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Abstract. Pearn et al. (1992) proposed the capability index C,,x, and inves-
tigated the statistical properties of its natural estimator C,, for stable normal
processes with constant mean . Chen and Hsu (1995) showed that under
general conditions the asymptotic distribution of C, is normal if u # m, and
is a linear combination of the normal and the folded-normal distributions
if u = m, where m is the mid-point between the upper and the lower specifi-
cation limits. In this paper, we consider a new estimator C,, for stable pro-
cesses under a different (more realistic) condition on process mean, namely,
P(u=m)=p, 0<p<1. We obtain the exact distribution, the expected
value, and the variance of C,,; under normality assumption. We show that
for P( = m) =0, or 1, the new estimator C is the MLE of C,,, which
is asymptotically efficient. In addition, we show that under general condi-
tions C,, is consistent and is asymptotically unbiased. We also show that the
asymptotic distribution of C, is a mixture of two normal distributions.

Keywords and Phrases: process capability index; Bayesian-like estimator;
consistent; mixture distribution

1. Introduction

Pearn et al. (1992) proposed the process capability index Cux, which com-
bines the merits of two earlier indices C,x (Kane (1986)) and C,,, (Chan et al.
(1988)). The index C,, alerts the user if the process variance increases and/
or the process mean deviates from its target value, and is designed to monitor
the normal and the near-normal processes. The index C,, is considered argu-
ably the most useful index to date for processes with two-sided specification

* The research was partially supported by National Science Council of the Republic of China
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limits (Boyles (1994), Wright (1995)). The index Cj, referred to as the third-
generation capability index, has been defined as the following:

USL — u u— LSL

3\/02 (u—T)* 3\/02 (u—T)* 7

where USL and LSL are the upper and the lower specification limits, respec-
tively, u is the process mean, o is the process standard deviation, and 7 is the
target value. We note that C,,; can be rewritten as:

Cpmk = min

(1)

d
Cpmk = 5
3y o2+ (u—T)°

where m is the mid-point between the upper and the lower specification limits,
and d is the half length of the specification interval [LSL, USL]. That is,
m = (USL+ LSL)/2, and d = (USL — LSL)/2. For stable processes where
the process mean  is assumed to be a constant (unknown), Pearn et al. (1992)
considered the natural estimator of C,,x which is defined as:

. d—|X-m
Cpmk: | — ‘ ) (3)
3,/82+ (X - T)*

where X = (301, X;)/n and S, = {n"' > (X; — X) 2312 are conventional
estimators of the process mean and the process standard deviation, x# and
a, respectively. If the process characteristic follows the normal distribution,
Pearn et al. (1992) showed that for the case with 7" = m (symmetric tolerance)
the distribution of the natural estimator C,, is a mixture of the chi-square
distribution and the non-central chi-square distribution, as expressed in the
following:

M

Comic ~ 2 ” ’
3\t 2001 (A)

where x2 , is the chi-square distribution with n — 1 degrees of freedom, x| (1)
is the non-central chi dlstrlbutlon with one degree of freedom and non-
centrality parameter A, and /n 1(4) is the non-central chi- -square distribution
with n —1 degrees of freedom and non-centrality parameter A, where 1 =

n(u— T)?/o2. Chen and Hsu (1995) showed that the natural estimator Cpmk is
asymptotically unbiased. Chen and Hsu (1995) also showed that under general

conditions the natural estimator C,,mk converges to the normal distribution

)

N(O, apmk) where
a? 12(u— T)o? — 6u
Tk = 2 ot ) 2 3?2 Comk
o>+ (u—1)7 |18[c? + (u— 1))

Cpmk ’ (5 )

144(u — T)*0 — 144(u — T)ts + 36(uy — 0*)
" 144[02 + (u— T)?Y?
o2+ (u—T)7]

U3, 1y are the third and fourth central moment of the process, respectively.
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2. A Bayesian-like estimator

In real-world applications, the production may require multiple supplies with
different quality characteristics on each single shipment of the raw materials,
multiple manufacturing lines with inconsistent precision in machine settings
and engineering effort for each manufacturing line, or multiple workmanship
shifts with unequal performance level on each shift. Therefore, the basic and
common assumption that the process mean stay as a constant may not be
satisfied in real situations. Consequently, using the natural estimator C, to
measure the potential and performance of such a process is inappropriate as
the resulting capability measure would not be accurate. For stable processes
under those conditions, if the knowledge on the process mean, P(u > m) = p,
0 < p <1, isavailable, then we can consider the following new estimator C,,.
In general, the probability P(u > m)=p, 0 <p <1, can be obtained from
historical information of a stable process.

