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Summary

In this paper we consider maximum likelihood analysis of generalized growth curve model with the
Box-Cox transformation when the covariance matrix has AR(q) dependence structure with grouping
variances. The covariance matrix under consideration is S = DsCDs where C is the correlation matrix
with stationary autoregression process of order q, q < p and Ds is a diagonal matrix with p elements
divided into gð� pÞ groups, i.e., Ds is a function of fs1; . . . ; sgg and �1 < q < 1 and sl, l ¼ 1; . . . ; g,
are unknown. We consider both parameter estimation and prediction of future values. Results are illu-
strated with real and simulated data.
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1. Introduction

We consider a generalized multivariate analysis of variance model useful espe-
cially for many types of growth curve problems. The model was first proposed by
Potthoff and Roy (1964) and subsequently considered by many authors, includ-
ing Khatri (1966), Geisser (1970, 1980), Lee and Geisser (1972, 1975), Fearn

(1975), Jennrich and Schluchter (1986), Rao (1987), Lee (1988, 1991), von

Rosen (1991), Pan, Fang and von Rosen (1999), among others.
The growth curve model is defined as

Y
p�N

¼ X
p�m

t
m�r

A
r�N

þ E
p�N

; (1.1)

where t is an unknown matrix and X and A are known design matrices of ranks
m < p and r < N, respectively. The columns of E are independent p-variate nor-
mal, with mean vector 0 and common covariance matrix S. In general, p is the
number of time (or spatial) points observed on each of the N individuals, m and r,
which specify the degree of polynomial in time (or space) and the number of
distinct groups, respectively, are assumed known. The design matrices X and A
will therefore characterize the degree of the growth function and the distinct
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grouping out of the N independent vector observations. Potthoff and Roy (1964)
gave many examples of growth curve applications for the model (1.1). Lee and
Geisser (1975), Rao (1987) and Lee (1988), among others, applied the model to
some biological data. Keramidas and Lee (1990) applied the model to forecast of
technology substitutions.
Lee (1988, 1991), Lee and Lu (1987) and Keramidas and Lee (1990, 1995)

demonstrated repeatedly the importance of the AR(1) dependence, or serial covar-
iance structure, for the covariance matrix S for the model (1.1).
Mansour, Nordheim and Rutledge (1985) allowed for time heteroscedasticity

by applying a nonstationary AR(1) error process for repeated measures experi-
ments. Geary (1989) presented a more general case. Rochon (1992) presented
stationary ARMA covariance structures with time heteroscedasticity. Laird and
Ware (1982) considered the random effects model for longitudinal data, which
included growth curve as a special case. They provided for polynomial trends over
time, e.g. random slope. Jennrich and Schluchter (1986) provided the informa-
tion about the use of covariance structures which included autoregressive as well
as random effects error terms. In our paper, we provided for grouping the var-
iances in order to construct more parsimonious and realistic covariance structure
and provided the Box-Cox transformation in order to make growth function linear
or piecewise linear, which is helpful for prediction. We conducted the likelihood
ratio test for the adequacy of grouping the variances. In order to conduct the test,
we have been aided by the plot of confidence intervals for standard deviations in
the model. In theory, however, some of the results given in Laird and Ware

(1982) and Jennrich and Schluchter (1986) could be extended to provide the
features considered in this paper.
The estimation of parameters and prediction of future values for the model (1.1)

having the covariance structure S ¼ s2C, C is the correlation matrix with station-
ary autoregression process of order 1, or AR(1), have been studied using the ML
method by Lee (1988). The purpose of this paper is to consider an extension of
this covariance structure to an AR(q) process with grouping variances. An AR(q)
dependence structure with grouping variances in the growth curve model will be
much more general and quite useful in practice because it includes the AR(1)
dependence with a common variance as a special case. When the AR(q) depen-
dence structure with grouping variances holds for S, we have

S ¼ DsCDs ; ð1:2Þ

where C ¼ ðcijÞ for i; j ¼ 1; . . . ; p; i.e.,

cij ¼
qji�jj ; when i 6¼ j ;
1 ; when i ¼ j ;

�
ð1:3Þ

qi ¼
Pq
j¼1

fjqji�jj ; for i � 1 ; ð1:4Þ
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Ds is a p� p diagonal matrix and function of fs1; . . . ; sgg and fj; j ¼ 1; . . . ; q
are unknown and satisfy the assumption that the roots of the equation

