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Summary. Many biomedical studies involve the analysis of multiple events. The dependence
between the times to these end points is often of scientific interest. We investigate a situation
when one end point is subject to censoring by the other. The model assumptions of Day and
co-workers and Fine and co-workers are extended to more general structures where the level
of association may vary with time. Two types of estimating function are proposed. Asymptotic
properties of the proposed estimators are derived. Their finite sample performance is studied
via simulations. The inference procedures are applied to two real data sets for illustration.
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1. Introduction

There has been substantial scientific interest in studying the dependence between two failure
time variables. Many statistical methods have been proposed under the context of bivariate
survival analysis. In this paper, we focus on a special situation when one variable is subject
to censoring by the other, something that often occurs in data with multiple end points. Let
.T1; T2/ be two failure time variables and suppose that their relationship in the region of T1 � T2
is of main interest. For example, in a study of bone marrow transplants, T1 denotes the time
to relapse of leukaemia and T2 is the time to death. The relationship between T1 and T2 has
important biological meaning. Consider another example in research into acquired immune
deficiency syndrome (AIDS), where T1 is defined as the time when CD4 cell counts decrease to
some critical level and T2 as the time to occurrence of AIDS. For predicting AIDS, only the
joint relationship before the occurrence of AIDS is relevant. High correlation between T1 and
T2 given T1 � T2 implies good predictability of CD4 cell counts as a marker for AIDS. In both
cases, T1 is subject to censoring by T2. Such a special dependent censoring structure complicates
statistical inference.
Let C be an external censoring variable due to withdrawal of patients or the end of study. We

observe the variablesX = T1 ∧ T2 ∧C, δ1 = I{T1 � .T2 ∧C/}, Y = T2 ∧C and δ2 = I.T2 � C/,
where ‘∧’ denotes the minimum and I.·/ is the indicator function. T1 ∧ T2 is also subject to
censoring by C with the indicator, δ0 = I.T1 ∧ T2 � C/ = δ1 + δ2 − δ1δ2. Let {.T1i; T2i; Ci/
.i = 1; : : :; n/} be independent and identically distributed (IID) replications of .T1; T2;C/. The
observed data are IID replications of .X;Y; δ1; δ2; δ0/:
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{.Xi; Yi; δ1i; δ2i; δ0i/ .i = 1; : : :; n/}: .1/

The data structure in expression (1) is called ‘semi-competing-risks data’ by Fine et al. (2001)
because T2 is a competing risk for T1 but not vice versa. Let Fk.t/ = pr.Tk � t/ and G.t/ =
pr.C � t/ be the marginal survival functions of Tk .k = 1; 2/ and C respectively. Also let
F.s; t/ = pr.T1 � s; T2 � t/ be the joint survival function of .T1; T2/ and Fb.t/ = Pr.T1∧T2 � t/

be the survival function of T1 ∧ T2. It is important to mention that F1.·/ is not identifiable be-
cause T1 is not observable in T1 > T2. Given data (1), the Kaplan–Meier method can be applied
to estimate Fb.t/, F2.t/ andG.t/ nonparametrically.G.t/ can be estimated by the Kaplan–Meier
estimator either on the basis of {.Xi;1 − δ0i/ .i = 1; : : :; n/} or {.Yi; 1 − δ2i/ .i = 1; : : :; n/}.
For s � t, F.s; t/ can be estimated by

F̂ .s; t/ =
n∑
i=1

I.Xi � s; Yi � t/=n Ĝ.t/;

where Ĝ.t/ is an estimator of G.t/.
The major goal of this paper is to study the dependence relationship between .T1; T2/ in the

upper wedge, P = {.s; t/ : 0 < s � t < ∞}. In principle, we can examine whether
F.s; t/=F1.s/ F2.t/ = 1

to assess the existence of local dependence at bivariate time .s; t/. However F1.s/ is not identifi-
able nonparametrically, which implies that such an assessment requires extra assumptions. Two
other references address the same problem as the present paper. Day et al. (1997) considered
the predictive hazard ratio function

θ.s; t/ = λ2.t|T1 = s/

λ2.t|T1 > s/
.s; t/ ∈ P; .2/

where λ2.t|A/ is the hazard function of T2 given that event A occurs. Assuming that θ.s; t/ = α
for .s; t/ ∈ P , Day et al. (1997) proposed an estimating function for α based on data (1). It can
be shown that, if .T1; T2/ follow the Clayton model with

F.s; t/ = {F1.s/1−α + F2.t/
1−α}1=.1−α/ .s; t/ ∈ P; .3/

then θ.s; t/ = α for .s; t/ ∈ P . The converse relationship is also true for Clayton’s model de-
fined on [0;∞/2. Alternatively, Fine et al. (2001) defined the concordance indicator, ∆ij =
I{.T1i − T1j/.T2i − T2j/ > 0} .i 	= j/, where .T1i; T2i/ and .T1j; T2j/ are IID replications of
.T1; T2/. They showed that, if model (3) is true,

E.∆ij/ = E.∆ij|X̃ij < Ỹij/ = α

1+ α
; .4/

where X̃ij = T1i ∧ T1j and Ỹij = T2i ∧ T2j. Under model (4) Fine et al. (2001) proposed an
estimating function for α in the form of a U-statistic.
The Claytonmodel is a special case of a general copula model with the joint survival function

F.s; t/ = pr.T1 > s; T2 > t/ = Cα{F1.s/; F2.t/}; .5/

where Cα.u; v/ : [0;1]2 → [0;1]. Copula models have the desirable feature that the dependence
structure is modelled separately from the marginal distributions. The parameter α measures
global association and is related to Kendall’s τ via

τ = 4
∫ 1

0

∫ 1

0
Cα.u; v/Cα.du;dv/− 1; .6/
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where τ denotes Kendall’s τ defined as

τ = Pr{.T1i − T1j/.T2i − T2j/ > 0} − Pr{.T1i − T1j/.T2i − T2j/ < 0}: .7/

The Archimedean copula (AC) family is a useful subclass of copula models with

F.s; t/ = φ−1
α [φα{F1.s/} + φα{F2.t/}]; .8/

where φ.·/ is a decreasing convex function defined on .0; 1] satisfying φ.1/ = 0. The bivariate
frailty family discussed in Oakes (1989) belongs to the AC family such that φ−1.·/ is the Laplace
transform of the underlying frailty distribution.
Let us consider two general dependence structures defined on the upper wedge P .
(a) Model 1: θ.s; t/ in equation (2) can be further parameterized as θα;η.s; t/ for .s; t/ ∈ P ,

whereα is a one-dimensional parameter of interest and η denotes the nuisance parameter.
(b) Model 2: .T1; T2/ jointly follow a copula model in equation (5) for .s; t/ ∈ P .