@m:mqw_&>mnmm, (6)

34/824 (X - T)?

where b, = \/2/(n — V){I'[(n —1)/2]/T"[(n — 2)/2]} is the correction factor,
I4(-) is the indicator function defined as I,(u) = 1 if ue A4, and I4(u) = —1
if ¢ A, where A = {u|u > m}. We note that the new estimator C,,, can be
rewritten as the following:

d— (X —m)Ly(p)

. by [d — (X — mm( 318, Coi
pmk = = — )
3,/82 4+ (X - T)? l(X—T)2
s

where Cpp = b, 1[d — (X —m)Ls()]/(3S,) as defined by Pearn and Chen
(1996). If the process characteristic follows the normal distribution, N(u,a?),
then we can show the following Theorem.

Theorem 1. If the process characteristic follows the normal distribution, then

N(n,1

bn—l |:\/ﬁCp _ (Z? )
\% Xﬂ

mean 1 = 3/n(C, — Cpy), %2 is the non-central chi-square dlslrlbutl()n with n
degrees of freedom and non-centrality parameter ) = n(u — T)? /a2

Comk ~ } , where N(n,1) is the normal distribution with

Proof: We note that 3b,',S,Cpx = d — (X —m)L4(p) is distributed as the
normal distribution N (30C,,0%/n). Therefore, b,_i[d — (X — m)IA(,u)]/
(30) = b,_1{[d/(30)] — [(X — m)l,(w)/(30)] is distributed as b, 1{C,—
[N(y,1)/(3v/n)]}, where N(5,1) is the normal dlstrlbutlon with mean =
\/E(C Cox)- We also note that [nS2 + n(X — T)%]/o* = 3.1 (X; — T)* /o>
is distributed as /%, the non-central chi-square dlstrlbutlon with n degrees of
freedom and non-centrality parameter A=n(u— T) /a?. Therefore, Comi 18

distributed as b,_1{/nC, — [N(n,1)/3]}/\/x2.
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The r-th moment (about zero) of C’,,mk, therefore, can be obtained as:

o v, )
Nze

~3())e HQCT F} o

By setting r = 1, and r = 2, we may obtain the first two moments and the
variance as:

o= 3o (1| [ [ %

E(C' ) =E

_N( ’ 1) : -fc ]
co-sn e} w
Var(Cone) = E(Cpe) — [E(Cpi)]’. (11)

We note that for the case with p(u>m) =1, Cpmk < Cpmk for X >m
and Cpmk > Cpmk for X <m—d[(1—-b,1)/(1+ b,, 1)]. If the process distri-
bution is normal, then the probability P(X > m) = @{\/n[(1 — m)/a]} con-
verges to 1. Thus, for large values of n, we expect to have C,; < Cpn1k On
the other hand, 1f P( 1 =m) =0, then we have C, < C,,mk for X < m and
Cpmk > Cpmk for X > m+d[(1 —b,_1)/(1 + b,_1)]. If the process distribution
is normal, then the probability P(X < m) = &{\/n[(m — u)/s]} converges to
1. Thus, for large values of n, we also expect to have Cpi < Cppi. Explicit
forms of the expected value and the variance of C,, are analytically intrac-
table. But, for the cases with P(x >m) =1 or 0, the probability density
function may be obtained (the proof is omitted for the simplicity of the pre-
sentation).