1�
Pq
j¼1

fjx
j ¼ 0 lie outside the unit circle kxk ¼ 1 in the complex plane and

sl > 0 for l ¼ 1; . . . ; g are unknown. In the grouping of the variances, we assume
that there are gi members in the ith group for i ¼ 1; . . . ; g. The purpose of this paper
is to consider this covariance structure from the maximum likelihood point of view
hoping that a more effective and practical solution can be furnished. We will com-
pare our results with those based on the ML method for the AR(1) dependence as
given in Lee (1988) via real and simulated data. Since si > 0, there is a one-to-one
correspondence between si and s2i . Thus, for convenience, we will be dealing with
si instead of s2i mathematically for the rest of this paper. Also, it is trivial to note that
equality of variances is equivalent to equality of standard deviations.
In addition to the inferences on the parameters t, f ¼ ðf1; . . . ;fqÞ

0 and
s ¼ ðs1; . . . ; sgÞ0, we will also consider conditional prediction problem for the
growth curve model as specified by (1.1)–(1.4). Let V be p� K future observa-
tions drawn from the generalized growth curve model; that is, the set of future
observations is such that given the parameters t and S,

EðVÞ ¼ XtF ; ð1:5Þ
where E( ) denotes expected value, F is a known r � K matrix, and the columns
of V are independent and multivariate normal with a common covariance matrix
S. It is noted that F ¼ 1 in the special situation in which r ¼ K ¼ 1. Lee and
Geisser (1972, 1975), Fearn (1975), and Lee (1988, 1991) considered the
problem of predicting Vð2Þ, given Vð1Þ and Y, if V is partitioned as
V ¼ ðVð1Þ0 ; Vð2Þ0 Þ

0
, where VðiÞ is pi � K ði ¼ 1; 2Þ and p1 þ p2 ¼ p. If p is inter-

preted as the number of points in time being observed, then the problem is mainly
concerned with predicting the generalized growth curve for future values for the same
set of p time points, or a subset of size p2. When p2 < p and K ¼ 1, it is also called
the conditional prediction of the unobserved portion of a partially observed vector.
Meanwhile, we will also consider the situation in which the Box-Cox transfor-

mations are applied to the observations Y in (1.1). The model, called data-based
transformed (DBT) model, is

YðlÞ ¼ XtAþ E ; (1.6)

where YðlÞ ¼ ðYðlÞ
ij Þ and

YðlÞ
ij ¼ fðYij þ gÞl � 1g=l ; when l 6¼ 0

lnðYij þ gÞ; when l ¼ 0
;

�
ð1:7Þ

g is assumed to be a known constant such that Yij þ g > 0 for all i and j, l is an
unknown parameter, and columns of E are independently and normally distributed
with mean vector 0 and common covariance matrix S as specified in (1.2)–(1.4). It is
noted that l could assume different values for different segments of observations. In
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Lee and Lu (1987), tremendous improvement was found in predictive accuracy using
the DBT model for technology substitutions. This is primarily due to the fact that the
linearity assumption for the growth function can be enhanced significantly with the
Box-Cox transformation, along with incorporating into the model the proper depen-
dence structure among the observations. Keramidas and Lee (1990) combined the
concepts of the Box-Cox transformation and a generalized growth curve model with
serial structure for forecasting technological substitutions based on the maximum like-
lihood method when repeated measurements of short time series are available. If the
growth function is not linear, we can use the Box-Cox transformation so that the func-
tion is linear or piecewise linear, but the transformation may not stabilize the variance.
Thus, it is appropriate to construct grouping of variances with AR(q) dependence.
In Section 2, maximum likelihood estimation of parameters and prediction of

future values are considered. In Section 3, we derive asymptotic result and test for
the equality and grouping of variances. The results are illustrated in Section 4 with
two real data sets and a simulation. Some concluding remarks are given in Section 5.
Finally, the derivation of the Hessian information matrix is given in the Appendix.

2. Parameter estimation and prediction of Vð2Þ based on the maximum likelihood
theory

From equation (1.4), we obtain the following equations:

qk ¼ f1qk�1 þ f2qk�2 þ . . .þ fqqk�q ; for k > 0 ; ð2:1Þ

where for j < 0, qj ¼ q�j and q0 ¼ 1. From equation (2.1), for k ¼ 1; . . . ; q, we
obtain the well-known Yule-Walker equations by replacing qj with q̂qj. The Yule-
Walker estimate solves these equations for f ¼ ðf1; . . . ;fqÞ

