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Abstract

This study presents a neural–genetic algorithm to solve the selection problem of manufacturing process parameters. The

proposed algorithm is a combination of artificial neural network (ANN) and genetic algorithms (GAs). In addition, the neural

network is used to formulate a fitness function for predicting the value of the response based on the parameter settings. GAs then

take the fitness function from the trained neural network to search for the optimal parameter combination. Owing to the most of

manufactured products have more than one quality characteristic and the quality characteristics are generally correlated with

each other, this study also proposes a desirability function to obtain a compromise, composite solution. A case study of how the

silicon manufacturing process parameters are selected offline demonstrates the effectiveness of the proposed approach.
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1. Introduction

A group of responses often characterize the perfor-

mance of a manufactured product. These responses are

generally correlated and measured by a different

measurement scale. Therefore, a decision-maker must

resolve the parameter selection problem to optimize

each response. This problem is regarded as a multi-

response optimization problem, subject to different

response requirements. Most of the conventional

methods are incomplete in that a response variable

is selected as the primary one and is optimized by

adhering to the other constraints set by the criteria [1].

Many heuristic methodologies have been developed

to resolve the multi-response problem. Cornell and

Khuri [2] explored the multi-response problem using a

response surface method. Tai et al. [3] assigned a

weight for each response to resolve the problem.

Pignatiello [4] utilized a squared deviation-from-tar-

get and a variance to form an expected loss function

for optimizing a multiple response problem. Layne [5]

presented a procedure capable of simultaneously con-

sidering three functions: weighted loss function, desir-

ability function, and distance function. While

providing a multi-response example in which Taguchi

methods are used, Byrne and Taguchi [6] discussed an

example involving a connector and a tube. Logothetis
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and Haigh [7] also discussed a manufacturing process

characterized by five responses. In doing so, they

selected one of the five response variables as primary

and optimized the objective function sequentially

while ignoring possible correlations among the

responses. Optimizing the process with respect to

any single response leads to nonoptimum values for

the remaining characteristics.

Optimizing the parameter selection problem

requires developing a model capable of accurately

describing the input–output behavior and capturing

the range of these input–output parameters. There-

fore, this work presents a neural–genetic algorithm

that combines the neural network and genetic algo-

rithm to identify the nonlinear relationship between

input and output parameter and obtain a near-optimal

parameter combination. The neural networks have

been extensively used to model the engineering pro-

cess. Briefly, the neural network maps the input–

output observed data and, in doing so, defines the

fitness function of the parameter selection. Conse-

quently, the genetic algorithm utilizes the fitness

function to identify the optimal solution of the pro-

blem. In addition, this study proposes a concurrent

optimization performance index to obtain a preferable

solution by using a desirability function developed by

Derrienger and Suich [8]. Capable of concurrently

optimizing several responses and allowing the user to

weigh the responses by their importance, the desir-

ability function is easily understood and intuitive [6].

A case study demonstrates the effectiveness of the

proposed approach.

The rest of this paper is organized as follows.

Section 2 describes neural networks, genetic algo-

rithms and the hybrid neural–genetic algorithm. Sec-

tion 3 provides details of the multi-response

optimization technique. Section 4 describes a case

study of the silicon manufacturing process in Taiwanto

show how the proposed algorithm is implemented.

Concluding remarks are finally drawn in Section 5.

2. Optimization approach

2.1. Neural networks

Describing a manufacturing process precisely is

generally too difficult by a mathematical function.

A recent work adopted neural networks to elucidate

the ability to learn complex relationships between

parameters and responses, usually for process and

quality control [9]. These models are frequently used

to identify optimal process settings. An approximated

model can be constructed using a neural network.

Although statistical regression methods and neural

network method both can effectively correct the

dimensional measurements of geometric features on

a part profile, Chang et al. [10] indicated that neural

network methods will be a very powerful alternative

for precision measurement using computer vision

system.

Neural networks have been successfully applied to

diverse areas such as speech synthesis and pattern

recognition [11]. Once trained, a neural network can

be evaluated very quickly, particularly during the

optimization phase. Recent review of neural network

applications in manufacturing, Zhang and Huang [12]

cited such diverse venues as milling, metal cutting,

injection modeling, arc welding and spray painting.

Details regarding further applications can be found in

[13–17].