Under special cases, these two assumptions describe dual relationships. For example Oakes
(1989) showed that, for an (unrestricted)ACmodel (8), θα;η.s; t/ = θ̃α{F.s; t/}, where η = F.s; t/

and

θ̃α.v/ = −v@
2φα.v/=@v

2

@φα.v/=@v
= −vφ

′′
α.v/

φ′
α.v/

: .9/

However, the relationship between the two models becomes less clear when they are imposed
only for the upper wedge.
The underlying model assumption affects subsequent inference procedures. Two types of es-

timating equation based on model 1 are presented in Section 2. Inference procedures based on
model 2 are discussed in Section 3. In Section 4.1 we examine the finite sample performance
of the estimators via simulations. The methods proposed are applied to two real examples in
Section 4.2 and some concluding remarks are given in Section 5.

2. Inference procedures based on model 1

The methods presented in this section generalize the work by Day et al. (1997).

2.1. Derivation from the log-rank statistic
Given observed bivariate failure times .s; t/, we can construct the 2 × 2 table (Table 1) with
margins ‘T1 = s’ versus ‘T1 > s’ and ‘T2 = t’ versus ‘T2 > t’. The notation in each cell denotes
the observed cell count, where

N11.ds;dt/ =
n∑
i=1

I.Xi = s; δ1i = 1; Yi = t; δ2i = 1/;

Table 1. 2 � 2 table

T2 = t T2 > t

T1 = s N11.ds; dt/ N10.ds; t/

T1 > s

N01.s; dt/ R.s; t/
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N10.ds; t/ =
n∑
i=1

I.Xi = s; δ1i = 1; Yi � t/;

N01.s;dt/ =
n∑
i=1

I.Xi � s; Yi = t; δ2i = 1/;

R.s; t/ =
n∑
i=1

I.Xi � s; Yi � t/:

Conditioning on the marginal counts, N11.ds;dt/ follows a hypergeometric distribution with
mean

Ẽ11.ds;dt;α; η/ = θα;η.s; t/N10.ds; t/N01.s;dt/
θα;η.s; t/ N10.ds; t/+ R.s; t/−N10.ds; t/

: .10/

Plugging in η̂, an estimator of η, and summing over the grid formed by the observed failure
points in P , we obtain the estimating function

L.α; η̂/ = n−1
∫ ∫

.s;t/∈P
w.s; t/{N11.ds;dt/− Ẽ11.ds;dt;α; η̂/}; .11/

where w.s; t/ is a weight function. A solution to L.α; η̂/ = 0 yields an estimator of α, denoted
as α̂. Numerically, α̂ can be obtained by iterating the equation

α̂.k+1/ = α̂.k/ −
{
@L.α; η̂/

@α

∣∣∣∣
α̂.k/

}−1
L.α̂.k/; η̂/;

where α̂.k/ is the estimated value of α at the kth iteration and α̂.0/ is the initial value. An implicit
assumption of this procedure is that η can be directly estimated by η̂ or indirectly by η̂.α/ given
the value of α. When θ.s; t/ = α and L.α; η̂/ = 0, L.α/ reduces to the estimating function
that was proposed by Day et al. (1997). When T1 and T2 are independent in the upper wedge,
α = 1 and thus L.1/ can be used for testing the hypothesis of independence. The test procedure
proposed by Hsu and Prentice (1996) used a similar idea under independent right censoring.

2.2. Derivation from Doob–Meyer decomposition
The Doob–Meyer decomposition of a counting process can be used to construct estimating
functions (Fleming and Harrington (1991), section 2.2). Consider the filtration

FÅs;t = σ{I.Xi � u; δ1i = 1/; I.Yi � v; δ2i = 1/; u � s; v � t; i = 1; 2; : : :; n}; .12/

which describes the history of the non-terminal process up to time s and that of the terminal
event process up to time t. For a fixed value s, denoteFÅs = {FÅs;t : t ∈ .s;∞/}. The compensator
of I.Yi � t; δ2i = 1/ with respect to FÅs can be derived as

vi.t; s/ =
∫ t

s

E{dI.Yi � u; δ2i = 1/|Fs;u−}; .13/

where

dvi.t; s/ = I.Yi � t/

[
{1− I.Xi � s; δ1i = 1/}λ2.t|T1 > s/

+
∫ s

0
λ2.u|T1 = w/dI.Xi � w; δ1i = 1/

]
:
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It follows that

E{dI.Xi = s; δ1i = 1; Yi � t; δ2i = 1/|Fs;u−} = I.Xi = s; δ1i = 1/I.Yi � t/Λ2.dt|T1 = s/

= I.Xi = s; δ1i = 1; Yi � t/ θα0;η0.s; t/Λ2.dt|T1 > s/;

where α0 and η0 are the true values of α and η respectively. Combining all the observed failure
points in P , we obtain the estimating function
n∑
i=1

∫ ∫
.s;t/∈P

w.s; t/ I.Xi = s; δ1i = 1/{dI.Yi � t; δ2i = 1/− I.Yi � t/θα;η.s; t/Λ2.dt|T1 > s/}

=
∫ ∫

.s;t/∈P
w.s; t/ {N11.ds;dt/− θα;η.s; t/N10.ds; t/Λ2.dt|T1 > s/} ;

where the weight function w.s; t/ is predictable with respect to FÅs;t .
Note that Λ2.t|T1 > s/ is also a nuisance parameter which can be estimated by

Λ̂2.t|T1 > s;α; η/ =
∫
v�t

N01.s;dv/
θα;η.s; v/ N10.ds; v/+ R.s; v/−N10.ds; v/

; .14/

or by

Λ̃2.t|T1 > s/ =
∫
v�t

N01.s+;dv/
R.s+; v/ : .15/

Using the plug-in approach, we can construct the estimating functions

L1.α; η̂/ = n−1
∫
0<s<∞

∫
s�t

w.s; t/{N11.ds;dt/− θα;η̂.s; t/N10.ds; t/ Λ̂2.dt|T1 > s;α; η̂/};
.16/

and

L2.α; η̂/ = n−1
∫
0<s<∞

∫
s�t

w.s; t/{N11.ds;dt/− θα;η̂.s; t/N10.ds; t/ Λ̃2.dt|T1 > s/}: .17/

α can be estimated by α̂j, the solution to Lj.α; η̂/ = 0 .j = 1; 2/. It is easy to see that L1.α; η̂/
equals L.α; η̂/ given in equation (11).