0 as a function of q’s.
Here, for the constraints on q, we would express q as a function of f, the param-
eters to be estimated. From equation (2.1), if q is odd,

qk ¼ f1qk�1 þ f2qk�2 þ . . .þ fqþ1
2 �1q1 þ fqþ1

2
q0 þ fqþ1

2 þ1q�1

þ . . .þ fqqk�q ;

else,
qk ¼ f1qk�1 þ f2qk�2 þ . . .þ fq

2�1q1 þ fq
2
q0 þ fq

2þ1q�1 þ . . .þ fqqk�q :

Since qj ¼ q�j and q0 ¼ 1, it follows that

qk ¼

fk þ
Pk�1

j¼1
ðfj þ f2k�jÞ qk�j ; if k ¼ qþ 1

2

fk þ
Pk�1

j¼1
ðfj þ f2k�jÞ qk�j þ

Pq
j0¼2k

fj0qj0�k ; if k <
qþ 1

2

fk þ
P2k�q�1

j¼1
fjqk�j þ

Pq
j0¼kþ1

ðf2k�j0 þ fj0 Þ qj0�k ; if k >
qþ 1

2
:

8>>>>>>>><
>>>>>>>>:

ð2:2Þ
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Hence, we have natural constraints on q that can be expressed as

Gqþ f ¼ 0 ð2:3Þ

where the matrix G is a function of f, element-wise

Gij ¼ fiþj þ fi�j � dij ; ð2:4Þ

with fk � 0 if k 62 f1; . . . ; qg and dij equals to 1 if i ¼ j and 0 otherwise. Hence,
for the AR(q) dependence structure, C in (1.3), could be expressed as a function
of f.
From model (1.6), we have the following likelihood of t, s, f and l:

Lðt;s;f; l j YÞ / jSj�
N
2 exp f� 1

2 trS�1ðYðlÞ � XtAÞ ðYðlÞ � XtAÞ0g JY ;

ð2:5Þ
where JY, the Jacobian of the transformation from YðlÞ to Y, is defined as

JY ¼
QN
j¼1

Qp
i¼1

ðYij þ gÞl�1 : ð2:6Þ

From (3.6) of Lee (1988), we have

tr S�1ðYðlÞ � XtAÞ ðYðlÞ � XtAÞ0
¼ tr ðX0S�1XÞ ½ðX0S�1XÞ�1 X0S�1SS�1XðX0S�1XÞ�1 þ ðt� t̂tÞ AA0ðt� t̂tÞ0�
þ tr ðZ0SZÞ�1 Z0YðlÞYðlÞ0Z

and using the fact

S�1 ¼ S�1 XðX0S�1XÞ�1 X0S�1 þ ZðZ0SZÞ�1 Z0 ;

where

S ¼ YðlÞðI� A0ðAA0Þ�1AÞ YðlÞ0 ð2:7Þ
and Z is a known p� ðp� mÞ matrix with rank p� m such that X0Z ¼ 0, and t̂t,
the MLE of t, is

t̂tðSÞ ¼ ðX0S�1XÞ�1 X0S�1YðlÞA0ðAA0Þ�1 ; ð2:8Þ
with

S ¼ DsCDs : ð2:9Þ
The MLEs of s, f and l, denoted by ŝs ¼ ðŝs1; . . . ; ŝsgÞ0, f̂f ¼ ðf̂f1; . . . ; f̂fqÞ

0 and l̂l,
respectively, are obtained by maximizing the profile likelihood function

Lmaxðs;f; lÞ

¼ jSj�N=2 exp f� 1
2 tr ½S

�1Sþ Zð Z0SZÞ�1 Z0YðlÞA0ðAA0Þ�1 AYðlÞ0�gJY :
ð2:10Þ
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Comments regarding the l values can be applied when there are different values
of l for different segments of observations.
We consider the conditional prediction of the future matrix Vð2Þ, given Y and

Vð1Þ. Schematically, the matrices Y, Vð1Þ and Vð2Þ are shown below:

Y
Vð1Þ

Vð2Þ

where Y, p� N, is the complete sample; Vð1Þ, p1 � K, is the partially observed
matrix and Vð2Þ, p2 � K, is the unobserved portion to be predicted. Of course,
p1 þ p2 ¼ p.
We restrict attention to the special situation in which K ¼ 1 and r ¼ 1; that is,

only one vector is being predicted in the same group. This is similar to Lee and
Geisser (1975). The approximate mean (denoted by V̂Vð2Þ), when the covariance
structure given by (1.2) holds, can be obtained as

