
detected the modem needs to recover true synchronisation. It may 
be possible to do this by initiating a fast retrain of the modem. In 
halfduplex applications (such as facsimile), it will probably be 
quicker for the synchronisation method to recover synchronisation 
itself. To do this the receiver compensation should be turned off. 
This is necessary because this compensation may mask the effect 
of the transmitter inversions. The inversions will (in general) 
become clearer without the receiver compensation. Similar tech- 
niques to the detection of synchronisation loss can now be used to 
find the inversion position. In simple cases this will be the end of 
the recovery process and the receiver can start to pass valid data 
to the user again. 

However, it may be the case that a modem is capable of using 
several symbol rates and in this case it is desirable to synchronise 
to a common boundary between the blocks of each symbol rate. 
In the cases where two modem pairs are used either side of a dig- 
ital demoaremod link this is essential for changing data rate. This 
means that some method of finding ‘superframe’ synchronisation 
must be devised. Superframe synchronisation may also be neces- 
sary where the shortest available synchronisation frame is much 
greater than the preferred inversion frequency. In this case detec- 
tion of loss of synchronisation and the recovery from this loss will 
be quicker if a superframe is used and inversions are kept more 
frequent. 

Recovering superframe synchronisation: To enable superframe syn- 
chronisation a unique pattern of inversions must be used across 
the superframe. The simplest method of doing this is to keep the 
same interval between inversions but occasionally miss an inver- 
sion out. The number of inversions that are missed out must be 
kept low to enable the loss of synchronisation detection algorithm 
to function properly. The more inversions that are missed out the 
easier it is to spot the superframe position. It has been found that 
retaining 75% of the inversions is sufficient to enable fast loss of 
synchronisation detection. The pattern of these inversions will 
determine how quickly and reliably superframe synchronisation 
can be found. 

One approach would be to have a pattern of inversions in which 
every binary b-tuple was unique, e.g. every 6-tuple in the pattern 0 
1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 is unique. By minimising b (as it is 
here for the weight of the pattern) it could be possible to find the 
superframe position as quickly as possible. This method is not 
very reliable because in normal operating conditions, the noise on 
the channel is capable of masking the presence or absence of 
inversions. This means an averaging process is needed which slows 
down the recovery of superframe synchronisation. 

Another approach is to design the pattern so that its cyclic 
shifts are as far apart as possible. For short patterns this is the 
most effective method of choosing the pattern, e.g. all the cyclic 
shifts of the pattern 0 1 1 1 0 1 1 1 I 1 1 1 1 0 1 0 are at least a 
Hamming distance of 6 from each other. The reliability of finding 
superframe synchronisation is increased with the minimum dis- 
tance between cyclic shifts of the pattern. It is possible to monitor 
enough inversion positions to cover the length of the pattern. A 
decoding algorithm may then be employed on the inversions 
(along with the channel noise on them) to find the closest code- 
word in the codebook of cyclic shifts of the pattern. The resulting 
cyclic shift will give the superframe position. The reliability of this 
decoding obviously increases with the distance between the cyclic 
shifts of the pattern. For m zeros in a pattern, the largest possible 
minimum distance between cyclic shifts is 2(m - I )  

The pattern above has the maximum distance possible between 
its cyclic shifts. The truncated pattern of any length also has the 
maximum possible distance between its cyclic shifts. This pattern 
is proposed as the inversion pattern in the forthcoming V.fast rec- 
ommendation. 

Conclusion: A method of maintaining synchronisation in a modern 
modem by inverting the redundant bit from the trellis code has 
been presented. This is a reliable method that does not degrade 
performance when the modem is working properly. The possibility 
of maintaining superframe synchronisation has also been dis- 
cussed. It has been argued that to maintain the speed of detection 
of loss of synchronisation, inversions need to happen quite often. 
This leads to a high weight pattern of inversions. It has also been 
argued that this pattern should be as distinct as possible from all 

of its cyclic shifts to enable reliable superframe recovery. The 
superframe position is found by effectively decoding a weighty 
cyclic code. The choice of pattern is a design problem for this 
cyclic code. A codeword must be found of length n with weight 
> w  that will form a codebook from all its cyclic shifts with the 
largest possible Hamming distance. The largest Hamming distance 
such a codebook can have is 2(n - w - 1). 
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Wavelet transform in scattering data 
interpolation 

M.-H. Yaou and W.-T. Chang 

Indexing terms: Interpolation, Wavelet trans/orms 

A fast algonthm for scattenng data interpolation is presented. 
Based on the multiresolution wavelet transform, a preconditioning 
scheme is proposed to expedite the slow computation speed in the 
interpolation problem By applying the wavelet transform before 
and after any conventional iterative solving method, fast data 
interpolation can be easily achieved. 

