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Summary. We use a multipath (multistate) model to describe data with multiple end points. Sta-
tistical inference based on the intermediate end point is challenging because of the problems
of nonidentifiability and dependent censoring. We study nonparametric estimation for the path
probability and the sojourn time distributions between the states. The methodology proposed
can be applied to analyse cure models which account for the competing risk of death.Asymptotic
properties of the estimators proposed are derived. Simulation shows that the methods proposed
have good finite sample performance. The methodology is applied to two data sets.
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1. Introduction

1.1. Background
Many biomedical applications involve the analysis of multiple end points. Consider a study of
bone marrow transplants for leukaemia patients. Some patients will experience recurrence of the
malignancy before death but others may die without relapse. A second example is related to the
study of a life-threatening acute condition (Betensky and Schoenfeld, 2001). Only a proportion
of patients will leave the hospital alive and later die from other causes, whereas the remaining
patients, who are not cured, will die in the hospital. These phenomena can be described by the
multipath or multistate model that is depicted in Fig. 1. The terminal event, death, leads to
an absorbing state whereas the non-terminal event, indicating some progression status, may be
bypassed. Let .X,Y ,C/ be the times to an intermediate end point, a terminal end point and an
external censoring end point respectively. Censoring may be due to termination of the study
period or the loss of patients to follow-up. Let {.Xi,Yi,Ci/, i = 1, . . . ,n} be identically and
independently distributed replications of .X,Y ,C/. We shall assume that C is independent of
both X and Y , whereas X and Y may be correlated. Statistical methods for analysing a terminal
end point and a non-terminal end point are very different. Let S1.t/ = Pr.X > t/.

When death is of primary interest, the Kaplan–Meier estimator is the standard method
for estimating the survival function of Y . Progression information can also be incorporated
to improve estimation (Gray, 1994). When the prediction of individual survival times is of
interest, we need to specify how the intermediate end point affects subsequent survival. Popular
choices of model include Markov and semi-Markov models and the proportional hazards
model, in which the progression information is treated as a time-dependent covariate. Andersen
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State 2: 
progression

State 1: 
healthy

State 3: 
death

X  X ≤ Y

Y  Y < X Y-X  X ≤ Y

Fig. 1. Multipath model

et al. (1993) and Hougaard (2000) contain many examples and good summaries of related
results.

When interest focuses on the progression of disease, statistical issues become more com-
plicated and sometimes controversial (Prentice et al., 1978). Death precludes the biological
development of progression whereas censoring terminates observation of the other two events.
The major challenge comes from the fact that no progression information is available after
death. For those who do not experience progression during their lifetime, X is not well defined
and therefore its distribution is non-identifiable without further assumptions. Furthermore, a
possible dependence between X and Y complicates a statistical analysis. One popular approach
treats death as a dependent competing risk for disease progression. Most methods in the con-
text of competing risks require an explicit specification of the dependent censoring structure; see
Zheng and Klein (1995). However, these assumptions are not testable. Furthermore, the implicit
assumption underlying many models of the existence of a hypothetical progression distribution
after death is debatable. Rather than relying on artificial assumptions, an alternative is to con-
sider only nonparametrically estimable functions, such as the descriptive measures that were
proposed by Pepe and Mori (1993). These quantities, however, may have no direct interpretation
for the problem of interest.

Another branch of research, under the context of ‘long-term survivors’ or ‘cure models’,
assumes that only a proportion of subjects will experience the event of interest. Maller and
Zhou (1996) provide a useful reference on the subject. This concept may be applied to model
the distribution of progression. Let B be an indicator of susceptibility for progression, with
B = 1 representing susceptibility and B = 0 representing immunity or cure. Assuming that
X = ∞ if B = 0, Pr.X > t/ can be written as the mixture form

S1.t/ = Pr.X > t|B = 1/pb + 1 − pb, .1/

where pb = Pr.B = 1/. When pb < 1, X has an improper distribution. In developing inference
procedures for cure models, the definition of cure plays a crucial role. For most methods in the
literature, cure is not explicitly defined. Such a model is imposed when a fraction of observations
do not experience the event of interest despite long-term follow-up (Li et al., 2001). The majority
of references on this rely on the assumption of independent censoring, which does not account
for the effect of death. For example, Maller and Zhou (1992) considered estimating S1.t/ by
the Kaplan–Meier estimator. They claimed that, when the follow-up time is sufficiently long
to observe all the susceptible individuals, the tail probability of the Kaplan–Meier estimator
can be used to estimate 1 − pb and hence Pr.X > t|B = 1/ can be estimated via equation
(1). Maller and Zhou (1994) further proposed a test for sufficient follow-up on the basis of the
distance between the largest and the largest uncensored observations. Although their analysis
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looks theoretically appealing, practitioners feel concerned about identifiability of the cure frac-
tion based on nonparametric estimation of the tail probability. Alternatively regression models,
which utilize covariate information, have been studied by Farewell (1982), Kuk and Chen (1992)
and Taylor (1995), among others. Identifiability of these models has been examined by Li et al.
(2001). When cures become observable, identifiability is no longer an issue for nonparametric
analysis. In Laska and Meisner (1992), cure is observed if a subject does not develop the event
of interest within a prespecified time span. Betensky and Schoenfeld (2001) proposed a cure
model with random cure times. Using the second example, they defined hospital discharge as
the cure event and treated death as a competing risk. The major limitation of their method is
that the death and cure times are assumed to be independent of each other.