V̂Vð2Þ ¼ f1þ l̂l½Xð2Þt̂tþ ŜS21ŜS
�1
11 ðVð1Þðl̂lÞ � Xð1Þt̂tÞ�g1=l̂l � g; if l̂l 6¼ 0

exp½Xð2Þt̂tþ ŜS21ŜS
�1
11 ðVð1Þðl̂lÞ � Xð1Þt̂tÞ� � g; if l̂l ¼ 0 ;

(

ð2:11Þ
and applying the delta method to obtain an estimate of the approximate covariance
matrix of V̂Vð2Þ as follows:

ŜSV̂Vð2Þ ffi diag ððl̂lXð2Þt̂tþ 1Þ1=l̂l�1Þ � ŴW � diag ððl̂lXð2Þt̂tþ 1Þ1=l̂l�1Þ ; if l̂l 6¼ 0

diag ðexp ðXð2Þt̂tÞÞ � ŴW � diag ðexpðXð2Þt̂tÞÞ ; if l̂l ¼ 0 ;

(

ð2:12Þ
and

ŴW ¼ 1

N
ðXð2Þ � ŜS21ŜS

�1
11 X

ð1ÞÞ ðX0ŜS�1XÞ�1ðXð2Þ � ŜS21ŜS
�1
11 X

ð1ÞÞ0þ ŜS21ŜS
�1
11 ŜS12 ;

where Vð1ÞðlÞ is defined in manners similar to YðlÞ given in (1.6) and (1.7), t̂t is as
given in (2.7) with S replaced by ŜS, X is partitioned as X ¼ ðXð1Þ0 ;Xð2Þ0 Þ0, XðiÞ is
pi � mði ¼ 1; 2Þ, diag ðaÞ is a diagonal matrix with elements a and

ŜS ¼ D̂DsĈCD̂Ds ¼ ŜS11 ŜS12

ŜS21 ŜS22

� �
; ð2:13Þ

where ŜSij is of dimension pi � pj (p1 þ p2 ¼ p). It is noted that xa ¼ ðxa1; . . . ; xapÞ
0

where x ¼ ðx1; . . . ; xpÞ0 and a is a scalar.

3. Asymptotic result and testing equality and grouping of variances

In this section, we will derive the information matrix which is useful for obtaining
the standard errors of the MLEs and testing equality and grouping of variances.
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3:1 Information matrix

For ease of presentation and some practical consideration, we will restrict our
attention to the special situation in which r ¼ 1. The log-likelihood obtained from
(2.5) is:

l ¼ lðt; s;f; l j YÞ

¼ � N

2
log ðjSjÞ � 1

2

PN
i¼1

ðYðlÞ
i � XtÞ0 S�1ðYðlÞ

i � XtÞ þ log ðJYÞ : ð3:1Þ

We are unable to take the expectation of the Hessian matrix, which is too compli-
cated. Only observed Hessian matrix is used in the paper. This is still useful in
computing the standard errors of the MLEs. Let q ¼ ðt0; s0;f0; lÞ0. In case there
are g groups with gi members in the group. The Hessian matrix, H ¼ @2l=@q @q0,
has the following block partitioned form

H ¼

H11 H12 H13 H14

H0
12 H22 H23 H24

H0
13 H0

23 H33 H34

H0
14 H0

24 H0
34 H44

0
BB@

1
CCA ¼

@2l

@t @t0
@2l

@t @s0
@2l

@t @f0
@2l

@t @l
@2l

@s @t0
@2l

@s @s0
@2l

@s @f0
@2l

@s @l
@2l

@f @t0
@2l

@f @s0
@2l

@f @f0
@2l

@f @l
@2l

@l @t0
@2l

@l @s0
@2l

@l @f0
@2l

@l @l

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ð3:2Þ
where H11 ¼ �NX0S�1X and other derivations are placed in the Appendix.
Thus, an approximate information matrix is

Iq ffi �Hðq̂qÞ ; ð3:3Þ
where q̂q is the mode of the likelihood function. Under some regularity conditions
the estimator q̂q is asymptotically normal with mean q and covariance matrix I�1

q .

3:2 Testing equality and grouping of variances

We will first test the equality of g different variances under the assumption of
grouping variances, that is,

H0 : Ds ¼ 0 versus H1 : Ds 6¼ 0

where

D
ðg�1Þ�g

¼

1 �1 0 . . . 0

0 1 �1 0 ..
.

..

.
0 . .

. . .
.