Λ̂2.t|T1 > s;α; η/ in equation (14) seems less intuitive andmore complicated than Λ̃2.t|T1 > s/

in equation (15). In Appendix A, we show that these two estimators are identical with prob-
ability 1 as n → ∞. In Appendix B, it is proved that L1.α; η0/ yields an unbiased estimating
equation whereas L2.α; η0/ does not. However, when η0 needs to be estimated, L1.α; η̂/ does
not have an obvious advantage. The finite sample performance of the estimators under different
situations will be compared in Section 4.

2.3. Large sample properties
To simplify the analysis, we assume that η̂ is independent of α. If η̂ = η̂.α/, Lj{α; η̂.α/} = 0 is
still a valid estimating equation if it produces a unique root. The following regularity conditions
will be used for establishing the asymptotic results.

(a) Condition 1:w.s; t/ is predictable with respect toFÅs;t , bounded and of bounded variation;
θα;η.s; t/ is a monotone function of α and twice differentiable with respect to α with
bounded derivatives; θα;η.s; t/ is a continuous function of η and η̂ →p η0.

(b) Condition 2: θα;η.s; t/ is twice differentiable with respect to η and the derivatives are
bounded for all .s; t/ ∈ P and n1=2.η̂ − η0/ is asymptotically normal. Let w̃.s; t/ be the
limit of w.s; t/. Assume that |w.s; t/− w̃.s; t/| = Op.n

−1=2/.
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Theorem 1. Under condition 1, α̂j → α0 .j = 1;2/.

Theorem 2. Under conditions 1 and 2, n1=2.α̂j − α0/ .j = 1; 2/ converge to mean 0 normal
random variables.

The proofs of theorem 1 and theorem 2 are given in Appendices B and C respectively. On the
basis of the expression

n1=2.α̂j − α0/ = n−1=2 n∑
i=1

ξi.α0; η0/+ op.1/;

where ξi.α0; η0/ .i = 1; : : :; n/ are IID mean 0 random variables, we can estimate var.α̂j/ by
Σn
i=1 ξ

2
i .α̂; η̂/=n. However, an analytical derivation of ξi.α0; η0/ is tedious and the expression

can be very complicated. Therefore we suggest using resampling methods to obtain a variance
estimator. Here we recommend the jackknife approach since in our simulation analysis it pro-
duced more reliable confidence intervals than the bootstrap method. Specifically the jackknife
estimator of var.α̂1/ is given by

n− 1
n

n∑
i=1
.α̂

.i/
1 − α̂

.·/
1 /

2

where α̂.i/1 is the delete one estimator of α̂1 by leaving the ith observation out and

α̂
.·/
1 =

n∑
i=1

α̂
.i/
1 =n:

3. Inference procedures based on model 2

Under model 2, the joint distribution of .T1; T2/ has the form (5) in the upper wedge. If the
model is an AC model in equation (8) with θ.s; t/ = θ̃α{F.s; t/}, the methods discussed in Sec-
tion 2 can be applied directly. For a copula model that is not in the AC family, θα;η.s; t/ =
Aα{F1.s;α/; F2.t/}, where F1.s;α/ = gα{Fb.s/; F2.s/}, gα.·; ·/ satisfies the equation

w = Cα{gα.w; v/; v} .0 � w � v � 1/ .18/

and

Aα.u; v/ = Cα.u; v/C
11
α .u; v/

C10α .u; v/C
01
α .u; v/

; .19/

with

C11α .u; v/ = @2Cα.u; v/=@u@v;

C10α .u; v/ = −@Cα.u; v/=@u;

C01α .u; v/ = −@Cα.u; v/=@v:
In this case, η = {Fb.s/; F2.t/} .s � t/ which can be estimated by Kaplan–Meier estimators.
Althoughwe can estimate θα;η.s; t/ byAα[gα{F̂b.s/; F̂2.s/}; F̂2.t/], the resulting estimating func-
tionmaybe too complicated such that conditions 1 and 2 are not satisfied. SeeTable 2 for selected
examples. Therefore we explore other alternatives.
We first examine a ‘pseudolikelihood’ approach for copula models defined on [0;∞/2. This

approachhasbeenusedbyGenest et al. (1995), Shih andLouis (1995) andWangandDing (1999)
on the basis of complete data, right-censored data and bivariate current status data respectively.
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Table 2. Useful expressions for selected copula models†

Clayton’s model Frank’s model Positive stable frailty model

Cα.u; v/ .u1−α + v1−α − 1/1=.1−α/ logα{1+ .αu − 1/.αv − 1/=.α− 1/} exp.−[{− log.u/}1=α
+ {− log.v/}1=α]α/

φα.v/ .v1−α − 1/=.α− 1/ log{.1− α/=.1− αv/} {− log.v/}1=α
θ̃α.v/ α −v log{α=.1− αv/} θ̃α = .1− α/=[α{− log.v/}]+ 1
gα.w; v/ .w1−α − v1−α + 1/1=.1−α/ logα{1+ .α− 1/.αw − 1/=.αv − 1/} exp.−[{− log.w/}1=α

− {− log.v/}1=α]α/
Aα.u; v/ α log{1+Qα.u; v/}=Qα.u; v/ 1− .α− 1/=α[{− log.u/}1=α

+ {− log.v/}1=α]α
Range of α α > 1 α > 0 0 < α < 1

†Cα.u; v/, φα.v/, θ̃α.v/, gα.w; v/ and Aα.u; v/ are defined in equations (5), (8), (9), (18) and (19) respectively.