Neural networks are formed by processing parallel

units called neurons, which closely resemble the

structure of a human neurological system. The ele-

mentary processors are interconnected so that knowl-

edge pertaining to the relationship between input and

output parameters are stored in the weights of the

connections between them. Each neuron except the

first layer contains the weighted sum of previous input

neuron by an exponential function. This function

allows neural networks to be generalized with a wide

range of application.

Neural networks can be categorized into network

structures such as multilayer perceptron, the feedback

model of Hopfield [18] and Hopfield and Tank [19],

the adaptive resonance technique (ART) networks and

Kohonen network etc., and the learning methods such

as back-probagation. The ability to learn is one of the

main advantages that makes the neural networks so

attractive. They also have the capability of performing

parallel processing and possess significant fault tol-

erance. Since the BP neural network can be used to

approximately realize continuous mapping [20], this

work adopts the BP neural network owing to its ability

to map the complex relationship between input data

and corresponding outputs.
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2.2. Genetic algorithms

Genetic algorithms (GAs), an optimization metho-

dology based on a direct analogy to Darwinian natural

selection and genetics in biological systems, is a

promising alternative to conventional heuristic meth-

ods [21]. GAs differ from conventional search tech-

niques that conduct a point-to-point search in the

solution space. GAs work with a set of candidate

solutions called population and, based on the Darwi-

nian principle of ‘‘survival of the fittest’’, obtain the

optimal solution after a series of iterative computa-

tions. This characteristic, associated with their sto-

chastic nature, enables GAs to deal with large search

spaces randomly and efficiently.

Genetic algorithms (GAs) have been extensively

used to optimize complicated production systems.

GAs are known for their robustness and effective

overall search capabilities [22]. Hung and Adeli

[23], and Hsu et al. [24] demonstrated the superiority

of GAs over other networks capability in terms of its

optimum search. Highly promising for obtaining near

optimal solutions to complex problems, GAs have

been extensively applied to diverse areas such as

scheduling and sequencing [25–28], cellular manu-

facturing [29], PCB layout design [30], and process

control strategies [31].

GA, a local search technique, can find solutions for

a wide range of application. To achieve the desired

response, GAs generate a successive population of

alternate solutions which are represented by a chro-

mosome, i.e. a solution to the problem, until accep-

table results are obtained. In this manner, a GA can

quickly yield a successful outcome without examining

all possible solutions to the problem. The procedure

using the fitness function is to assess the performance

of the solution. The reproduction, crossover, and

mutation are the main operators that randomly impact

the fitness value. Chromosomes are selected for repro-

duction by evaluating the fitness value. The fittest

chromosomes are then saved and copied into the next

generation. Crossover, the critical genetic operator

that allows new solution regions in the search space

to be explored, is a random mechanism for exchanging

genes between two chromosomes. The probability of

crossover is generally set between 0.5 and 0.9. Muta-

tion, in which the genes may occasionally be altered,

i.e. a ‘‘0’’ becomes an ‘‘1’’ or vice versa. During the

search, the mutation must avoid the premature loss

important information although they are typically set

at an extremely low value, 0.01 to 0.05.

2.3. A hybrid neural–genetic algorithm

This study proposes a novel hybrid neural–genetic

algorithm to determine the parameter settings in a

manufacturing process. The proposed approach com-

bines the neural network and GA to the problem. The

proposed approach consists of two stages. The first

stage in a hybrid procedure involves identifying the

desirability function deriving from the multiple

responses. A BP network is trained to derive the

relationship between input parameters and output

responses. Notably, the trained network can accurately

predict the behavior of possible parameter combina-

tions. Thus, tuning the input parameters in the trained

network allow us to obtain the corresponding

response. The trained network is used as the fitness

function in the GA. During the second stage, GA is

directly used to solve the problem. Herein, the chro-

mosome is used to represent the possible solution.

Each gene in the chromosome represents the value of

the input parameter. For example, a manufacturing

process has three input parameters P, Q, and R. A

chromosome can represent the value of the three

parameters (P, Q, R), respectively. The essential

genetic operators during the iterative procedure can

be found in the previous section. These operations are

conducted to obtain the optimal response, which is

evaluated by the fitness function. Therefore, the opti-

mal parameter of the problem can be obtained. Fig. 1

schematically depicts the proposed hybrid procedure.

The detailed procedure is summarized as given

further.

Step 1. Collect the input parameters and correspond-

ing responses.

Step 2. Develop a BP network model to obtain the

relationship between the input parameters and output

responses. The trained network is referred to as a

fitness function.