0
0 . . . 0 1 �1

0
BBB@

1
CCCA:
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The procedure is based on the likelihood ratio criterion,

lðYÞ ¼
supq2Q0

Lðq j YÞ
supq2Q Lðq j YÞ ;

and la is chosen so that

sup
q2Q0

PrflðYÞ � la; qg � a ;

where Q0 is the null space when H0 is true while Q is the entire parameter space
under the assumption of grouping variances. Let QðYÞ ¼ �2 ln lðYÞ. Under some
mild regularity conditions, the statistic QðYÞ is asymptotically Chi-square distri-
buted with g� 1 degrees of freedom under the null hypothesis.
The likelihood ratio test procedure can also be applied to test the null hypothesis

H0*: grouping variances versus H1*: all p variances are distinct.

The likelihood ratio criterion is

l*ðYÞ ¼
sup

q2Q0
* Lðq j YÞ

sup
q2Q* Lðq j YÞ ;

where Q0* is the null space when H0* is true while Q* is the entire parameter
space when the p variances are distinct. Let Q*ðYÞ ¼ �2 ln l*ðYÞ. Then under
some mild regularity conditions, Q*ðYÞ is asymptotically Chi-square distributed
with p� g degrees of freedom under the null hypothesis.

4. Illustrative example

This section is devoted to the illustration of the conditional prediction of Vð2Þ

given Vð1Þ and Y. For the conditional prediction, we will set K ¼ 1 and
p2 ¼ 1; 2; 3; 4, that is, we will predict the last four observations of a partially ob-
served vector. If p ¼ 7 and p2 ¼ 1; 2; 3; 4, we denote the predictions as V7,
V6 � V7, V5 � V7 and V4 � V7, respectively. For the parameter t, we will assume
that the N observations have come from the same group. We will use the predic-
tive sample reuse (PSR), or the leave-one-out (LOO) method. The method was
used by Lee and Geisser (1975), Rao (1987) and Lee (1988), among others. The
discrepancy measure is the mean absolute relative derivation (MARD) of the pre-
dictions from the actuals. The discrepancy measure is defined as

MARD ¼ ðNp2Þ�1Pp2
j¼1

PN
i¼1

jYð2Þ
ij � ŶYð2Þ

ij j
Yð2Þ

ij

;
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where Y ¼ ðY1; . . . ;YNÞ, Yi ¼ Yð1Þ
i

Yð2Þ
i

 !
, Yð1Þ

i is p1 � 1, Yð2Þ
i is p2 � 1,

p1 þ p2 ¼ p and ŶYð2Þ
i is its predicted values. It is noted that when Yð2Þ

i is being
predicted, the complete sample is YðiÞ ¼ ðY1; . . . ;Yi�1;Yiþ1; . . . ;YNÞ and the par-
tially observed vector is Yð1Þ

i .

4:1 The mice data

The mice data set was reported by Williams and Izenman (1981) and analyzed
by Rao (1984, 1987) and Lee (1988, 1991). It consists of weights of 13 male
mice, measured at intervals of 3 days, over the 21 days from birth to weaning.
The data are plotted in Figure 1. We assume the second degree polynomial for the
growth curve, as noted by Rao (1984). When the growth function is quadratic, the
design matrix X is

X ¼
1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49

0
@

1
A

0

;

and the design matrix A is 1� 13 vector consisting of all 1s.
The ML estimates with standard errors in parentheses for the model (1.6), with

q ¼ 1, m ¼ 3 and distinct variances, are given in Table 1. When the same l is
applied to all observations for each mouse, the estimate of s with 95% confidence
interval for each time point is plotted in Figure 2. We found that the mice data
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with the same Box-Cox transformation for different time points have a possible
change point at day 15. From Table 1, we also found that standard deviation
varies with time and stabilize at 12 days, which is also displayed in Figure 2.
Hence, a possible model is to group the last three variances as a single group and
the rest as four different variances. To test for the adequacy of this grouping var-
iances structure, the value of the log-likelihood function is 169.19 under AR(1)
dependence with the above grouping variances. Under the equality of variances,
the value of the log-likelihood function is 126.52, resulting in a likelihood ratio
statistic Q ¼ 85:34 and p-value < 0:0001, indicating that the homogeneity of var-
iances is not acceptable. Meanwhile, we can test the grouping variances (H0*)
against the alternative hypothesis that all p variances are distinct (H1*). When all 7
variances are distinct, the value of the log-likelihood function is 170.10, resulting
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Table 1

ML estimation results for the distinct variances with AR(1) errors

t̂t �1.1125
(0.0090)

0.2507
(0.0085)

�0.0152
(0.0011)

ŝs 0.0333
(0.0099)

0.0461
(0.0113)

0.0666
(0.0144)

0.1093
(0.0226)

0.1279
(0.0242)

0.1333
(0.0266)