3. Asymptotic distribution of C’pmk

In the following, we show that if the knowledge on the process mean, the
probabilities P(u > m) =p, and P(u<m)=1—p, with 0 <p <1 is given,
then the asymptotic distribution of the proposed new estimator C,,; is a
mixture of two normal distributions. We first present some Lemmas. The
proofs for these Lemmas can be found in the reference Serfling (1980). A
direct consequence of our result is that for the cases with either P(u > m) = 1,
or P(u > m) = 0, the asymptotic distribution will then be an ordinary normal
distribution.

Lemma 1: If u, = E(X —p)* exists, then /n(X — u, S2 — 0?) converges to

4
N((0,0),2) in distribution, where X = ’ s 4
3 My — 0O
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Lemma 2: [If g(x,y) is a real-valued differentiable function, then
Vilg(X,S2) — g(u,a?)] converges to N(0,DXD') in distribution, if D =

(% % ) £ (0,0).

(o) OV
Lemma 3: If the random vector (wi,, Way, ..., Wk,) converges to the random
vector (Wi, wa, ..., wx) in distribution, and the random vector (v1,, v, . .., Ukn)
converges to the random vector (vi,vy,...,0%) in probability, then the ran-
dom vector (VipWin, V2nWan, - - -, UnWkn) converges to the random vector (viwy,
VW2, . .., UpWy) in distribution.

(u,02)

Lemma 4: If the random vector (Wiy,Wap, ..., Win) converges to the random
vector (wi,wa,...,wx) in distribution, and the function g is continuous with
probability one, then g(wi,, Way, . .., Wiky) converges to g(wi, wa, ..., wy) in dis-
tribution.

Lemma 5: If the random vector (vi,, V2, - . ., Ukn) converges to the random vec-
tor (v1,vy,...,v) in probability, and the function g is continuous with proba-
bility one, then g(vin, V2, - - ., Ukn) converges to g(vy, va, ..., vx) in probability.

Lemma 6: If 1, = E(X — ,u)4 exists, then \/n(X — u, X — u, S? — a?) converges
o’ ot
10 N((0,0,0), Z*) in distribution, where £* = | 6> ¢*> 14
4

Proof: See Chen and Hsu (1995). Hy M Ha—0

Theorem 2: The estimator Cpmk is consistent.

Proof: We first note that (X, S2) converges to (u,0?) in probability and b,
converges to 1 as n — o0. Since C,,y is a continuous function of (X, S2), then
it follows directly from Lemma 5 that C,,x converges to C,,, in probability.
Hence, C,,x must be consistent.

Theorem 3: Under general conditions, if the fourth central moment u, =
E(X — p)* exists, then \/n(Cpmi — Comi) converges to p - N(0, apzmkl) +(1—p)-
N(0,02, ,) in distribution, where

> Y pmk?2
1 -3/2
AN w=T°  Aiu (u—T)°
2 _“1 3
mekl = 7 |} +T ? ; 1+ T Cpmkl
lw—o* [ (=17
4 — 2
+ 0_4 1 + 2 Cpmkl
—~1 -3/2
A2 (u—T)* Ay u (u—T)*
2 _ 2 3
mekZ = ? 14+ o2 ? ; 1+ o2 Cpme
2
1y —a* (- T)2 2
+Z ] 1+ 2 Cpme
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9 T, d— (u—
PR AL, T — L
(u—m) 3 /0'2+(,M—T)2
9(1“ T)Cpmkz d+ (Iu — m)
Ay = -1

y ka2: .
d+(u—m) g 3v/o2+ (u—T)*

. d—(x—
Proof: (CASE 1) If 4 > m, we define the function g (x, y) = (x—m)

3y (- 1)

where x > m, y > 0. Since ¢, is differentiable, then we have

% _ -4, Cpmkl % _ _2 Cp3mkl
0x |(uory d=(u=m)" Wl 2[d=(g—m)]
9(u—T)C? d— (u—
where 4; = M—i— 1, and Cpp1 = (e —m) . If we define
0 _(aﬂ_m) 3y + (u—1)°
D, = gl gl then D, # (0 0)
Ox (4,62) ay (107

By Lemma 1 and Lemma 2, V(b Comic — Comi) = v/u[g1 (X, S2)—
g1(u, a%)] converges to N(0,62 ) in dlstrlbuuon where