Step 3. Set the GA operating condition (e.g. popula-

tion size, maximum number of generation, parameter

number, crossover rate, and mutation rate).
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Step 4. Create an initial population by randomly

selecting the value of the input parameters.

Step 5. Repeat steps 6–10 until the stopping condition

is reached.

Step 6. Calculate the responses, by inputting the

parameter values to the fitness function (responses

are taken from Step 2).

Step 7. Select the parameter values according to the

computed response.

Step 8. Crossover the fitness parameter values.

Step 9. Mutate the parameter values to yield the next

generation.

Step 10. Obtain the current optimal parameter values.

Step 11. Obtain the optimal parameter settings and

responses.

3. Multi-response problem

3.1. General scheme

Optimization of the multi-response problem is an

attempt to optimize all output responses simulta-

neously. Among the concurrent optimization methods,

most of the authors used the approaches that combine

all the different response requirements into one com-

posite requirement [1]. Hence, the compromise solu-

tion is obtained in a much simpler way. A simple

Fig. 1. The Schematic diagram of the hybrid procedure.
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weighting method was found in Ilhan et al. [32], as

applied in an electrochemical grinding (ECG) process.

Zadeh [33] normalized each response and then gave a

simple weight for each response. The discussion

regarding the assignments of weights can be found

in [34].

3.2. Desirability function

The desirability function transforms each response

to a corresponding desirability value dið02 d 2 1Þ.
All the desirabilities are combined to form a compo-

site desirability function:

D ¼ f ðd1; d2; d3; . . . dnÞ (1)

where n is number of responses. The value of D may

be defined as the geometric mean of the di’s and

thus D lies between 0 and 1. Consequently, the

desirability approach can convert a multi-response

problem into a single-response one. The plant man-

ager can easily determine the optimal parameters

among a group of solutions. However, the user spe-

cifies the parameters ‘‘p’’ of Eqs. (2) and (3) based on

technical, economical and other considerations. For

two-sided specification limits with a target value T

for the response Y, Derringer [33] used the following

transformations

di ¼

Yi � LSLi

Ti � LSLi

� �p

LSLi � Yi � Ti

Yi � USLi

Ti � USLi

� �p

Ti � Yi � USLi

0 Yi < LSL or Yi >

USL otherwise

8>>>>>>><
>>>>>>>:

(2)

where LSLi is ith lower specification of limit; USLi the

ith upper specification of limit; Ti the ith target of the

response; and Yi is the ith response.

For a one-sided specification limit (higher-the bet-

ter-type response), Derringer [8] suggested the follow-

ing transformations:

di ¼

0 Yi � LSLi

Yi � LSLi

Yi max � LSLi

� �p

LSLi < Yi < Yimax

1 Yi � Yimax otherwise

8>><
>>:

(3)

where Yimax is the highest value which is practically

attainable.

3.3. The proposed approach

This study proposes a desirability function to solve

multi-response optimization problems. When the

multi-response problem is transformed into a single-

response problem, the single-response problem is

divided into two problems: how to specify the weights

and how to transform each response into a more

‘‘desirable’’ response. This work proposes a compo-

site approach by using the desirability function [8,35]

to determine the overall value of scalar function. The

scalar function ranges between 0 and 1, and the larger

the value implies a more stringent user requirement.

This value can also be used as a performance index for

the multiple responses.

Herein, the hybrid neural–genetic algorithm and the

desirability function are combined. The neural net-

work is first trained by using the process production

data. The desirability function is then used to trans-

form the multiple responses into a single response.

Finally, GA is applied to obtain the best desirability

value (i.e. fitness value). Consequently, the optimal

parameter settings of the manufacturing process can

be determined.

4. Illustrative example

4.1. Problem description

The silicon compound of RC50 is a critical part that

is used in the computer peripheral and medical appli-

ance assemblies. Fig. 2 shows a flow chart of RC50

silicon compound manufacturing process. The process

starts by mixing two silicon raw materials: silicon

filler and catalyst under a high temperature. The

materials are then polymerized in a chemical chamber

under parameter settings, which were originally

assigned by an equipment provider in Japan. The

process of polymerization in the chamber is the most

complicated and critical process that strongly depends

on parameter settings (e.g. N2 flow, release agent,

conductivity, and oil absorption). Filtering, water

cleaning and purification are then applied to remove

small amounts of contamination and improve the
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product’s characteristics. Table 1 lists the operating

ranges with respect to process parameters. To satisfy

customer’s requirements, QA takes a certain amount

of finished goods to conduct a 2-day functional test

after forming and cutting processes. The entire pro-

duct is sent back to line for reworking if it fails the QA

test. Consequently, it interferes with the regular pro-

duction schedules, resulting in late deliveries.