1.2. Semicompeting risks data
In this paper we consider data of the form {.X̃i, Ỹi, δxi , δyi /, i = 1, . . . ,n}, where X̃i = Xi∧Yi∧Ci,
Ỹi = Yi ∧ Ci, δxi = I.Xi � Yi ∧ Ci/ and δ

y
i = I.Yi � Ci/. Fine et al. (2001) called such a struc-

ture ‘semicompeting risks data’ since death is a competing risk for progression but not vice
versa. Semiparametric estimation procedures for studying the dependence between X and Y

when X�Y have been proposed by Day et al. (1997), Fine et al. (2001) and Wang (2003). Two-
sample comparisons on the basis of X have been studied by Lin et al. (1996) and Chang (2000).
Without imposing additional assumptions, this problem is non-identifiable owing to dependent
censoring by Y . Lin et al. (1996) assumed that the distributions of X for the two groups, on a
logarithmic scale, follow a bivariate location–shift model, and Chang (2000) assumed a bivariate
accelerated failure time model. Although neither specified the relationship between X and Y ,
they implicitly assumed that the dependence structures are the same for the two groups.

1.3. Main ideas
We consider nonparametric estimation of the following descriptive measures for the multipath
model. Let Sij.t/ be the survival function of the sojourn time between state i and state j for
i, j = 1, 2, 3 and i < j. Specifically S12.t/ = Pr.X > t|X � Y/, S13.t/ = Pr.Y > t|X > Y/

and S23.t/ = Pr.Y − X > t|X � Y/. Also define S123.t/ = Pr.Y > t|X � Y/, which is the
survival function for those who will develop progression within their lifespan. Now we discuss
applications of these quantities.

Reconsider the problem of a two-sample comparison on X. Let Z be the group indicator,
with Z = 1 representing the treatment group and Z = 0 representing the control group. Treat-
ment could affect both the intensity of X and that of Y from state 1. The difference between
Pr.X � Y |Z = 1/ and Pr.X � Y |Z = 0/ reveals the treatment effect on the incidence of pro-
gression under the competing risk of death. Treatment could also affect transitions between
state 1 and state 2 and/or between state 1 and state 3 (as well as between states 2 and 3). The
differences of Pr.X > t|X � Y ,Z = j/ for j = 0, 1 reflect how the treatment changes the
latency distribution of the time to progression if it does occur eventually. These effects may have
different scientific meanings and hence should be studied separately.

Because progression cannot be observed after death, it is natural to assign X = ∞ if X > Y .
Letting ∆ = I.X � Y/, we can write

S1.t/ = Pr.X > t|∆ = 1/p + 1 − p, .2/

where p = Pr.∆ = 1/. Note that expressions (1) and (2) cannot be distinguished on the basis
of the information on observed variables, .X̃,Ỹ , δx, δy/, if the cure event B is not observable. It
should be noted that the susceptibility model (1) is not sensible if there is any reasonable chance
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of a competing risk of Y < X. In the second example, where discharge from hospital represents
the cure event, it is reasonable to set ∆ = B. Therefore the approach that is proposed here
can be directly compared with that proposed by Betensky and Schoenfeld (2001). Our method
has the advantage that the times to death and cure can be correlated. For the first example of
leukaemia relapse, it is questionable to assign ∆ = B. If someone dies of an unrelated cause just
after entering state 1, it does not make sense to assume that he or she has been cured, or that
this person has no chance of progression. Therefore we may want to exclude those who die early
from the cured population even though they may not experience recurrence. In such a case, we
may define the cure event as 1 − B = I.∆ = 0,Y > ξ/, where ξ is a prespecified constant, and
the cured rate becomes .1 − p/ S13.ξ/.

2. Methodology

We propose nonparametric estimators for the path probability and the duration distributions
between the states. If the path indicator ∆ = I.X � Y/ is known for each subject, nonparametric
estimators of these quantities can be easily constructed. When censoring is present, if δx = 1,
∆ = I.X � Y/ = 1; and, if δx = 0 and δy = 1, ∆ = 0. The major difficulty of estimation comes
from double-censored observations with δx = δy = 0, for which the value of ∆ is unknown, but
X > C and Y > C, and C is observable. For these observations, we define the conditional path
probability given the observed value of C:

p.c/ = Pr.X � Y |X > C,Y > C,C = c/ = 1
H.c/

∫
v>c

Pr.X ∈ [v, v + dv/,Y � v/, .3/

where H.t/ = Pr.X > t,Y > t/ is the survival function of X ∧ Y = min.X,Y/. We shall propose
an estimator of p.c/ and then use it in estimating p, S12.t/ and S13.t/.

2.1. Estimating an unknown path probability
The objective is to express p.c/ as a function of estimable quantities. To simplify the derivation,
we assume that Y and C are continuous random variables and X is continuous for X � Y . Our
first important result is the identity

p.c/ = 1
H.c/

{ ∫
v>c

Pr.X̃ ∈ [v, v + dv/, Ỹ � v, δx = 1/
G.v/

+ Pr.T̃ < X � Y/

}
, .4/

where G.v/ = Pr.C > v/ and T̃ = sup{t : Pr.X > t,Y > t/ Pr.C > t/ > 0}. Note that [0, T̃ ] is
the support of X̃. All the components of p.c/ are estimable nonparametrically except the last
term in the braces. Specifically the survival function of X ∧ Y , H.t/, can be estimated by the
Kaplan–Meier estimator