0.1100
(0.0198)

q̂q 0.9006
(0.054)

l̂l 0.8372
(0.1420)

Fig. 2. The estimate of s of mice data with 95% confidence interval for each time point



in a likelihood ratio statistic Q* ¼ 1:82 and p-value ¼ 0.5975, indicating that the
grouping of variances is acceptable. Thus, the AR(1) dependence with the above
grouping of variances is a possible model for the data.
The comparisons of predictive performance of different grouping variances

structures for conditional predictions of Vð2Þ given Vð1Þ and Y without the Box-
Cox transformation and with the Box-Cox transformation are summarized in Ta-
ble 2 and Table 3, respectively. In the tables, the notation f(1) (2) (3) (4) (5, 6, 7)g
denotes the grouping of the variances corresponding to the seven time points of
mice data into five groups with s5 ¼ s6 ¼ s7. We found that the grouping var-
iances are better than the common variance with AR(q) dependence structure
when q ¼ 1 or 2, coupled with or without the Box-Cox transformation. The criter-
ion used in the comparison is MARD. For example, for the prediction of V7, the
best prediction result occurs when a common variance is assumed for the AR(2)
dependence coupled with the Box-Cox transformation. The resulting MARD is
0.0354, which is slightly better than the result with the above grouping variances.
Meanwhile, the best model for the prediction of V6 � V7, V5 � V7, and V4 � V7 is
the untransformed AR(1) dependence, having quadratic growth function and with
the grouping variances fð1Þ ð2Þ ð3Þ ð4Þ ð5; 6; 7Þg. Thus, with the exception of pre-
dicting V7 alone, the best model seems to be the untransformed AR(1) depen-
dence, having quadratic growth function and with the grouping variances
fð1Þ ð2Þ ð3Þ ð4Þ ð5; 6; 7Þg. Of course, the finding is consistent with the variance
estimates as shown in Figure 2.
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Table 2

The MARD between the predicted and the actual values of Vð2Þ: mice data

Covariance structure V7 V6 � V7 V5 � V7 V4 � V7

linear
linear

fð1Þð2Þð3Þð4Þð5; 6; 7Þg & AR(1)
fð1; 2; 3; 4; 5; 6; 7Þg & AR(1)

0.0477
0.0454

0.0602
0.0822

0.0617
0.0866

0.0808
0.1097

quadratic
quadratic

fð1Þð2Þð3Þð4Þð5; 6; 7Þg & AR(1)
fð1; 2; 3; 4; 5; 6; 7Þg & AR(1)

0.0403
0.0406

0.0523
0.0525

0.0588
0.0628

0.0722
0.0965

Table 3

The MARD between the predicted and the actual values of Vð2Þ with the Box-Cox transfor-
mation and linear growth function: mice data

Covariance structure V7 V6 � V7 V5 � V7 V4 � V7

fð1Þ ð2Þ ð3Þ ð4Þ ð5; 6; 7Þg & AR(1)
fð1; 2; 3; 4; 5; 6; 7Þg & AR(1)

0.0391
0.0418

0.0549
0.0729

0.0610
0.0798

0.0748
0.1067

fð1Þ ð2Þ ð3Þ ð4Þ ð5; 6; 7Þg & AR(2)
fð1; 2; 3; 4; 5; 6; 7Þg & AR(2)

0.0367
0.0354

0.0638
0.0836

0.0654
0.0777

0.0847
0.1084



4:2 The drug dissolution data

The data given in Lee et al. (1999) are the dissolution rates of three standard lots
and one test lot. For each lot, there are twelve tablets and for each tablet the
dissolution rates are measured at seven time points: 1, 2, 3, 4, 6, 8 and 10 min-
utes. We used the pooled data of three lots and removed the observations at time
1 and 3 to create an equally-spaced dataset. The dissolution function FðtÞ of a
drug is defined to be the percentage of a tablet that has dissolved at time t, and
RðtÞ is defined by FðtÞ=ð100� FðtÞÞ. The data transformation is plotted in Fig-
ure 3. Since 0 � FðtÞ � 100, and RðtÞ � 0, both ranges are not the entire real line.
It may cause the out of range problem when we model them directly. We will
therefore consider applying the Box-Cox transformations to RðtÞ which will avoid
the above problem. We observed that there is one possible change point at time 8.
Thus, the design matrix X for the growth curve model is

X ¼
1 1 1 1 1
2 4 6 8 8
0 0 0 0 2

0
@

1
A

0

:

From Figure 3, it is clear that F=ð100� FÞ is not quite linear, but piecewise
linear, in time. The Box-Cox transformation applied to F=ð100� FÞ will help
achieve the linearity property. If the time is cut into two pieces, 2–6, 8–10, just
as in the design matrix and the Box-Cox transformation is applied to the two
pieces separately, the variances are more stable. When different Box-Cox transfor-
mations are applied to observations from two different segments, the estimates of
s1; . . . ; s5 for the drug dissolution data are plotted with confidence intervals in
Figure 4.
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Fig. 3. Plots of dissolution ratio curves



From Figure 4, we found that the standard deviation of the pooled data varies with
time. Hence, a possible model is to treat s2 ¼ s3 and the rest as three different var-
iances in an AR(1) dependence. The value of the log-likelihood function increased
from �134.35 under the equality of variances to �113.88 under this grouping var-
iances structure, resulting in a likelihood ratio statistic Q ¼ 40.94, with p-va-
lue <0:0001, indicating that the homogeneity of variances is not acceptable. When
all 5 variances are distinct, the value of the log-likelihood function is �111.98, re-
sulting in a likelihood ratio statistic Q* ¼ 3.80 and p-value ¼ 0.0513, indicating the
grouping of variance is acceptable. From Table 4, we found that the model with
q ¼ 1 and two different variance groups is better than that with equal variance.

4:3 Simulation

In this subsection we will present a simulation study regarding the grouping
variances structure. In order to compare different grouping variances, we set
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Table 4

The MARD between the predicted and the actual values of Vð2Þ with the Box-Cox transfor-
mation: drug data

Drug data Covariance structure V5 V4 � V5

Pooled fð1Þ ð2; 3Þ ð4Þ ð5Þg & AR(1) 0.02672 0.02369
fð1Þ ð2Þ ð3Þ ð4Þ ð5Þg & AR(1) 0.02689 0.02436
fð1; 2; 3; 4; 5Þg & AR(1) 0.02742 0.02713

Fig. 4. The estimates of s1; . . . ; s5 of drug dissolution data with 95% confidence interval
for each time point



t ¼ ð0:1; 0:2Þ0, the design matrix X is

X ¼ 1 1 1 1 1 1 1
1 2 3 4 5 6 7

� �0
;

f ¼ 0:93, and the number of replications is 1000. We generate data from group-
ing variances, (s1 ¼ s2 ¼ s3 ¼ s4 ¼ s5 ¼ 0:007 and s6 ¼ s7 ¼ 0:014) and
(s1 ¼ s2 ¼ s3 ¼ s4 ¼ s5 ¼ 0:007 and s6 ¼ s7 ¼ 0:021), and present the condi-
tional predictive performance in Table 5 and Table 6, respectively. From the two
tables, it is clear that the grouping variances structure yield better and more stable
prediction results, as expected.

5. Concluding remarks

The model with grouping variances in AR(q) dependence structure provides an
effective and practical means of dealing with the growth curve data. An appropri-
ate grouping among the variances in an AR(q) dependence structure gives better
and more stable predictive performance. If the growth function is not linear, we
can apply the Box-Cox transformation so that the function is linear. If there are
change points, we can apply different Box-Cox transformations for different seg-
ments of observations so that the function is piecewise linear. If the variance var-
ies over time we can group the variances appropriately in an AR(q) covariance
structure. We can plot confidence intervals for standard deviations for each time in
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Table 5

Prediction performance for data generated from grouping variances ðs1 ¼ s2 ¼ s3 ¼ s4
¼ s5 ¼ 0:007 and s6 ¼ s7 ¼ 0:014Þ with AR(1) dependence: simulated data

MARD N V7 V6 � V7 V5 � V7 V4 � V7

Grouping variances 12
36

0.00270
0.00274

0.00352
0.00355

0.00358
0.00356

0.00367
0.00375

Identical variance 12
36

0.00273
0.00276

0.00518
0.00516

0.00449
0.00443

0.00430
0.00431

Table 6

Prediction performance for data generated from grouping variances ðs1 ¼ s2 ¼ s3 ¼ s4
¼ s5 ¼ 0:007 and s6 ¼ s7 ¼ 0:021Þ with AR(1) dependence: simulated data

MARD N V7 V6 � V7 V5 � V7 V4 � V7

Grouping variances 12
36

0.00414
0.00407

0.00536
0.00532

0.00522
0.00511

0.00502
0.00503

Identical variance 12
36

0.00428
0.00416

0.00922
0.00925

0.00741
0.00723

0.00674
0.00646



order to observe the adequate grouping and use the likelihood ratio test for the
adequacy of grouping the variances. The final grouping of variances is obtained
by the prediction results of the last few rows of Y, the observed matrix. When the
length of the time points is short and the sample size is small, usually q ¼ 1 or 2
will suffice. It is conceivable that the grouping of variances will not be a good
idea if the variances are somewhat similar. However, if the magnitudes are distinct
and in clear clusters, the grouping of variances will certainly improve the predic-
tive performance. Hence, the procedure developed in this paper will be useful for
dealing with growth curve data.