The main idea is to use nonparametric estimators of U = F1.T1/ and V = F2.T2/ as ‘pseudo-
observations’ in the likelihood equation derived on the basis of pr.U � u;V � v/ = Cα.u; v/.
Given data (1), the log-likelihood function can be written as

l.α; F1; F2/ =
n∑
i=1

δ1iδ2i.log[C
11
α {F1.xi/; F2.yi/}]+ log{f1.xi/} + log{f2.yi/}/

+
n∑
i=1

δ1i.1− δ2i/.log[C
10
α {F1.xi/; F2.yi/}]+ log{f1.xi/}/

+
n∑
i=1
.1− δ1i/δ2i.log[C

01
α {F1.xi/; F2.yi/}]+ log{f2.xi/}/

+
n∑
i=1
.1− δ1i/.1− δ2i/ log[Cα{F1.xi/; F2.yi/}];

where fj.·/ is the density function of Tj .j = 1;2/. Recall that nonparametric estimators of
F1.·/ and f1.·/ do not exist. One possibility is to apply the idea of profile likelihood such that
F1.s/ and f1.s/ are replaced by their expressions under the model assumption. Specifically
F1.s;α; η/ = gα{Fb.s/; F2.s/} and f1.s;α; η/ = −@F1.s/=@s, where η = .Fb.s/; F2.s//. How-
ever, the resulting equation becomes a very complicated function of α and the estimation of
f1.s;α; η/ involves difficult smoothing problems.
Let us consider applying theDoob–Meyer decomposition undermodel 2.Define the filtration

Ft = σ{I.Xi � t; δ1i = 1; δ2i = 0/; I.Xi � t; δ1i = 0; δ2i = 1/; I.Xi � t; δ1i = 1; δ2i = 1/;

I.Yi � t; δ1i = 1; δ2i = 1/; i = 1; : : :; n};
which accumulates the information of the end points up to time t. Let F = {Ft : t ∈ .0;∞/}.
We can derive the compensators

E{dI.Xi � s; δ1i = 1/|Fs−} = I.Xi � s/Λ10.ds;α; η/
and

E{I.Xi � t; δ1i = 0; δ2i = 1/|Fs−} = I.Xi � s/Λ01.ds;α; η/;
where



264 W. Wang

Λ10.ds;α; η/ = pr.T1 ∈ [s; s+ ds/|T1 � s; T2 � s/

= C10α {F1.s;α; η/; F2.s/}{−F1.ds;α; η/}
Fb.s/

;

Λ01.ds;α; η/ = pr.T2 ∈ [s; s+ ds/|T1 � s; T2 � s/

= C01α {F1.s;α; η/; F2.s/}{−F2.ds/}
Fb.s/

:

The copula assumption without specifying the marginal distributions does not provide enough
information to derive the compensator of I.Yi � t; δ1i = 1; δ2i = 1/ or that of I.Xi � t; δ1i =
1; δ2i = 1/. Two estimating functions of α can be constructed:

S10.α; η̂/ = n−1
∫

w10.s/{dÑ10.s/− R̃.s/Λ10.ds;α; η̂/}; .20/

S01.α; η̂/ = n−1
∫

w01.s/{dÑ01.s/− R̃.s/Λ01.ds;α; η̂/}; .21/

where η̂ = {F̂b.s/; F̂2.t/},
Ñ10.t/ =

n∑
i=1

I.Xi � t; δ1i = 1; δ2i = 0/;

Ñ01.t/ =
n∑
i=1

I.Xi � t; δ1i = 0; δ2i = 1/;

R̃.t/ =
n∑
i=1

I.Xi � t/

andw10.s/ andw01.s/ areweight functionswhich are predictablewith respect toFs. The solution
to SÅ.α/ = 0, denoted by α̂Å, can be used to estimate α for Å = .10/ or Å = .01/. Equations
(20) and (21) can be re-expressed as

SÅ.α; η̂/ =
∫ t

0
w̃Å.s/{Λ̂npÅ .ds/− Λ̂Å.ds;α; η̂/} .Å = 10; 01/;

where w̃Å.s/ = R̃.s/WÅ.s/=n and Λ̂npÅ .t/ = ∫ t
0 ÑÅ.ds/=R̃.s/ for Å = .10/ or Å = .01/. Therefore

an explanation of α̂Å is that it minimizes the difference between the nonparametric estimator
Λ̂npÅ .t/ and its model-restricted estimator Λ̂Å.t;α; η̂/ after appropriate weight adjustment. It
should be mentioned that S10.α; η̂/ involves F̂1.ds;α; η̂/, which may produce negative mass
when F̂1.ds;α; η̂/ is not decreasing. Therefore we recommend S01.α; η̂/ for copula models that
are not in the AC family.
The asymptotic properties of α̂01 rely on the following regularity conditions. To simplify the

notation, let ψα.w; v/ = C01α {gα.w; v/; v}=w and ψ′
α.w; v/ = @ψα.w; v/=@α.

(a) Condition 3: ψα.w; v/ is bounded, twice differentiable with respect to both w and v with
bounded derivatives.

(b) Condition 4: w10.t/ is predictable with respect to Ft and is of bounded variation.
n1=2n{w10.t/− w̄10.t/} converges to a mean 0 Gaussian process, where w̄10.t/ is the limit
of w10.t/ as n → ∞. ψα.w; v/ is a monotone function of α and is twice differentiable with
respect to α with bounded derivatives. ψ′

α.w; v/ is twice differentiable with respect to w
and v with bounded derivatives.
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Uniform and strong consistency of Λ01.t;α0; η̂/ and its weak convergence property can be
established on the basis of condition 3. Consistency and asymptotic normality of α̂01 can be
proved when both condition 3 and condition 4 are valid. The monotonic property of ψα.w; v/
in α is just a sufficient condition. Consistency holds as long as S01.α; η̂/ = 0 produces a unique
root. The proofs use standard techniques and hence are omitted. The asymptotic variance of
α̂01 can be estimated by using the jackknife method.

4. Numerical analysis

4.1. Simulation studies
In this section, we evaluate the finite sample performance of the estimators proposed. The
failure times .T1; T2/ were generated from the Clayton family (Clayton, 1978) and the Frank
family, both of which satisfy model 1 and model 2. We used the algorithm in Prentice and Cai
(1992) for the Clayton family and that in Genest (1987) for the Frank family. The independent
censoring variable C was generated from a uniform distribution making pr.T1 � T2/ ≈ 0:5,
pr.δ1 = 0/ ≈ 0:55 and pr.δ2 = 0/ ≈ 0:1. Two sample sizes with n = 150 and n = 250 were
chosen. For each estimator, the sample mean and standard deviation of the copula association
parameter are reported on the basis of 500 replications. In each case, an estimator of Kendall’s
τ was derived on the basis of equation (6). Note that τ does not have its original interpretation
stated in equation (7) if .T1; T2/ in the lower wedge follow a different distribution. Nevertheless
its value still reveals the strength of association in the upper wedge. We estimated G.t/ by the
Kaplan–Meier method based on {.Yi;1− δ2i/ .i = 1; : : :; n/}.
Table 3 summarizes the results for the Clayton model with θ.s; t/ = α. Three estimators of

α with w.s; t/ = w01.t/ = 1 were evaluated. Let α̂1, α̂2 and α̂01 be the estimators solving equa-
tions (16), (17) and (21) respectively. α̂1 is actually the estimator proposed by Day et al. (1997).