Ĥ.t/ = ∏
v�t




1 −

n∑
i=1

I.X̃i = v, δ̃i = 1/

n∑
i=1

I.X̃i � v/




,

where δ̃ = I.X ∧ Y � C/ = δx + δy − δxδy. There are two versions of the Kaplan–Meier esti-
mator for estimating G.t/. Denote Ĝ1.t/ as the estimator based on {.X̃i, 1 − δ̃i/, i = 1, . . . ,n}
and Ĝ2.t/ as the estimator based on {.Ỹ i, 1 − δ

y
i /, i = 1, . . . ,n}. Now Pr.X̃ � u, Ỹ � v, δx = 1/

can be estimated by the empirical function
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n∑

i=1
I.X̃i � u, Ỹi � v, δxi = 1/=n:

We can write Pr.T̃ < X � Y/ = p.T̃ / H.T̃ /. The quantity H.T̃ / can be estimated by Ĥ.X̃.n//,
whereX̃.n/ is the largest value of X̃i .i = 1, . . . ,n/. When the support of X∧ Y lies within [0, T̃ ],
H.T̃ / = 0 and Pr.T̃ < X � Y/ = 0. When the support lies outside [0, T̃ ], p.T̃ / is not identifiable
and additional assumptions are required. Assuming that p.T̃ / = p, we can derive an explicit
estimator for p whose formula will be given later. For now, let p̃.X̃.n// be an estimate of p.T̃ /.
The estimator proposed for p.c/ is

p̂.c/ = 1

Ĥ.c/

{∫
v>c

n∑
i=1

I.X̃i = v, Ỹi � v, δxi = 1/

n Ĝ.v/
+p̃.X̃.n// Ĥ.X̃.n//

}
, .5/

where Ĝ.v/ can be either one of Ĝj.t/ .j = 1, 2/.
Similar arguments can be applied to the function q.c/ = 1 − p.c/. Specifically we obtain

q.c/ = 1
H.c/

{∫
c<v

Pr.X̃ � v,Ỹ ∈ [v, v + dv/, δx = 0, δy = 1/
G.v/

+ q.T̃ / H.T̃ /

}
.6/

and

q̂.c/ = 1

Ĥ.c/

{∫
v>c

n∑
i=1

I.X̃i � v, Ỹi = v, δxi = 0, δyi = 1/

nĜ.v/
+ q̃.X̃.n// Ĥ.X̃.n//

}
, .7/

where q̃.X̃.n//= 1− p̃.X̃.n//. In computing p̂.c/ and q̂.c/, we follow the convention that 0=0 = 0.
Theoretically we only need to estimate either p.c/ or q.c/ since they sum to 1. For finite samples,
the sum is usually not equal to 1. In most of our simulations, p̂.c/ + q̂.c/ ≈ 1. In formulae (4)
and (6), each observation is weighted by ‘the inverse probability of censoring’, namely 1=G.v/,
to adjust for the censoring bias. Similar ideas have been used in other estimation problems. Note
that, as the value of v increases, Ĝ.v/ approaches closer to 0 and becomes more variable. We shall
see in simulations that the performance of p̂.c/ and q̂.c/ grows worse as the value of c increases.
Although Ĝ2.t/ is a better estimator of G.t/ than Ĝ1.t/ is because Pr.C�Y/� Pr.C�X∧Y/,
it is not guaranteed that using Ĝ2.t/ would produce more efficient estimators of p̂.c/ and q̂.c/.

In deriving asymptotic properties of all the estimators proposed, we assume that the support
ofX∧Y lies within [0, T̃ ], which is the condition of sufficient follow-up. In Appendix A, we prove
that, for each c ∈ [0, T̃ ], sup0�c�T̃ |p̂.c/ − p.c/| → 0 with probability 1 and n1=2{p̂.c/ − p.c/}
converges to a mean 0 normal random variable. Properties of q̂.c/ can be established by using
similar arguments. The asymptotic variance of p̂.c/ can be estimated by the moment-type estima-
tor (17), but this is quite complicated and its validity also depends on the condition of sufficient
follow-up. Therefore we recommend the bootstrap estimator (18) for variance estimation.

2.2. Estimation of the sojourn time distributions
Now we derive the relationships between p.c/ and other quantities of interest. By elementary
properties of conditional expectation, it follows that

Pr.X � Y/ = Pr.δx = 1/ + Pr.X � Y , δx = δy = 0/

= Pr.δx = 1/ +
∫

p.c/ dḠA.c/,

Pr.X > Y/ = Pr.δx = 0, δy = 1/ +
∫

q.c/ dḠA.c/,
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where ḠA.c/ = Pr.C � c,X > C,Y > C/. We can write

S12.t/ = ∏
u�t

{
1 − Pr.X̃ ∈ [u,u + du/, δx = 1/

Pr.X̃ � u,X � Y/

}
,

S13.t/ = ∏
v�t

{
1 − Pr.X̃ � v, Ỹ ∈ [v, v + dv/, δx = 0, δy = 1/

Pr.Ỹ � v,X > Y/

}
,

where

Pr.X̃ � u,X � Y/ = Pr.X̃ � u, δx = 1/ +
∫
c�u

p.c/ dḠA.c/,

Pr.Ỹ � v,X > Y/ = Pr.Ỹ � v, δx = 0, δy = 1/ +
∫
c�v

q.c/ dḠA.c/:

The quantity ḠA.c/ can be estimated by ḠAn.c/ = Σn
i=1I.X̃i � c, δxi = δ

y
i = 0/=n. Using the

plug-in principle, we obtain the following nonparametric estimators:

p̂ = 1
n

{
n∑

i=1
I.δxi = 1/ +

n∑
i=1

I.δxi = δ
y
i = 0/ p̂.X̃i/

}
,

q̂ = 1
n

{
n∑

i=1
I.δxi = 0, δyi = 1/ +

n∑
i=1

I.δxi = δ
y
i = 0/ q̂.X̃i/

}
:

Letting p̃.X̃.n// = p̂ and q̌.x̃.n// = q̂, explicit estimators of p and q are given by

p̂ = p̌.X̃.n// =

n∑
i=1

I.δxi = 1/ + ∑
i∈An

L̂1.X̃i/=Ĥ.X̃i/

n − NAĤ.X̃.n//
, .8/

q̂ = q̌.x̃.n// =

n∑
i=1

I.δxi = 0, δyi = 1/ + ∑
i∈An

L̂2.x̃i/=Ĥ.x̃i/

n − NAĤ.x̃.n//
, .9/

where An = {i : δxi = δ
y
i = 0},

NA = ∑
i∈An

1=Ĥ.x̃i/,

L̂1.c/ =
∫
v>c

n∑
j=1

I.X̃j = v, Ỹj � v, δxi = 1/=n Ĝ.v/,

L̂2.c/ =
∫
v>c

n∑
j=1

I.X̃j � v, δxj = 0, Ỹj = v, δyj = 1/=n Ĝ.v/:

The sojourn time survival functions can be estimated as

Ŝ12.t/ = ∏
u�t




1 −

n∑
i=1

I.X̃i = u, δxi = 1/

n∑
i=1

I.X̃i � u, δxi = 1/ +
n∑

i=1
I.X̃i � u, δxi = δ

y
i = 0/ p̂.X̃i/




, .10/
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Ŝ13.t/ = ∏
v�t




1 −

n∑
i=1

I.Ỹi = v, δxi = 0, δyi = 1/

n∑
i=1

I.Ỹi � v, δxi = 0, δyi = 1/ +
n∑

i=1
I.Ỹi � v, δxi = δ

y
i = 0/ q̂.X̃i/




, .11/

Ŝ123.t/ = ∏
v�t




1 −

n∑
i=1

I.Ỹi = v, δxi = 1, δyi = 1/

n∑
i=1

I.Ỹi � v, δxi = 1/ +
n∑

i=1
I.Ỹi � v, δxi = δ

y
i = 0/ p̂.Ỹi/



: .12/

Asymptotic properties of these estimators also depend on the condition of sufficient follow-up.
Consistency and asymptotic normality of p̂ and Ŝ12.t/ are proved in Appendices B and C. Sim-
ilar arguments can be applied to derive the properties of q̂, Ŝ13.t/ and Ŝ123.t/. We also suggest
use of the bootstrap for variance estimation.

Nonparametric estimation of S23.t/ is a different problem since it does not involve the missing
path information. Only subjects who have experienced state 2 (i.e. δx = 1) will contain useful
information for estimating the survival function ofY−X. The challenge comes from the problem
of dependent censoring. Specifically, for those with δx = 1, the larger the value of X, the higher
the chance that Y − X will be censored. Using the evolution of acquired immune deficiency
syndrome as an example, Wang and Wells (1998) and Lin et al. (1999) applied the weighting
technique mentioned earlier to handle the effect of dependent censoring. Both methods can be
directly applied to estimate S23.t/.

2.3. Estimation under an independent censoring model
Many methods in the literature on cure models consider data of the form {.X̌i, δ̌xi /, i = 1, . . . ,n},
where X̌i = Xi ∧ Ci and δ̌xi = I.Xi � Ci/. This data structure ignores the competing risk of
death, which is inevitable, however. Confusion arises when death without progression happens
before the end of the study, i.e. Y � C ∧ X. When this happens, neither X̌ nor δ̌x is identifiable
since X and C are not observable after death. Nevertheless, if the only form of censoring is
due to the end of the study, the value of C may be known even if Y < C. Further assuming
that X = ∞ for X > Y , we can set X̌ = C and δ̌x = 0. Then S1.t/ can be estimated by the
Kaplan–Meier estimator,

Š1.t/ = ∏
u�t




1 −

n∑
i=1

I.X̌i = u, δ̌xi = 1/

n∑
i=1

I.X̌i � u/




, .13/

and p and S12.t/ can be estimated by p̌ = 1 − Š1.X̌.n// and Š12.t/ = {Š1.t/ − 1 + p̌}=p̌
respectively, where X̌.n/ is the largest observed value of X̌i .i = 1, . . . ,n/. We shall compare
these estimators with the estimators proposed for S12.t/ and p via simulations and data analysis.
Sometimes practitioners estimate S1.t/ by

S̃1.t/ = ∏
u�t




1 −

n∑
i=1

I.X̃i = u, δxi = 1/

n∑
i=1

I.X̃i � u/



: .14/
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Now we discuss these two estimators of S1.t/. In equation (8), the product–limit estimator is
based on estimating the hazard forXÅ, whereXÅ = X provided thatX � Y , given that censoring
has not occurred. If X � Y implies that X < ∞, Š1.t/ is a valid estimator of S1.t/ for t ∈ [0, T̃ ].
Beyond this range, Š1.t/ will overestimate S1.t/. In equation (9), the product–limit estimator is
based on estimating the hazard for XÅ given that neither death nor censoring has occurred. It
can be shown that S̃1.t/ � Š1.t/ and S̃1.t/ will underestimate S1.t/.

