X(2)–0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.3

YCGGnAnGCGnA CGGn10CCGPUT3 TCGG–X(10,11)–CCGA [1]
nnnCCGA A 0.0 0.0 0.0 0.0–X(10,11)–0.0 0.0 0.0 1.0
CGGnAnGCnAnnn G 0.0 0.0 1.0 1.0–X(10,11)–0.0 0.0 1.0 0.0

C 0.0 1.0 0.0 0.0–X(10,11)–1.0 1.0 0.0 0.0CCGA
T 1.0 0.0 0.0 0.0–X(10,11)–0.0 0.0 0.0 0.0
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Table 5
Characteristics of some representative motif-finding algorithms

Objective functionAlgorithm RepresentationSearch strategy

Information contentCONSENSUS Frequency matrixBeam search
Gibbs Sampler Stochastic hill-climbing Ratio of pattern probability to background probability Probabilistic matrix

LikelihoodMEME Probabilistic matrixEM [20] variant
Exhaustive Statistical significance assuming binomial distribution Base stringvan Helden et

al.
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