The manufacturer had difficulty in achieving effi-

cient process control due to insufficient knowledge of

the relationship between process parameters and cor-

responding responses. Table 2 lists the process cap-

ability indices for the seven responses; the

performance is obviously improved in terms of pro-

cess capability. However, conducting experimental

design to improve the quality would be infeasible

since the factory employs a continuous process with

an enormous amount of material and long production

time. Hence, this study adopts the historical process

data to obtain the required model, thereby optimizing

the product’s responses.

The problem considered herein is the multi-

response optimization problem as the process para-

meter selection applied in a silicon manufacturing

company. The problem dealing with the multi-input

and multi-output is common in practice. The silicon

factory must determine the levels of 14 parameters for

seven quality characteristics to satisfy different cus-

tomer’s requirements.

4.2. Training of neural networks

The relationship model between parameters and

responses is developed by using BP neural network,

in which historical production data of four hundred

lots are employed for training as well as 100 lots are

used for testing. The convergence criterion employed

in the network training is the RMSE. Table 3 lists

Fig. 2. Manufacturing process of silicon compound of RC50.

Table 1

Input parameters and their operation ranges

Parameter Code Range

Water content P1 80–90

pH value P2 10–20

Conductivity P3 0.0017–0.002

Release agent Z1 2.26–3.2

Specific area W1 1.2–3.1

Oil content W2 0.1–0.2

Whiteness W3 1.0–1.1

Particle size W4 3.3–3.7

Al2O3 content W5 0.15–0.3

Fe2O3 content F1 0.5–1.0

Residue sieve F2 10–15

Volatile material F3 7.5–17.5

Temperature C1 17.1–25

Nitrogen flow C2 50–60

Table 2

Specifications and process capability indices of seven responses

Responses (code, dimension) Specification Cp Cpk

Density (Y1, g/cc) 1.140–1.15 0.71 0.67

Plasticity (Y2, point) 210–250 1.00 0.98

Hardness (Y3, durometer) 51–55 0.52 0.49

Tensile strength (Y4, kg/cm2) �6.2 0.80 0.80

Elongation (Y5, %) �250 0.79 0.79

Shrinkage ( Y6, %) 3.7–3.9 0.39 0.34

Rebound (Y7, %) �66 0.34 0.34
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several options of the neural network architecture, in

which the structure 14-7-7 is selected to obtain a better

performance. The trained network 14-7-7 is used as

the fitness function of the GA, as further explored in

the next section.

4.3. Determination of the fitness function

Once a BP neural network was well trained, the

weights connected between layers in the neural net-

work structure illustrated the relationship between

input parameters and output responses. The value of

each response was calculated by weighted sum con-

nected to output node and transferred by an acti-

vation function (e.g. sigmoid function). Hence, the

weights obtained from a trained BP neural network

and activation functions of each node formed the

fitness function adopted in GA optimization proce-

dure. In this case, responses Y1, Y2, Y3, and Y6 have the

corresponding target values and Y4, Y5, and Y7 have

lower specifications. After training the BP neural

network, the value of (Y1–Y7) will be the near-optimal

solution in this case. Then, using the Eqs. (2) and (3)

will transfer the value of Yi into di. Herein, a geometric

mean of seven responses is employed as a desirability

function to solve the multi-response problem. We

have

D ¼ f ðd1; d2; d3; d4; d5; d6; d7Þ (4)

where di is calculated from Eqs. (2) and (3). For

computational convenience, p is equal to 1 in this

case. While a di is approaching to 1, it means that di is

approaching the target. While the D is approaching to

1, it is noted that each response in the process is

simultaneously approaching to 1 (say the target). The

value of D demonstrates the performance metric of the

proposed method.

4.4. Optimization using genetic algorithm

Each input parameter in a silicon factory is normal-

ized to the value between 0 and 1 and they are

combined into one string. For example, the input

parameters listed in Table 1, are transformed into

the chromosome representation (P1, P2, P3, Z1,. . .,
C2) in a string. Strings are randomly generated to form

the initial population. When GA is applied to optimize

Table 3

Options for neural networks

Architecture RMSE

Training Testing

14-5-7 0.10121 0.11912

14-6-7 0.09963 0.09632

14-7-7 0.08521 0.09541

14-8-7 0.08754 0.09674

14-9-7 0.08737 0.09724

Note: Learning rate: 0.2, momentum: 0.9, and number of epochs:

10,000.