» Y pmk1
-1 _3/2
A w=T° Al (u=T)
O-pzmkl = DIZD{ = ?1 1 +T “FT ] 1 +T Comi1
lw—o* [ =17
. — _
—|—Z g 1+ ) Cpmkl
d+ (x—m)

(CASE II) If u<m, we define the function g»(x,y)= ,
/ 2
where x < m, y > 0. Since ¢, is differentiable, then we have Wy+=T1)

@ — _AZCpme @ — _2 Cp3mk2
0x oty dA (=m0l 2[d+(p—m)
9(u C _
where 4, = M —1, and Cpz = d+(p—m . If we define
d+ (u—m) 2
d92 92 3Wor+{u=T)
D, = , then D, # (0,0).
ox (4,0%) ﬁy (107

By Lemma 1 and Lemma 2, va(h,',Com — Comik) = v[g2(X, S2) —
g2(u, )] converges to N(0,c mkz) in dlstnbu‘uon where

-1 -3/2
A2 )2 A _ T2
G;mkz =D:2D; = ?2 I+ L 2 ) +?2 /‘_; ll +M Comi2
o
tw—c*[ -1
4 — 2
+ g I+ ) Cpmkz
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(CASE III) If 1t = m, then

A V(X —u)
Vi, Comie — Copi) = —
e 32+ (X - 1)
d [VA(S? — 62) + /n(X? — p?) = 2/n(X — p)T)

IR RPN s S R R e e |

We define

Up = — 5

Uon =

ayfort (am T)\/S2+ (X = T)lo> + (u— 1) + /2 + (X — 1))
win = V(X — ), wa = Vn(S; — %) + Vn(X? = ?) = 2v/n(X — w)T.

Since (X, S,f) converges to (u, 02) in probability, then (vy,,vs,) converges to
Cpka Uy — — 9C;mk0

d )7 2d?
. Define the function G(x, y,z) = (X,z+ xy — 2xT). Then

(v1,v2) in probability, where v; = — ,and Cppro =

3y/o2 4+ (u—T)*
by Lemma 4 and Lemma 6, (wi,, w2,) = vn[G(X, X, S?) — G(u, p, 6%)] con-
verges to (w;, wp) which is distributed as N((0,0), 2 ), where

2 2 1
1o o0]|% 7 " I orer e
ZG: ag g U3 0 u| = )
a p 1 c d
My py o b 0
witha = u—2T,b = uy — o*, ¢ = 2(u — T)o* + 13,

d=4(u—T) +4(u— Ty + (g — 0*).

Hence, by Lemma 3,

—Vn(X — )

3\/S2+ (X - T)*

3 V(S = 0%) + Va(X2 = i) = 2/a(X — )T

o+ (= T)\JS2 + (X = T)[Jo? + (u— T)? + /3 + (X - T)?]
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Cpmk Wi — 9C1§mk
d U242

H(x,y) = x+ y. Then, by Lemma 4, \/ﬁ(b;llépmk — Cpmi) converges to ¥ =
Cpmk 9 C/fmk

converges to (vywy,vpwr) = | —

wy | in distribution. Define

—=g Mty " which is a normal distribution with E(Y) = 0,
—1 -3/2
Al w=1 Ao |, (u=T)
Var(Y) :?O 1+T ?; 1 +T Cpm/cO
-2
1y o (1 — T)2 2
+ 4 4 1 2 Cme
9(1“ - T) szka d

where 4y = + 1, Cpmiko =

d 3yJa2 4 (u—T)*
Since  P{y/n(b;',Copk — Comi) <1} = P{u = m}P{\/n(b;", Comi — Comi)
<rlu=m}+ P{u<m}P{\/n(b,Cp — Comk) <r|p<m} for all real

number r, then it follows that \/ﬁ(brﬂlemk— Comic) converges to

p-N0,0,,1)+(1=p)-N(0,0,,,,) in distribution. Since v/n(Cpmk — Cpmr) =

VB Comie — Comic) + V1 Copie — b Comi) and b, converges to 1 as
n — oo, thus by Slutsky’s theory, the theorem proved.

Corollary 3.1: The estimator (j’pmk is asymptotically unbiased.