Table 3. Summary statistics for a simulation based on 500
runs for the Clayton model†

n Results for the following values of τ :

τ = 0.3 τ = 0.5 τ = 0.7

150 α̂01 7.03 (2.79) 11.67 (4.52) 39.91 (12.38)
α̂1 2.09 (2.60) 1.49 (4.09) 14.58 (8.84)
α̂2 4.66 (2.63) 4.83 (4.14) 19.72 (9.07)
τ̂01 10.75 (6.43) 8.46 (5.27) 8.15 (5.17)
τ̂1 −0.54 (6.28) −3.30 (5.12) 1.57 (3.80)
τ̂2 5.65 (6.22) 0.80 (5.11) 3.59 (3.86)

250 α̂01 5.10 (2.20) 9.98 (3.45) 24.36 (7.25)
α̂1 1.69 (2.11) 3.07 (3.27) 7.46 (6.25)
α̂2 3.26 (2.13) 4.95 (3.32) 9.97 (6.32)
τ̂01 8.45 (5.11) 8.78 (4.05) 7.40 (3.10)
τ̂1 0.44 (5.04) 0.57 (4.04) 0.79 (2.76)
τ̂2 4.21 (5.04) 2.80 (4.07) 1.86 (2.76)

†In each cell of the first three rows, the first number is the bias
(× 102) and the number in parentheses is the standard deviation
(× 10) of the estimator ofα. In each cell of the last three rows, the
first number is the bias (× 103) and the number in parentheses
(× 102) is the standard deviation of the estimator of τ .
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Kendall’s τ is estimated by using τ = .α−1/=.α+1/. The resulting estimators of τ are denoted
τ̂1, τ̂2 and τ̂01 accordingly. Table 2 shows that α̂1 has the best performance and α̂01 has the worst
performance in terms of the bias and standard deviation in both sample sizes. The medians
of the three estimators also reflected the same pattern as the means so this information is not
presented. The result that α̂1, on average, is more accurate than α̂2 is supported by the fact that
L1.α0/ is unbiased whereas L2.α0/ is not. An explanation why α̂01 is inferior in all the cases
may be related to the fact that it utilizes only partial information (i.e. N01.t/) in the whole data
set to estimate the association parameter. Given that τ̂ = h.α̂/, the delta method implies that
σ2τ̂ ≈ h′.α̂/2σ2α̂. For Clayton’s model with α > 1, h′.α/ = 2=.α+ 1/2 is a decreasing function of
α. This explains why, as τ and α increase, σ2τ̂ decreases whereas σ

2
α̂ increases.

Table 4 summarizes the results for the Frank model. We reparameterized the model and
directly estimated γ = − log.α/. Kendall’s τ was estimated using τ = 1 + 4{D1.γ/ − 1}=γ,
where

D1.γ/ =
∫ γ

0
t=γ{exp.t/− 1} dt:

The previous notation was modified to denote the estimators of γ. In computing γ̂1 and γ̂2, we
used

θ̂γ.s; t/ = γ F̂ .s; t/=[1− exp{−γ F̂ .s; t/}]
where

F̂ .s; t/ =
n∑
i=1

I.Xi � s; Yi � t/=nĜ.t/

and Ĝ.t/ is the Kaplan–Meier estimator of G.t/ based on {.Yi; 1− δ2i/.i = 1; : : :; n/}. In most
cases, γ̂1 on average is still the best estimator among its competitors. Somewhat surprisingly,

Table 4. Summary statistics for a simulation based on 500 runs
for the Frank model†

n Results for the following values of τ :

τ = 0.3 τ = 0.5 τ = 0.7

150 γ̂01 1.44 (9.47) 3.92 (11.78) 13.31 (21.11)
γ̂1 −0.66 (9.53) −0.77 (10.86) −1.60 (16.75)
γ̂2 1.91 (9.59) 1.86 (11.13) 1.70 (17.14)
τ̂01 7.15 (8.19) 14.40 (6.03) 21.06 (3.88)
τ̂1 −11.19 (8.50) −9.96 (6.09) −7.88 (3.80)
τ̂2 11.1 (8.27) 4.27 (5.89) −0.65 (3.70)

250 γ̂01 1.40 (7.22) 3.18 (9.17) 8.83 (14.85)
γ̂1 0.20 (7.15) 0.47 (8.70) 0.64 (13.03)
γ̂2 1.90 (7.16) 2.24 (8.78) 2.96 (13.16)
τ̂01 8.98 (6.22) 13.01 (4.79) 15.12 (2.92)
τ̂1 −1.41 (6.30) −1.11 (4.73) −1.13 (2.84)
τ̂2 13.30 (6.15) 8.35 (4.62) 3.77 (2.79)

†In each cell of the first three rows, the first number is the bias (×10)
and the number in parentheses is the standard deviation (×10) of
the estimator of γ. In each cell of the last three rows, the first num-
ber is the bias (× 103) and the number in parentheses (×102) is the
standard deviation of the estimator of τ .
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γ̂2 still has much larger bias and is more variable than γ̂1 although L1.α0; γ̂/ is no longer an
unbiased estimating function. However, since τ is not a linear function of γ, we find that, when
n = 150, τ̂2 outperforms τ̂1.
For variance estimation, we selected some cases to compare the bootstrap method and the

jackknife method. The jackknife method produced quite accurate coverage probabilities but the
bootstrap estimators in all cases substantially overestimated the true variance. The robustness
of the proposed estimators under model misspecification was also examined. In the case when
the true model was Clayton’s (τ = 0:5 and n = 150) but was fitted by Frank’s, the mean (and
standard deviation in parentheses) of τ̂01, τ̂1 and τ̂2 are 0.517 (0.091), 0.471 (0.095) and 0.489
(0.089) respectively. In the case when the true model was Frank’s (τ = 0:3 and n = 150) but was
fitted by Clayton’s, the mean (and standard deviation) of τ̂01, τ̂1 and τ̂2 are 0.375 (0.092), 0.213
(0.065) and 0.216 (0.061) respectively. These results imply that model misspecification inflates
the bias and variance of the estimators proposed. The effect of using different weight functions
was also evaluated. We chose three weight functions:

w1.s; t/ = 1;

w2.s; t/ =
n∑
i=1

I.Xi � s; Yi � t/=n;

w3.s; t/ = n
/ n∑

i=1
I.Xi � s; Yi � t/:

w3.s; t/ puts more weight in the tail region with less data andw2.s; t/ does the opposite. In all the
cases w2.s; t/ performed poorly. For Clayton’s model, the unweighted estimator tends to per-
form better than the weighted versions. For Frank’s model, using w2.s; t/ sometimes produces
a better estimator but the improvement is slight. Since using a poor weight function may have
a very negative effect, we suggest using w1.s; t/ for conservativeness. Note that Greenwood and
Wefelmeyer (1991) derived asymptotic optimality criteria for martingale estimating equations.
However, when nuisance parameters are involved, the problem of finding the optimal weight
becomes much more difficult.