Table 4

Implementation results of GA

Item Data

The largest D value in 20 runs 0.7212

The smallest D value in 20 runs 0.5724

Average D value 0.6602

S.E. 0.0413

Table 5

A comparison of responses

Method Parameter values Predicted responses

Initial state P1 ¼ 85.0,

Z1 ¼ 2.96,

W3 ¼ 1.00,

F1 ¼ 1.00,

C1 ¼ 18.1,

P2 ¼ 15.00,

W1 ¼ 1.70,

W4 ¼ 3.30,

F2 ¼ 10.00,

C2 ¼ 60.00,

P3 ¼ 0.0019,

W2 ¼ 0.10,

W5 ¼ 0.15,

F3 ¼ 15.00,

Y1 ¼ 1.142,

Y4 ¼ 7.00,

Y7 ¼ 67.00,

Y2 ¼ 224.00,

Y5 ¼ 270.00,

Y3 ¼ 53.4,

Y6 ¼ 3.85,

Proposed approach

(optimal condition)

P1 ¼ 84.3,

Z1 ¼ 2.76,

W3 ¼ 1.06,

F1 ¼ 0.64,

C1 ¼ 28.76,

P2 ¼ 10.54,

W1 ¼ 1.75,

W4 ¼ 3.53,

F2 ¼ 13.06,

C2 ¼ 50.18,

P3 ¼ 0.0019,

W2 ¼ 0.16,

W5 ¼ 0.24,

F3 ¼ 14.43,

Y1 ¼ 1.145,

Y4 ¼ 8.4178,

Y7 ¼ 74.88,

Y2 ¼ 229.94,

Y5 ¼ 298.22,

Y3 ¼ 52.37,

Y6 ¼ 3.81,
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the silicon parameter selection, the essential operators,

including reproduction, crossover and mutation,

should be determined in advance. Herein, a roulette

wheel approach is adopted as the selection procedure.

The crossover rate and mutation rate are set as 0.5 and

0.01, respectively. Fifty strings are randomly gener-

ated to establish the initial population. Notably, 5000

generations were processed. In this case, the optimal

target, a geometric mean of seven responses will be set

to 1. The fitness function is formed by the BP learning

algorithm and desirability function. The specification

of each response will be the constraints in the GA

optimization procedure.

4.5. Results

The above information is used and the GA is

executed 20 runs. Table 4 summarizes the implemen-

tation results. The higher the D value implies a much

better compromised solution. The largest D value is

0.7212 and its optimum chromosome is (84.3, 10.54,

0.0019, 2.76, 1.75, 0.16, 1.06, 3.53, 0.24, 0.64, 13.06,

14.43, 28.76, 50.18). These settings are the optimal

condition for our 14 process parameters. The pre-

dicted responses under the optimal condition are

Y1 ¼ 1:145, Y2 ¼ 229:94, Y3 ¼ 52:37, Y4 ¼ 84:178,

Y5 ¼ 298:22, Y6 ¼ 3:81, Y7 ¼ 74:88. Table 5 com-

pares the responses between the initial condition and

the proposed one (optimal condition).

Table 6 also compares the initial process capability

and the process capability based on the proposed

approach. According to this table, the proposed

approach outperforms the original state. Correspond-

ingly, the feasibility of the proposed approach is

established.

5. Conclusion

This study proposes an integrated method using

neural network, genetic algorithm, and desirability

function to optimize the manufacturing process with

multiple responses. The neural network is used to

explore the nonlinear multivariate relationship

between the parameters and responses and then

GA is performed to obtain the optimal parameter

settings. During the implementation of GA, the fit-

ness function is defined in terms of a desirability

function, which is utilized to transform multiple

responses into a single response. The proposed

approach can easily and efficiently achieve the opti-

mization of the complex process with multiple

responses. These settings facilitate the process engi-

neers in achieving acceptable process control during

the production. In addition, all of the experiments are

conducted under computerized simulations with his-

torical production data without any manufacturing

interruption. The improvement in process capability

allows the factory to more easily fabricate products

with superior quality.
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