Introduction: Scattering data interpolation is used to recover a full 
signal representation when only partial information of the signal is 
available. This problem plays an important role in many early 
vision processes such as surface from contours, structure from 
motion, stereopsis etc. [I]. This is an ill-posed inverse problem and 
is often described as a regularisation problem. In general, a varia- 
tion of the functional method which involves a second order max- 
imum smoothness requirement [2, 31 is applied for the 
regularisation. Various discretisation methods [2, 31 can be used to 
discretise the problem into an objective function of discrete nodal 
variables such that an approximated solution can be solved 
numerically. This discrete formulation then leads to the minimisa- 
tion of a quadratic energy function 

where Y is a column vector containing the nodal variables to be 
solved and A is a real symmetric matrix called the stiffness matrix. 
b and c are the associated column vector and constant. According 
to the Euler-Lagrange formula, the optimisation of this quadratic 
function results in a linear equation system AV - b = 0. For an N 
x N interpolation problem, the size of matrix A will be W x W .  
The resultant equation system is thus usually large and sparse. To 
solve this problem, iterative methods are usually adopted. How- 
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ever, owing to the sparse stiffness matrix of the equation system, 
the convergence rate of the iterative computation is very low. To 
speed up the convergence, acceleration methods such as the multi- 
grid method and hierarchical basis functions method (3. 41 have 
been proposed. Basically, those methods use the multi-resolution 
concept in improving the convergence rate. In this Letter, a more 
efficient multi-resolution approach based on the wavelet transform 
is introduced. 

Preconditioning hy wavelet transform; Basically, in the discrete for- 
mulation of the interpolation problem, the signal to be interpo- 
lated is directly expressed as the linear combination of the 
associated nodal basis functions. That is, the interpolated signal 
F(I )  is expressed as 

\ -1 

~ ( . r i  = i.[n]o[ r - 1 1 )  111 
0 

where the variables in sequence v[n] are the nodal variables associ- 
ated with the nodal basis functions $(.x - n), , o ~ o  ,-,,. This expres- 
sion in eqn. 2 is of the same form as the multi-resolution wavelet 
representation [SI. In the language of wavelet transform, the func- 
tion $(I) is called the scaling function and the sequence .[n] is 
called the discrete approximation of the continuous signal F(.Y). 
With such an expression, the wavelet transform [SI can be readily 
applied to transform eqn. 2 as 

h - l  
J T  

F ( s )  = lI.k[,l]2+L,j2-k,r - I I )  

i 5 1  n = o  

7 
\ -, 

+ 1*J[n]2=+o(2-J.T ~ i2).,/=1 2 ,i, ) 

, ,YO 

(."[I71 = ?[ill ( 3 )  
where the function ~ ( r )  is called the wavelet and integer J stands 
for the resolution level. In this multi-resolution representation of 
signal F(x) ,  the original nodal basis $(.x - n)  is transferred to the 
wider bases ($(2-'x - n), q ~ ( 2 - ~ x  - n)(k=,  ,,}. The nodal variables in 
v,[n] are transformed to the variables in {vAn], w,[n],,-, ,)}. This 
transform of nodal variables is called the discrete wavelet trans- 
form. The discrete wavelet transform can be easily implemented 
by a QMF structure [SI as, for m = 0, 1 .  2, ..., 

~.,,,+~[n] =E ho[k - ?n]v,,,[k] 
k 

ll'",+,[Il] 27r]v,[k] 141 
k 

+ clL',n+L[k]gl[n - 2 C ]  (51 
A 

The analysis filters h,[n], h,[n] and the synthesis filters g&], n,[n] 
are directly determined by the functions $(x) and $(.Y). In matrix 
form, we can write v = RZ The vector I contains the transferred 
nodal variables {rAn]. w ~ ~ [ n ] , ~ = ,  ,,). The matrix R is the QMF 
matrix [6] which describes the synthesis filtering in the QMF struc- 
ture. With this transform. the quadratic energy function in eqn. I 
can be rewritten as l/2(Rq7A(R9 - (R9G5 + e: this new expres- 
sion results in a new equation system dC = 6 where A = R7AR 
and &RV. In this new equation system, the number of variables is 
the same as that of the untransformed equation system. However, 
the convergence condition of the new stiffness matrix d is much 
better than that of the original matrix A .  The reason for this 
improvement is the transfer of the nodal basis. The basis transfer 
replaces the original basis functions by the new basis functions 
with larger region of support. This strengthens the connection 
among the interpolation nodes and expedites the convergence rate 
in the iterative computation [6]. Hence, wavelet transformation 
provides an effective preconditioning of the interpolation problem. 

Fast interpolation algorithm: With the wavelet transform as a pre- 
conditioner to the mterpolation problem. a fast interpolation algo- 
rithm can then be designed. For a given interpolation problem, we 
first derive the equation system A v  = 6. We then choose a suitable 

resolution level J and derive the QMF matrix R to transfer the 
equation system into dC = I .  The transferred equation system 
can be easily solved by the general iterative solving method. By 
transferring the solved i back to Y by v = R F , the solution can 
then be obtained. In this algorithm, the transfer of nodal variables 
is only applied before and after the iterative computation. The 
iterative solving method is independent of the algorithm. Any iter- 
ative solving method can be applied. The various choices of the 
scaling function $(x) and wavelet q ~ ( x )  also provide much flexibil- 
ity in the design of QMF matrix R. 

a b 

C d m  
Fig. 2 Intt~rpolutron of 32 x 32 surf& e 

U Constraints of interpolated surface 
h Result after SO iterations using resolution-level J = 0 
c Result after SO iterations using resolution level J = I 
d Result after SO iterations using resolution level J = 2 

Experiment' An experiment of the proposed algorithm is made for 
a 32 x 32 interpolation problem illustrated m Fig. 2a. In this prob- 
lem, the constraints density is only 3 52% (i.e. there are 36 con- 
strained nodes among 1024 unknown nodes). The goal is to find 
the smoothest surface that satisfies the constraints in those con- 
strained nodes. This results a 1024 x 1024 linear equation system. 