4.2. Data analysis
Two data sets were analysed by using themethods proposed. The first data are available inKlein
andMoeschberger (1997), page 464. Among 137 patients receiving bonemarrow transplants, 81
died after relapse of leukaemia, only twodiedwithout relapse and the remaining 54 patientswere
doubly censored.DefineT1 as the time from transplantation to relapse of leukaemia andT2 as the
time from transplantation to death. Assumingmodel 1 with θ.s; t/ = α, the proposed unweight-
ed estimators are α̂01 = 10:95 (2.90), α̂1 = 8:78 (2.27) and α̂2 = 8:80 (2.27), where each number
in parentheses is the estimated standard deviation of the corresponding estimator by using the
jackknifemethod.Using the relationshipα = .1+τ /=.1−τ /, the estimators of τ are τ̂01 = 0:833
(0.041), τ̂1 = 0:795 (0.044) and τ̂2 = 0:796 (0.045). To assess the robustness of the estimators, we
also analysed the data by assuming Frank’s model with θ.s; t/ = γ F.s; t/=[1− exp{−γ F.s; t/}],
where γ = − log.α/. Using τ = 1+ 4{D1.γ/− 1}=γ where D1.γ/ = ∫ γ

0 t=γ{exp.t/− 1} dt, the
estimated values for τ are τ̂01 = 0:806 (0.047), τ̂1 = 0:747 (0.047) and τ̂2 = 0:748 (0.047). Fine
et al. (2001) analysed the same data set and applied the goodness-of-fit test of Shih (1998) for
model checking. Their analysis showed that the Clayton model fits the data. Their unweighted
estimator for α is 8.79 (2.15) and the weighted estimator is 8.61 (2.15), which are both very close
to α̂1 and α̂2. All the results indicate that there is high positive correlation between T1 and T2.
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The second data set is the Stanford heart transplantation data (Crowley and Hu, 1977).
Among 103 participants, 69 received transplants, 30 died without a transplant and only four
observations were double censored. Let T1 be the time from acceptance to heart transplantation
and T2 be the time from acceptance to death. Assuming model 1 with θ.s; t/ = α, the estimators
proposed are α̂1 = 1:153 (0.268) and α̂2 = 1:159 (0.264), which correspond to τ̂1 = 0:071 (0.118)
and τ̂2 = 0:074 (0.115). α̂01 is not reported since it involves calculating gα.w; v/ which is not
stable when α is close to the boundary value 1. Assuming Frank’s model, the estimators of τ
are τ̂1 = 0:080 (0.130) and τ̂2 = 0:085 (0.130). All the analyses showed that the waiting time T1
and the survival time T2 seem to be uncorrelated.

5. Concluding remarks

Many survival data can be represented by 2 × 2 tables or counting processes, which natural-
ly provide the motivation for using the log-rank statistic or the Doob–Meyer decomposition
to construct estimating functions. Therefore the ideas proposed may still be applicable under
different circumstances especially when likelihood-based inference methods fail. The inference
procedures proposed only require specifying model assumptions for the upper wedge. We con-
sidered model 1 and model 2 which describe different features of a bivariate relationship. Prac-
titioners may use their scientific knowledge to choose an appropriate model for the data at
hand. For the bone marrow transplantation data, whether there is a hypothetical relapse event
after death is quite controversial (Prentice et al., 1978). In such a case, F1.·/ is not even well
defined. Model 1 has the advantage that it provides an intuitive interpretation of the depen-
dence relationship without directly dealing with F1. In contrast, model 2 makes some implicit
assumption on F1.·/ (i.e. F1.T1/ ∼ U.0;1/) although its explicit form is not specified. In the
AIDS example, the definition of T1 for T1 > T2 is not a problem since CD4 cell counts still can
be measured even after AIDS has occurred. Therefore model 2 will not cause any controversy.
For model diagnosis, the method of Shih (1998) for assessing Clayton’s model can be applied to
semi-competing-risks data. For more general models, Oakes (1989), Genest and Rivest (1993)
and Wang and Wells (2000) proposed model selection procedures for AC models defined on
[0;∞/2. Since these methods are not directly applied to data (1), further effort is needed to
explore model checking techniques.
An important practical concern is to generalize the methods for accommodating the effect

of covariates. Let Z : p × 1 be a vector of covariates. Before imposing a model assumption, it
is helpful to examine how the covariates affect .T1; T2/. If the dependence structure is affected
by covariates, we can model the effect via θ.s; t/. For example the Clayton assumption may be
extended to θ.s; t|Z/ = exp.β0 + β′Z/ = α.Z/, where β = .β1; : : :;βp/

′. If only the marginals
are influenced by Z, we may extend model 2 as

F.s; t|Z/ = Cα{F1.s|Z/;F2.t|Z/};

where Fj.t|Z/ = Pr.Tj � t|Z/ .j = 1;2/ may be described by the Cox proportional hazards
model. If some covariatesZ1 affect the dependence structure whereas others, denotedZ2, affect
the marginals, an AC model may be described as

θ.s; t|Z1;Z2/ = θ̃α.Z1/{F.s; t|Z2/}:

However, statistical inference under the regression setting is quite challenging since there are
many parameters to be estimated jointly but only one estimating function.
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Before the name appeared, semi-competing-risks data were analysed extensively in the liter-
ature under the context of multistate models or illness–death models. Much previous research
focused on T2 by treating T1 as auxiliary information. For example Lagakos (1976, 1977) con-
ducted parametric analysis for the joint distribution of .T1; T2/ forT1 � T2. Flandre andO’Quig-
ley (1995) proposed a two-stage approach that uses the progression end point to improve the
estimation of survival. Different models describing how T1 affects T2 have been proposed on
the basis of Markov, semi-Markov or proportional hazards assumptions. A detailed review of
these methods can be found in Andersen et al. (1991) and Klein and Moeschberger (1997). In
recent years, there has been some interest in making inference for the progression time T1. For
example Lin et al. (1996) and Chang (2000) considered two-sample comparisons based on T1.
As in this paper, the difficulty in their work arises from the problem of dependent censoring.
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Appendix A: Asymptotic theory for two estimators of Λ2(t jT1 > s)

To simplify the notation,

N11.s; t/ =
n∑
i=1

I.Xi � s; δ1i = 1; Yi � t; δ2i = 1/;

N01.s; t/ =
n∑
i=1

I.Xi � s; Yi � t; δ2i = 1/;

N10.s; t/ =
n∑
i=1

I.Xi � s; δ1i = 1; Yi � t/

and

R̃.s; t/ =
n∑
i=1

I.Xi � s; Yi � t/:

We first derive the properties of Λ̂2.t|T1 > s;α0; η0/ defined in equation (14). To simplify the notation, let

F.s; t/ = pr.T1 � s; T2 � t/;

F11.s; t/ = pr.F1 � s; T2 � t/;

F10.s; t/ = pr.F1 � s; T2 � t/;

F01.s; t/ = pr.F1 � s; T2 � t/;

H.s; t/ = pr.X � s; Y � t/;

H11.s; t/ = pr.X � s; Y � t; δ1 = 1; δ2 = 1/;

H10.s; t/ = pr.X � s; Y � t; δ1 = 1/

and

H01.s; t/ = pr.X � s; Y � t; δ2 = 1/:
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Since C is independent of T1 and T2, it follows that

θα0;η0.s; t/ = F11.ds; dt/=F10.ds; t/
F01.s+; dt/=F.s+; t/ = H11.ds; dt/=H10.ds; t/

H01.s+; dt/=H.s+; t/ ; .22/

and therefore

Λ2.t|T1 > s/ =
∫ t

0

H01.s; dv/
θα0;η0.s; v/H10.ds; v/+H.s; v/−H10.ds; v/

: .23/

Letting N11.s; t/=n = Ĥ11.s; t/, N10.s; t/=n = Ĥ10.s; t/ and N01.s; t/=n = Ĥ01.s; t/ we can write

Λ̂2.t|T1 > s;α0; η0/ =
∫ t

0

Ĥ01.s; dv/

θα0;η0.s; v/ Ĥ10.ds; v/+ Ĥ.s; v/− Ĥ10.ds; v/
:

To simplify the notation, define Kn.s; v/ as

{θα0;η0.s; v/H10.ds; v/+H.s; v/−H10.ds; v/}{θα0;η0.s; v/ Ĥ10.ds; v/+ Ĥ.s; v/− Ĥ10.ds; v/}:
Straightforward calculations give

Λ̂2.t|T1 > s;α0; η0/− Λ2.t|T1 > s/ = a1n + a2n + a3n + a4n + a5n + a6n;

where

a1n =
∫ t

0

θα0;η0.s; v/{H10.ds; v/− Ĥ10.ds; v/}
Kn.s; v/

Ĥ01.s; dv/;

a2n =
∫ t

0

θα0;η0.s; v/Ĥ10.ds; v/
Kn.s; v/

{Ĥ01.s; dv/−H01.s; dv/};

a3n =
∫ t

0

H.s; v/− Ĥ.s; v/

Kn.s; v/
Ĥ01.s; dv/;

a4n =
∫ t

0

Ĥ.s; v/

Kn.s; v/
{Ĥ01.s; dv/−H01.s; dv/};

a5n = −
∫ t

0

H10.ds; v/− Ĥ10.ds; v/
Kn.s; v/

Ĥ01.s; dv/;

a6n = −
∫ t

0

Ĥ10.ds; v/
Kn.s; v/

{Ĥ01.s; dv/−H01.s; dv/}:

By the Glivenko–Cantelli theorem, one can show that

sup
0�v�t

|Kn.s; v/−K.s; v/| → 0 almost surely;

where

K.s; v/ =
{
H.s+; v/F01.s+; dv/

F01.s; dv/

}2

;

which reduces to H.s+; v/2 if @F01.s; v/=@v is continuous at s. If H.s+; t/ > 0, it follows that, for all v �
t < ∞, there is a constantM such that 1=Kn.s; v/ � M < ∞ almost surely. Let Ts : supt{t : H.s+; t/ > 0}.
It follows that

sup
t∈Ts

|Λ̂2.t|T1 > s;α0; η0/− Λ2.t|T1 > s/| � sup
t∈[0;Ts ]

|a3n| + sup
t∈[0;Ts ]

|a4n| + sup
t∈[0;Ts ]

|rn|;

where rn = a1n + a2n + a5n + a6n, each of which is of op.n−1=2/. By the Glivenko–Cantelli theorem and
applying the techniques in Wang and Wells (1997), pages 876–877, it can be shown that, for any " > 0,
the set
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ω : sup

t∈[0;Ts ]
|Λ̂2.t;ω|T1 > s;α0; η0/− Λ2.t|T1 > s/| > "

}

has measure zero, where ω denotes an element in the corresponding probability space. These results prove
that Λ̂2.t;ω|T1 > s;α0; η0/ is strongly and uniformly consistent.
Applying integration by parts to a4n, we can write

n1=2{Λ̂2.t|T1 > s;α0; η0/− Λ2.t|T1 > s/} = −
∫ t

0

n1=2{Ĥ.s; v/−H.s; v/}
K.s; v/

H01.s; dv/

+ H.s; t/

K.s; t/
n1=2{Ĥ01.s; t/−H01.s; t/}

−
∫ t

0
n1=2{Ĥ01.s; v/−H01.s; v/}dH.s; v/

K.s; v/
+ op.1/:

Let P.s; t/ andQ.s; t/ be the limiting distributions of n1=2{Ĥ.s; t/−H.s; t/} and n1=2{Ĥ01.s; t/−H01.s; t/}
respectively, both of which are mean 0 Gaussian processes. The limiting distribution of n1=2{Λ̂2.t|T1 >
s;α0; η0/− Λ2.t|T1 > s/} becomes

−
∫ t

0

P.s; v/

K.s; v/
H01.s; dv/+ Q.s; t/H.s; t/

K.s; t/
−

∫ t

0
Q.s; v/d

H.s; v/

K.s; v/
;

which is also amean 0Gaussian process.Writing Λ̃2.t|T1 > s/ in equation (15) as
∫ t

0 Ĥ01.s+; dv/=Ĥ.s+; v/,
we can apply similar arguments to show strong and uniform consistency and asymptotic normality of
Λ̃2.t|T1 > s/.