3. Numerical results

3.1. Simulation
A series of Monte Carlo simulations was conducted to examine the finite sample performance
of the estimators proposed. The algorithm in Prentice and Cai (1992) was used to simulate iden-
tically and independently distributed replicates {.X0

i ,Yi/, i = 1, . . . ,n} from the Clayton model:

Pr.X0 > x,Y > y/ = {SÅ1 .x/1−θ + S2.y/
1−θ − 1}1=.1−θ/, θ > 1,

where SÅ1 .x/ = Pr.X0 > x/ = exp.−βx/ and S2.y/ = Pr.Y > y/ = exp.−y/. The param-
eter θ controls the degree of association between X0 and Y and is related to Kendall’s τ ,
τ = .θ − 1/=.θ + 1/. To construct the progression time for susceptible individuals, let X =
I.X0 � Y/X0 + I.X0 > Y/M, where M is a very large number such that Pr.Y > M/ ≈ 0. The
value of β controls the level of Pr.X � Y/ = p. Censoring variables were generated fromU.0, 6/.
Two types of data, namely semicompeting risks data and the data of independent censoring, were
constructed. The censoring proportions are controlled by the values of τ and β. For example,
as τ = 0:5 and β = 1, Pr.δx = 0/ ≈ 60%, Pr.δy = 0/ ≈ 18% and Pr.δx = δy = 0/ ≈ 15%.

In Table 1, we evaluated the finite sample performances of the estimators proposed for p.c/ at
some preselected values of c for n = 100 and 200. In simulations that are not presented here, we
found that the choice of Ĝ.t/ has only a little effect on the resulting estimators. The estimator
p̂.c/ using Ĝ1.t/ tends to be a little less variable than that using Ĝ2. In Table 2, we compare
several nonparametric estimators of p and q. Define p̂j and q̂j as the estimators proposed for
p and q using Ĝ.t/ = Ĝj.t/ .j = 1, 2/ respectively. We also evaluate the naı̈ve estimator

p̃ =

n∑
i=1

I.δxi = 1/

n∑
i=1

{I.δxi = 1/ + I.δxi = 0, δyi = 1/}
,

the ‘empirical’ estimator of p, p̄ = Σn
i=1I.∆i = 1/ and p̌ = Š1.X̌.n//. The difference between

the estimators proposed for p and p̄ reflects the effect of additional estimation of p̂.c/ for
double-censored observations. Table 2 shows that p̂1 is a little more efficient than p̂2 but the
performances of q̂1 and q̂2 are close. The naı̈ve estimator p̃ appears to be very unstable. It is
quite good when p is close to 0.5 but can be very unreliable if p is far from 0.5. In all the cases,
p̌ has a larger variation than the estimators proposed.

In Table 3, we present the summary statistics for the estimators of S12.t/ and S13.t/ at pre-
selected grid points for n = 200. For comparison, we also evaluated the estimators that use
the true value of ∆i for all i = 1, . . . ,n. Specifically define

S̄12.t/ = ∏
u�t




1 −

n∑
i=1

I.X̃i = u, δxi = 1/

n∑
i=1

I.X̃i � u,∆i = 1/




, .15/



Sojourn Time Distributions 929

Table 1. Summary statistics of p̂.c/ for .X,Y / � Clayton(τ D 0:5) with S1.x/ D exp.�βx/ and
S2.y/ D exp.�y/†

c p(c) Results for β = 5/6 p(c) Results for β = 1 p(c) Results for β = 5/4
and the following and the following and the following

values of n: values of n: values of n:

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

0.06 0.38 3.1 1.6 0.50 3.7 −0.8 0.64 0.8 0.7
(5.9) (4.0) (5.9) (4.3) (5.8) (4.2)

0.11 0.38 3.9 1.2 0.50 3.4 −0.5 0.65 0.5 0.3
(6.1) (4.2) (6.2) (4.5) (6.3) (4.4)

0.17 0.37 5.4 1.5 0.50 3.1 −0.6 0.66 0.5 0.7
(6.4) (4.4) (6.6) (4.8) (6.7) (4.6)

0.22 0.37 5.2 0.9 0.50 3.3 −0.9 0.66 1.0 −0.4
(6.7) (4.6) (7.0) (5.0) (7.0) (4.9)

0.28 0.36 5.1 1.3 0.50 2.8 −1.0 0.67 0.4 −0.0
(6.9) (4.8) (7.3) (5.3) (7.4) (5.1)

0.33 0.36 5.7 1.0 0.50 2.9 −0.0 0.68 1.3 −0.0
(7.2) (5.0) (7.7) (5.5) (7.7) (5.4)

0.40 0.35 7.1 1.7 0.50 3.0 −0.7 0.69 1.3 −0.2
(7.5) (5.2) (8.1) (5.7) (8.3) (5.7)

0.44 0.35 7.8 2.6 0.50 3.7 −0.6 0.69 0.7 −0.6
(7.9) (5.5) (8.4) (6.0) (8.7) (6.0)

0.50 0.34 8.5 2.9 0.50 2.5 −0.9 0.70 0.9 −0.9
(8.2) (5.7) (9.0) (6.2) (8.9) (6.2)

†In each cell, the first number (times 10−3) is the average bias and the number in parentheses (times
10−2) is the standard deviation of the estimator.

Table 2. Summary statistics for various nonparametric estimators of p and q with n D 200†

τ β p p̄ p̂1 p̂2 q̂1 q̂2 p̃ p̌

0 5/6 0.46 0.30 1.41 1.19 −1.73 −1.73 1.56 1.78
(3.61) (3.74) (3.74) (3.74) (3.75) (3.70) (3.88)

0 1 0:5 −2.29 −2.28 −2.77 2.32 1.91 −2.36 −3.0
(3.64) (3.72) (3.73) (3.73) (3.73) (3.71) (3.73)

0 5/4 0:56 −1.66 0.00 −0.61 0.04 −0.49 −0.19 0.02
(3.43) (3.58) (3.58) (3.58) (3.56) (3.55) (3.58)

0.5 5/6 0.39 −0.31 1.81 1.78 −1.74 −1.96 12.8 −0.18
(3.56) (3.82) (3.82) (3.83) (3.86) (3.83) (3.93)