Fig. 1 U'avelet VD(x). scaling function $(XI. and impulse re.yonses of 
msuciuted Q M F  fillers 

A,(:) = l/4(z ' - 2 + :) 

The functions $(.Y), q(x )  and the associated QMF filters used in 
this experiment are shown in Fig. 1. The Gauss-Seidel method is 
applied for the iterative computation. The convergence curves of 
the objective energy function with the proposed algorithm using 
different resolution levels J are plotted in Fig. 3. The top-most 
curve ( J  = 0) denotes the convergence status using direct iterative 
computation without preconditioning. It can be found that the 
convergence rate is significantly improved when the precondition- 
ing is applied ( J  = I .  2). The corresponding interpolated surfaces 
with different resolution levels after 50 iterations are shown in Fig. 
26 - d. It can be seen that the performance is improved when the 
resolution level J is increased. 

Conclusion. A fast algorithm has been derived for scattering data 
interpolation. Experimental results show that this algorithm yields 
significant improvement in computation speed. The proposed 
algorithm is easy to code and has high flexibility in implementa- 
tion. The general concept of the algorithm also makes it applicable 
to various regularisation problems. 
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Bandwidth of crossbars for general reference 
model 

H.-K. Chang and S.-M. Yuan 

Indexing term: Multiprocessor interconnection networks 

The bandwidth of crossbar multiprocessor systems IS analysed for 
the general memory reference model. Previous solutions are 
restricted to several specified models: uniform memory reference, 
favorite memory reference and hot-spot; the presented analysis 
includes these as special cases. 

Introduction: In a tightly coupled multiprocessor system, proces- 
sors are connected via an interconnection network (IN) to mem- 
ory modules so that the memory modules are shared by all 
processors. The readers are referred to [5] for a survey of INS. 

Fig. 1 shows an M x N crossbar connecting M processors and 
N memory modules. A crossbar provides the capacity for all mem- 
ory modules to be accessed simultaneously provided the requested 
memory modules are distinct. A memory conflict occurs when two 
or more processors attempt to access the same memory module. 
The bandwidth, which is defined as the expected number of 
requests accepted per unit time [5], is an important metric with 
which to estimate the performance of an IN. 

Analyses of the bandwidth of crossbars for three specified 
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reterence models have appeared in the literature. They are the 
uniform memory reference [6], favourite memory reference [3] and 
hot-spot [1,2,8]. In [4], a survey was reported. In this Letter we 
analyse the bandwidth of crossbars for the general reference 
model. 

Assumptions and notation: The analysis of this Letter is based on 
the following assumptions: 

(i) The crossbar operates in a synchronous mode, i.e. a process 
can generate a request, if any, at the beginning of a memory cycle. 

(ii) Requests from different processors are mutually independent. 

(iii) When two or more requests are intended for the same memory 
modules, only one of the requests is accepted, and the others are 
rejected. 

(iv) The requests which are rejected are discarded, i.e. the requests 
generated at successive cycles are independent. 

Note that this Letter does not make any assumption of the 
memory reference model. Let P ,  and M, denote processor i and 
memory module j, respectively, 1 s i s M ,  1 s j s N .  The memory 
reference model is defined by a matrix Q = {qq}M.N, where qy is the 
probability that a request from P, is intended for M, and 

N 

cq11 = 
J=1 

The probability that P, makes a request at the beginning of each 
memory cycle is r,, 0 s r, s 1. Thus the probability that P, makes a 
request to M, at the beginning of any memory cycle is ‘A,,. 

Bandwidth analysis: For 1 5 j r N ,  let X, be a binary random vari- 
able such that X, = 1 denotes the event that M, receives one or 
more requests from the processors; then X, = 0 denotes the event 
that no request from any processor is sent to M,. 

The expected value of X,, E(X, } ,  is 

E{X,)  = Pr{X, = 1) 
= 1 - Pr{X, = 0) 

M 

= 1 - nc1 - r&,) (1) 
,=I 

The bandwidth of the crossbar is the expected value of X, + ._.  
+ X,. According to assumption (ii). X,, ..., X, are independent 
random variables. Thus, the bandwidth of the crossbar, B W ,  is 

BW = E { @} 

Comparisons: Eqn. 2 is compared with previous works including: 
the uniform reference model [6], favourite memory [3], and hot 
memory [2.8]. 
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