Appendix B: Consistency of α̂j (j = 1, 2)

Assume that the regularity conditions 1 hold. To simplify the notation, define

EÅ.t; s;α; η/ = θα;η.s; t/ N10.ds; t/
θα;η.s; t/ N10.ds; t/+ R.s; t/−N10.ds; t/

:

Note that Ẽ11.ds; dt|α; η/ in equation (10) equals EÅ.t; s;α; η/ N01.s; dt/. We can write L1.α; η/ =∫
s
LÅ.∞; s;α; η/, where

LÅ.t; s;α; η/ = n−1 n∑
i=1

∫ t

s

w.s; u/ I.Xi � s/{I.Xi � s; δ1i = 1/− EÅ.u; s;α; η/}dI.Yi � u; δ2i = 1/:

Now we show that LÅ.t; s;α0; η0/ is a zero-mean martingale with respect to FÅs;t in equation (12). Define
Mi.t; s/ = I.Yi � t; δ2i = 1/ − vi.t; s/, where vi.t; s/ is the compensator defined in equation (13). Some
algebraic work gives

n∑
i=1

I.Xi � s/{I.Xi � s; δ1i = 1/− EÅ.t; s;α0; η0/}dvi.t; s/ = 0;

and hence we can rewrite LÅ.t; s;α0; η0/ as

n−1 n∑
i=1

∫ t

s

w.s; t/ I.Xi � s/{I.Xi � s; δ1i = 1/− EÅ.u; s;α0; η0/}dMi.u; s/:

Since the integrand of this expression is FÅs;t− measurable, E{LÅ.t; s;α0; η0/|FÅs;t−} = 0 for each t > s and
E{L1.α0; η0/} = 0. This result generalizes lemma 2 in Day et al. (1997).
When θα;η.s; t/ is continuous in η and η̂ →p η0, it is easy to see thatL1.α0; η̂/ = L1.α0; η0/+op.1/ →p 0.

Since Λ̂2.t|T1 > s;α0; η0/ = Λ̃2.t|T1 > s/ almost surely, L2.α0; η̂/ = L1.α0; η0/ + op.1/ →p 0. When
θα;η.s; t/ is a monotone function of α, it follows that EÅ.t; s;α; η/ and Lj.α; η̂/ .j = 1; 2/ are both mono-
tone functions of α. In such a case, Lj.α; η̂/ = 0 has the unique solution α̂j .j = 1; 2/. When Lj.α; η/ is
twice differentiable with respect to α with bounded derivatives, applying Taylor expansions one can show
that
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α̂j − α0
a= −

{
@Lj.α; η̂/

@α

∣∣∣∣
α0

}−1

Lj.α0; η0/
p→ 0 .j = 1; 2/:

Consistency of α̂j .j = 1; 2/ follows.

Appendix C: Asymptotic normality of α̂j (j = 1, 2)

Assume that the regularity conditions 1 and 2 hold. Here we show asymptotic normality of n1=2.α̂2 −α0/.
Asymptotic normality of n1=2.α̂1−α0/ can be proved by using similar arguments. On the basis of equations
(22) and (23) in Appendix A, it is easy to see that for any function wÅ.s; t/∫

s

∫
s�t

wÅ.s; t/ {H11.ds; dt/− θα0;η0.s; t/ H10.ds; t/ Λ2.dt|T1 > s/} = 0:

Let w̃.s; t/ be the limit of w.s; t/ as n → w.s; t/. We can write

n1=2.α̂2 − α0/
a= −

{
@L2.α; η0/

@α

∣∣∣∣
α0

}−1

n1=2 L2.α0; η̂/;

where n1=2 L2.α0; η̂/ can be further expressed as the sum of the terms

b1n =
∫ ∫

s�t

n1=2{w.s; t/− w̃.s; t/}{Ĥ11.ds; dt/− θα0; η̂.s; t/ Ĥ10.ds; t/ Λ̃2.dt|T1 > s/};

b2n = −
∫ ∫

s�t

w̃.s; t/n1=2{θα0; η̂.s; t/− θα0;η0.s; t/} Ĥ10.ds; t/ Λ̃2.dt|T1 > s/;

b3n = −
∫ ∫

s�t

w̃.s; t/ θα0;η0.s; t/ Ĥ10.ds; t/n1=2{Λ̃2.dt|T1 > s/− Λ2.dt|T1 > s/};

b4n =
∫ ∫

s�t

w̃.s; t/n1=2{Ĥ11.ds; dt/−H11.ds; dt/}

−
∫ ∫

s�t

w̃.s; t/ θα0;η0.s; t/n
1=2{Ĥ10.ds; t/−H10.ds; t/}Λ2.dt|T1 > s/:

When |w.s; t/ − w̃.s; t/| = Op.n
−1=2/ for .s; t/ ∈ P , by consistency of the empirical estimators η̂ and

Λ̃2.t|T1 > s/, it follows that |b1n| →p 0. By uniform consistency of Λ̂2.t|T1 > s/ and Ĥ10.s; t/, one can
show that

b2n
a= −

∫ ∫
s�t

w̃.s; t/n1=2 {θα0; η̂.s; t/− θα0;η0.s; t/}H10.ds; t/Λ2.dt|T1 > s/;

which converges in distribution to the mean 0 random variable

−n1=2 .η̂ − η0/

∫ ∫
s�t

w̃.s; t/
@θα0;η.s; t/

@η

∣∣∣∣
η0

H10.ds; t/Λ2.dt|T1 > s/:

It follows that

b3n
a= −

∫ ∫
s�t

w.s; t/ θα0;η0.s; t/H10.ds; t/n1=2{Λ̃2.dt|T1 > s/− Λ2.dt|T1 > s/}:

Applying integration by parts to make n1=2{Λ̃2.t|T1 > s/− Λ2.t|T1 > s/} appear in the integrand, asymp-
totically b3n can be further expressed as an integral of a mean 0 Gaussian process and hence is asymptotic
normal (Shorack and Wellner, 1986). Asymptotic normality of b4n can be shown by using similar argu-
ments.
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