0.5 1 0.50 0.13 −0.60 −0.47 0.66 0.57 −0.45 −1.19
(3.51) (3.81) (3.86) (3.80) (3.81) (3.78) (4.04)

0.5 5/4 0.63 0.72 −0.26 −0.22 0.32 0.17 −9.79 2.07
(3.57) (3.59) (3.65) (3.59) (3.60) (3.60) (3.94)

0.8 5/6 0.25 −0.88 1.34 1.34 −1.21 −1.18 24.5 −0.25
(2.93) (3.16) (3.16) (3.16) (3.17) (3.37) (3.17)

0.8 1 0.5 2.0 2.95 2.86 −2.88 −2.98 2.17 2.38
(3.64) (4.04) (4.06) (4.04) (4.03) (3.84) (4.28)

0.8 5/4 0.78 0.49 −0.18 −0.57 0.24 0.23 −18.6 0.41
(2.91) (3.05) (3.16) (3.05) (3.05) (3.27) (3.70)

†In each cell, the number (times 10−3) is the average bias and the number in parentheses (times
10−2) is the standard deviation of the estimator based on 500 simulation runs.
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Table 3. Summary statistics for the estimators of sojourn time survival functions with
n D 200, τ D 0:5 and β D 1†

t S12(t) and S13(t) S̄12(t) Ŝ12(t) Š12(t) S̄13(t) Ŝ13(t)

0.105 0.825 −2.4 −2.7 −3.2 −0.5 −0.5
(4.0) (4.0) (4.1) (3.6) (3.7)

0.223 0.686 −2.8 −3.5 −4.3 −1.2 −1.1
(4.6) (4.7) (4.8) (4.5) (4.6)

0.357 0.570 −2.1 −3.1 −4.3 −1.0 −0.8
(5.1) (5.3) (5.4) (4.9) (4.9)

0.511 0.469 1.6 0.4 −1.2 −1.5 −1.2
(5.1) (5.4) (5.6) (5.0) (5.1)

0.693 0.378 0.3 −1.0 −3.1 −0.9 −0.6
(5.0) (5.4) (5.7) (4.9) (5.1)

0.916 0.295 2.9 1.5 −0.6 −0.3 −0.2
(4.9) (5.3) (5.6) (4.7) (5.1)

1.204 0.217 1.5 0.4 −1.9 0.3 0.2
(4.3) (4.8) (5.2) (4.3) (4.7)

1.609 0.143 −1.1 −2.0 −4.2 1.3 1.1
(3.8) (4.2) (4.7) (3.8) (4.1)

2.302 0.071 −0.6 −1.0 −2.9 0.6 0.0
(3.0) (3.4) (4.0) (3.0) (3.2)

†In each cell, the first number (times 10−3) is the average bias and the number in parentheses
(times 10−2) is the standard deviation of the corresponding estimator.

S̄13.t/ = ∏
v�t




1 −

n∑
i=1

I.Ỹi = v, δxi = 0, δyi = 1/

n∑
i=1

I.Ỹi � v,∆i = 0/



: .16/

Š12.t/ is also more variable than Ŝ12.t/. We also ran simulations under different levels of
Pr.δx = δy = 0/. In general the variance of the estimators proposed increases as Pr.δx = δy = 0/
increases.

3.2. Real data examples
The first data set was obtained from Table D.1 of Klein and Moeschberger (1997). There were
137 leukaemia patients receiving bone marrow transplants. Among these patients, 81 died with
relapse of leukaemia, only two died without relapse and the remaining 54 patients were doubly
censored. We define state 1, transplantation, state 2, relapse, and state 3, death. The naı̈ve estima-
tor of p gives p̃= 81=83 = 0:976. Because Ĥ.X̃.n//= Ĥ.2640/= 0:336 > 0, we applied formulae
(8) and (9) and then obtained p̂= 0:963 and q̂= q̌.2640/= 0:023 using Ĝ.t/= Ĝ1.t/. Because
p̂ ≈ 1, this data set may not be a typical example of the multipath model that is considered here.
It turns out that Ŝ1.t/ and Ŝ12.t/ are very close. Since there were only two patients with δx = 0
and δy = 1, S̃1.t/ and Ŝ1.t/ are very close.

The second data set is the Stanford heart transplantation data (Crowley and Hu, 1977).
Define state 1, acceptance, state 2, transplantation, and state 3, death. Among 103 partici-
pants, 69 received transplants, 30 died without transplantation and only four observations were
double censored. The naı̈ve estimator gives p̃ = 69=99 = 0:697. The data set provided the date
of acceptance, date of transplant, date last seen and an indicator for the status of dead or alive.
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Fig. 2. Estimated survival probability of transplantation time based on the heart transplant data: – – –,
Š1.t/; - - - - - - - , Ŝ1.t/; � - � - � -, S̃1.t/; , Ŝ12.t/

We computed Ĥ.X̃.n// = Ĥ.1400/ = 0:02, which implies that the missing path proportion is
tiny. There were two cases of p̂.c/ whose values exceed 1 but the values of q̂.c/ looked more
reasonable. Therefore we use formula (7) for q̂.c/ and set p̂.c/ = 1 − q̂.c/. For the four observa-
tions with δx = δy = 0, the estimated path probabilities are q̂.1401/ = 0:304, q̂.428/ = 0:304,
q̂.31/ = 0:386 and q̂.11/ = 0:361 which give p̂ = 0:71 and q̂ = 0:304. Note that there were 30
patients with δx = 0 and δy = 1. For these observations, we set X̌ = C, which is the difference
between the date of acceptance and the end of the study in April 1974, and δ̌x = 0. The four
estimated curves of Ŝ12.t/, Ŝ1.t/, S̃1.t/ and Š1.t/ are plotted in Fig. 2. We found that Š1.t/ has
a plateau at q̌ = 0:318, which is close to q̂ = 0:304, and hence Ŝ1.t/ and Š1.t/ are close. It turns
out that the incorrect estimator S̃1.t/ has a much lighter tail than Š1.t/ and hence is mislead-
ing. In Fig. 3, we present the three estimated curves, Ŝ13.t/, Ŝ