Proof: From Theorem 3, /n(Cpm — Cpmr) converges to the following

p-N©O,00)+(1=p)-N©0,07,2) in  distribution. Therefore,
E{\/n(Cpmk — Cpmi)} converges to zero, and so C,,c must be asymptotically

unbiased.

Corollary 3.2: If the process characteristic follows the normal distribution, then
VI(Comi — Cpmi) converges to p- N(0,0,,.1,) + (1 = p) - N(0,07,15,), a mix-
ture of two normal distributions, where

- )
A w=T)? 1 (e=T)
2 _ 4 2
O-pmkl’*j 1+T +§ 1+ 0_2 Cpmkl’
—1 -2
A, w=T7 [,  (u-T)
ok = 72 [1 t—s | tr|ltT Coic2>
9(u—T)C? d— (u—
Ay = (u ) pmk1+17 Comit = (g —m) ’
d—(u—m) 3y/o2 + (u—T)*
79(/1_ T)C;me 1 d+(/u7m)
P A

) ka2: .
d+(u—m) ! 3Wor+ (u—T)°

Theorem 4: [f the process characteristic follows the normal distribution, then



A Bayesian-like estimator of the process capability index Cux 311

for the case with P(u>m) =0, o0r 1, (i) C’,,mk is the MLE of Cp, (ii) Cpmk is
asymptotically efficient.

Proof: (i) For normal distributions, (X,S?) is the MLE of (u,0?). By the

invariance property, Cp, is the MLE of C,.
(ii) The Fisher information matrix can be calculated as:

o=l 217 el

5 2
where 0 = (u,0%),d’ E[ailnf(x,ﬁ)} :
u
b=c=E ilnf( H)LInf( 0)|,andd' = E ilnf( 9)2
= =E & X, 0) = x,0)|, =E|— x,0)| .

If P(u = m) = 1, then the information lower bound reduces to

0

—C
O L | O |
5,“ pmlmao_z pmk n p
307
—1 2
:A_l2 1 +(ﬂ_ T)2 +Cp2mk1 1 +(:u_ T)2 :agmkl’
9n o2 2 o? n

On the other hand, if P(u > m) =0, then the information lower bound
reduces to

0

_Cm
Qe 2o @)@
aﬂ pmk760_2 pmk n 5

ﬁcpmk

—1 )
— A_% 1+ (:u — T)2 + szme 1+ (/’t - T)z _ O-]%me’
9n a? 2 o? n

Since the information lower bound is achieved (Corollary 3.2), then for the
case with P(u > m) = 0, or 1, Cp,, is asymptotically efficient.

In practice, to evaluate the estimator C,,x we need to determine the value
of the indicator which requires additionally the knowledge of P(u > m), or
P(u < m). If historical information of the process shows P(u > m) = p, then
we may determine the value I4(u) = 1, or —1 using available random number
tables. For example, assume p = 0.375 is given, then I,(ux) =1 if the gen-
erated 3-digit random number is no greater than 375, and I4(u) = —1 other-
wise.
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4. Conclusions

Pearn et al. (1992) proposed the capability index C,,, which is designed to
monitor the normal and the near-normal processes. The index C,, is con-
sidered to be the most useful index to date for processes with two-sided spec-
ification limits. Pearn et al. (1992) investigated the statistical properties of the
natural estimator C,, for stable normal processes with constant mean u. In
this paper, we considered stable processes under a different condition (more
realistic) where the process mean may not be a constant. For stable processes
under such conditions with given knowledge of P(u>m) =p,0<p <1, we
investigated a new estimator C,, using the given information.

We obtained the exact distribution of the new estimator, and derived its
expected value and variance under normality assumption. For cases with
P(u=m) =0, or 1, we showed that the new estimator Cp is the MLE of
Cymi. In addition, we showed that under general conditions C,, is consistent
and is asymptotically unbiased. We also showed that the asymptotic distribu-

tion of C,, is a mixture of two normal distributions. The results obtained
in this paper allow us to perform a more accurate capability measure for
processes under more realistic conditions in which using existing method
(estimator) is inappropriate.
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