Appendix

In this appendix, we will derive the information matrix. H22, H23, H33, H12, H13,
H14, H24 and H34 can be obtained from the following equations:

@2l

@sk @sj
¼

� 1

2
s�2
j s�2

k

PN
i¼1

ðYðlÞ
i � XtÞ0 ½EkkC

�1Ejj

þEjjC
�1Ekk�ðYðlÞ

i � XtÞ; if k 6¼ j ;

Ns�2
j � s�3

j

PN
i¼1

ðYðlÞ
i � XtÞ0½D�1

s C�1Ejj

þEjjC
�1D�1

s þ s�1
j EjjC

�1Ejj� ðYðlÞ
i � XtÞ; if k ¼ j ;

8>>>>>>>>><
>>>>>>>>>:

@2l

@sj @fk

¼ � 1

2
s�2
j

PN
i¼1

ðYðlÞ
i � XtÞ0 ½D�1

s C�1 @C
@fk

C�1Ejj

þEjjC
�1 @C

@fk

C�1D�1
s � ðYðlÞ

i � XtÞ ;

@2l

@fj @fk

¼ � N

2
tr C�1 @2C

@fj @fk

� C�1 @C
@fj

C�1 @C
@fk

" #

� 1

2

PN
i¼1

ðYðlÞ
i � XtÞ0 D�1

s C�1

� @2C
@fj @fk

� @C
@fj

C�1 @C
@fk

� @C
@fk

C�1 @C
@fj

" #
C�1D�1

s ðYðlÞ
i � XtÞ ;

@2l

@t @sj
¼ s�2

j

PN
i¼1

X0ðD�1
s C�1Ejj þ EjjC

�1D�1
s Þ ðYðlÞ

i � XtÞ ;

@2l

@t @fj

¼
PN
i¼1

X0D�1
s C�1 @C

@fj

C�1D�1
s ðYðlÞ

i � XtÞ ;
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@2l

@t @l
¼ �

PN
i¼1

X0S�1 @Y
ðlÞ
i

@l
;

@2l

@sj@l
¼ s�2

j

PN
i¼1

ðYðlÞ
i � XtÞ0 ½D�1

s C�1Ejj þ EjjC
�1D�1

s � @Y
ðlÞ
i

@l
;

@2l

@fj @l
¼
PN
i¼1

ðYðlÞ
i � XtÞ0 D�1

s C�1 @C
@fj

C�1D�1
s

@YðlÞ
i

@l
;

@2l

@l2
¼ �

PN
i¼1

YðlÞ
i

0

@l
S�1 @YðlÞ

i

@l
�
PN
i¼1

ðYðlÞ
i � XtÞ0 S�1@

2YðlÞ
i

@l2
;

where Ejj is a p� p matrix with “1” on the diagonal from
Pj�1

i¼1
gj þ 1 to

Pj
i¼1

gi and

zero elsewhere. Since C is a function of q, the first two derivatives of C with
respect to f can be obtained from the first two derivatives of q as given below:

@q

@fj

¼ G�1 @G
@fj

G�1f�G�1ei ;

@2q

@fj @fk

¼ G�1 @2G
@fj @fk

G�1fþG�1 @G
@fj

G�1ek þG�1 @G
@fk

G�1ej

�G�1 @G

@fj

G�1 @G

@fk

G�1f�G�1 @G

@fk

G�1 @G

@fj

G�1f ;

where ei is the ith column vector of an q� q identity matrix Iq. And, the first two
derivatives of YðlÞ

i with respect to l can be easily obtained by the following
formulas:

@YðlÞ
ij

@l
¼ � ðYij þ gÞl � 1

l2
þ ðYij þ gÞl log ðYij þ gÞ

l
; l 6¼ 0

0 ; l ¼ 0

;

8<
:

@2YðlÞ
ij

@l2
¼

2ððYij þ gÞl � 1Þ
l3

� 2ðYij þ gÞl log ðYij þ gÞ
l2

þðYij þ gÞlðlog ðYij þ gÞÞ2

l
; l 6¼ 0

0; l ¼ 0

:

8>>>>><
>>>>>:
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