KM
2 .t/ and Ŝ123.t/, where Ŝ

KM
2 .t/

denotes the Kaplan–Meier estimator of Pr.Y > t/. It is well known in the medical literature that
the phenomenon Ŝ123.t/ > Ŝ13.t/ might be attributed to selection bias instead of the transplant
effect.

4. Concluding remarks

We used the framework of a multipath model to describe data with multiple end points. The
methodology proposed was applied to cure models. It is well known that, when no cures are
observable, the cured fraction is not identifiable (Li et al., 2001). Our analysis shows that the
problem of non-identifiability is partly due to the competing risk of death. An important fact
is that the commonly used data structure, {.X̌i, δ̌xi /, i = 1, . . . ,n}, is by itself not identifiable if
Pr.δx = 0, δy = 1/ > 0. Therefore the multipath model, which accounts for the competing risk
of death, is a more natural formulation for studying the cure population. In the literature of cure
models, ‘cure’ does not have a single definition. We used two examples to illustrate possible rela-
tionships between∆andB. When∆ = B, both the method proposed and the Kaplan–Meier esti-
mator can estimate the cured fraction and the latency distribution for the susceptible individuals.
Our approach has several advantages over the Kaplan–Meier estimator. Although both meth-
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Fig. 3. Estimated survival probability of death time based on the heart transplant data: - - - - - - - , Ŝ123.t/;
� - � - � -, ŜKM

2 .t/; , Ŝ13.t/

ods rely on the condition of sufficient follow-up, our approach is more robust if this assumption
is violated. Specifically, under our setting, as long as H.T̃ / is close to 0 or the assumed value of
p.T̃ / is reasonable, the bias of p̂.c/ is still minimal. The method proposed allows the dependence
between death and progression and hence is more general than the method proposed by Betensky
and Schoenfeld (2001). Furthermore our approach also provides estimators ofS13.t/ andS123.t/,
which may be useful in other contexts. For example when 1−B = I.∆ = 0,Y > ξ/ indicates the
cure status, S13.ξ/.1−p/ measures the cure probability. The technique that was used in estimat-
ingp and the sojourn time distributions is similar to the E-step in the EM algorithm. The missing
values of the path indicator for double-censored observations are estimated by their conditional
expected values, which are then used to estimate sufficient statistics for the quantities of interest.
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Appendix A: Asymptotic properties of p̂(c)

Under sufficient follow-up, p.c/ = L.c/=H.c/, where

L.c/ =
∫
c<u<T̃

Ku.du/=G.u/

and

Kv.u/ = Pr.X̃ � u, Ỹ � v, δx = 1/:

We can write p̂.c/ = L̂.c/=Ĥ.c/, where
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L̂.c/ =
∫
u>c

K̂u.du/=Ĝ.u/

and

K̂v.u/ =
n∑

i=1
I.X̃i � u, δxi = 1, Ỹi � v/=n:

We now prove strong consistency of p̂.c/. Since H.·/ is non-increasing, 1=H.c/ � 1=H.T̃ / = M1 < ∞ for
all 0 � c < T̃ . Similarly 1=G.c/ � 1=G.T̃ / = M2 < ∞ for all 0 � c < T̃ . By strong consistency of the
Kaplan–Meier estimators and applying the triangle inequality, one can show that, with probability 1,

sup
0�c<T̃

|p̂.c/ − p.c/| � M1 sup
0�c<T̃

|L̂.c/ − L.c/| + M1 sup
0�c<T̃

|Ĥ.c/ − H.c/|:

By properties of the limit supremum function, strong consistency of the Kaplan–Meier estimators and
applying integration by parts, one can show that, for any " > 0,

Pr
[

lim sup
{

ω : sup
0�c�T̃

|p̂.c, ω/ − p.c/| � "
}]

= 0,

where ω is an element in the probability space.
Now we show asymptotic normality of n1=2{p̂.c/ − p.c/}. We can write

1
p.c/

n1=2{p̂.c/ − p.c/} a= 1
L.c/

n1=2{L̂.c/ − L.c/} − 1
H.c/

n1=2{Ĥ.c/ − H.c/}:

It can be shown that n1=2{L̂.c/ − L.c/}=L.c/=a an + bn, where

an = 1
L.c/

[
− 1

G.c/
n1=2{K̂c.c/ − Kc.c/} +

∫
v>c

n1=2{K̂v.v/ − Kv.v/}
G2.v/

G.dv/
]

,

bn = − 1
L.c/

∫
v>c

n1=2{Ĝ.v/ − G.v/}
G2.v/

Kv.dv/:

By weak convergence of n1=2{K̂v.v/ − Kc.v/} and n1=2{Ĝ.v/ − G.v/} to mean 0 Gaussian processes,
asymptotic normality of bn and hence of n1=2{p̂.c/ − p.c/} can be established.

Each component of n1=2{p̂.c/− p.c/} can be further expressed explicitly as the sum of mean 0 random
variables. Specifically we can write an = n−1=2Σn

i=1A.X̃i, Ỹi, δxi , δyi , c/, where

A.X̃i, Ỹi, δxi , δyi , c/ = 1
L.c/

[
− 1

G.c/
{I.X̃i � c, Ỹi � c, δxi = 1/ − Pr.X̃ � c, Ỹ � c, δx = 1/}

+
∫
v>c

1
G2.v/

{I.X̃i � v, δxi = 1, Ỹi � v/ − Pr.X̃ � v, Ỹ � v, δx = 1/} dG.v/

]
:

If we use Ĝ2.t/ = Ĝ.t/, it follows that

1
G.v/

n1=2{Ĝ.v/ − G.v/} a= − 1
n1=2

n∑
i=1

∫ v

0

Mc
i .du/

Pr.Ỹ � u/
,

where Mc
i .u/ = ∫ u

0 I.Ỹi � s, δyi = 0/ − ∫
s�u

I.Ỹi � s/ Λc.ds/ and Λc.ds/ = Pr.C ∈ [s, s + ds/|C � s/, and
hence bn= n−1=2Σn

i=1B.Ỹi, δ
y
i , c/, where

B.Ỹi, δ
y
i , c/ = 1

L.c/

∫
v>c

1
G.v/

∫
0<u�v

dMc
i .du/

Pr.Ỹ � u/
Kv.dv/:

Also

1
H.c/

n1=2 {Ĥ.c/ − H.c/} a= − 1
n1=2

n∑
i=1

∫ c

0

M
xy
i .du/

Pr.X̃ � u/
= 1

n1=2

n∑
i=1

C.X̃i, δ̃i, c/,

where
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C.X̃i, δ̃i, c/ =
∫ c

0
M

xy
i .du/=Pr.X̃ � u/,

M
xy
i .u/ =

∫ u

0
I.X̃i � s, δ̃i = 0/ −

∫
s�u

I.X̃i � s/Λxy.ds/

and

Λxy.ds/ = Pr.X ∧ Y ∈ [s, s + ds/|X � s,Y � s/:

We have shown that

1
p.c/

n1=2 {p̂.c/ − p.c/} a= 1
n1=2

n∑
i=1

{A.X̃i, Ỹi, δxi , δyi , c/ + B.Ỹi, δ
y
i , c/ + C.X̃i, δ̃i, c/},

which converges in distribution to a mean 0 normal random variable with variance Σc = E[{A.X̃, Ỹ , δx, δy/
+ B.Ỹ , δy/ + C.X̃, δ̃/}2]. Therefore a moment-type estimator of the asymptotic variance of p̂.c/ is

p̂2.c/
n∑

i=1
{Â.X̃i, Ỹi, δxi , δyi , c/ + B̂.Ỹi, δ

y
i , c/ + Ĉ.X̃i, δ̃i, c/}2=n2, .17/

where Â, B̂ and Ĉ are obtained by plugging in nonparametric estimates of the unknown components in
A, B and C respectively. The variance estimator (17) depends on the assumption of sufficient follow-up.
The bootstrap method provides a more flexible alternative for variance estimation. Let {.X̃Å

i ,Ỹ
Å
i , δx

Å

i , δy*
i /,

i = 1, . . . , n} be a bootstrapped sample. The resampling procedure is repeated B times. Let p̂Åb .c/ be the
estimator proposed for p.c/ based on the bth bootstrapped sample. The asymptotic variance of p̂.c/ can
be estimated by

B∑
b=1

{p̂Åb .c/ − p̂.c/}2=.B − 1/: .18/

Appendix B: Asymptotic properties of p̂

It follows that

|p̂ − p| �
∣∣∣ n∑
i=1

I.δxi = 1/=n − Pr.δx = 1/
∣∣∣ +

∣∣∣
∫
c

p̂.c/dḠAn.c/ −
∫
c

p.c/dḠA.c/
∣∣∣:

By the law of large numbers, the first term converges to 0 in probability. The second term is bounded
by r1n + r2n, where r1n = ∫

c
| p̂.c/ − p.c/| dḠAn.c/ and r2n = | ∫

c
p.c/{dḠAn.c/ − dḠA.c/}|. By uniform

and strong consistency of p̂.c/ and the bounded convergence theorem, r1n = op.1/. Applying integration
by parts to r2n and by strong consistency of the empirical estimator ḠAn.c/, r2n = op.1/. It follows that
n1=2.p̂ − p/ = p1n + p2n + p3n + op.1/, where

p1n = n−1=2
n∑

i=1
{I.δxi = 1/ − Pr.δx = 1/} ,

p2n = n−1=2
n∑

i=1

∫
p.c/{Â.X̃i, Ỹi, δxi , δyi , c/ + B̂.Ỹi, δ

y
i , c/ + Ĉ.X̃i, δ̃i, c/}dGA.c/,

p3n =
∫

p.c/{dḠAn.c/ − dḠA.c/}√
n:

Asymptotic normality of p1n, p2n and p3n can be established by using standard techniques. The bootstrap
method also provides a practical solution for variance estimation.
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Appendix C: Asymptotic properties of Ŝ12(t)

We can write S12.t/ = Πu�t {1 − F10.du/=R12.u/}, where F10.u/ = Pr.X̃ � u, δx = 1/ and R12.u/ =
Pr.X̃ � u,X � Y/, which can be estimated by

R̂12.u/ = 1
n

n∑
i=1

I.X̃i � u, δxi = 1/ +
∫
c�u

p̂.c/dḠAn.c/

and F̂ 10.u/ = Σn
i=1I.X̃i � u, δxi = 1/=n. Asymptotic normality of Ŝ12.t/ can be established by showing

that it is a smoothed function of R̂12.u/ and F̂ 10.u/, each of which is consistent and asymptotically normal.
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